CCAAT/Enhancer-Binding Protein Beta Controls Differentiation-Specific Expression of Chromatin Remodeling Factor BRM

  • Toshinari Itoh
  • Katsuhide Miyake
  • Shinji Iijima
Conference paper
Part of the Animal Cell Technology: Basic & Applied Aspects book series (ANICELLTECH, volume 15)


The chromatin remodeling complex, SWI/SNF exclusively contains BRG1 or BRM as an ATPase subunit. So far, we have confirmed that the expression of BRM was very low in neural precursor cells and fetal liver cells, and induced to a high level in terminally differentiated neurons and astrocytes, and adult liver cells. The expression of BRM was very low in undifferentiated P19 cells and was induced to a high level during differentiation. In contrast, BRG1 was constantly expressed throughout differentiation. In this study, we analyzed developmental regulation of the brm gene. Luciferase reporter assays showed an increase in the transcriptional activity of the BRM promoter during differentiation of P19 cells. The promoter region of the brm gene contains two putative binding sites for CCAAT/enhancer-binding protein beta (C/EBPβ). Luciferase reporter assays showed that the binding of transcription factors C/EBPβ might stimulate the transcriptional activity of the BRM promoter.


SWI/SNF neural cell differentiation C/EBPβ 


  1. 1.
    Bird, A. P. and Wolffe, A. P. (1999) Methylation-induced repression-belts, braces, and chromatin. Cell 99, 451–454.CrossRefPubMedGoogle Scholar
  2. 2.
    Kingston, R. E. and Narlikar, G. J. (1999) ATP-dependent remodeling and acetylation as regulators of chromatin fluidity. Genes Dev. 13, 2339–2352.CrossRefPubMedGoogle Scholar
  3. 3.
    Knoepfler, P. S. and Eisenman, R. N. (1999) Sin meets NuRD and other tails of repression. Cell 99, 447–450.CrossRefPubMedGoogle Scholar
  4. 4.
    Kouzarides, T. (1999) Histone acetylases and deacetylases in cell proliferation. Curr. Opin. Genet. Dev. 9, 40–48.CrossRefPubMedGoogle Scholar
  5. 5.
    Berger, S. L. (2002) Histone modifications in transcriptional regulation. Curr. Opin. Genet. Dev. 12, 142–148.CrossRefPubMedGoogle Scholar
  6. 6.
    Workman, J. L. and Kingston, R. E. (1998) Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annu. Rev. Biochem. 67, 545–579.CrossRefPubMedGoogle Scholar
  7. 7.
    Eisen, J. A., Sweder, K. S., and Hanawalt, P. C. (1995) Evolution of the SNF2 family of proteins: subfamilies with distinct sequences and functions. Nucleic Acids Res. 23, 2715–2723.CrossRefPubMedGoogle Scholar
  8. 8.
    Chiba, H., Muramatsu, M., Nomoto, A., and Kato, H. (1994) Two human homologues of Saccharomyces cerevisiae SWI2/SNF2 and Drosophila brahma are transcriptional activators cooperating with the estrogen receptor and the retinoic acid receptor. Nucleic Acids Res. 22, 1815–1820.CrossRefPubMedGoogle Scholar
  9. 9.
    Singh, P., Coe, J., and Hong, W. (1995) A role for retinoblastoma protein in potentiating transcriptional activation by the glucocorticoid receptor. Nature 374, 562–565.CrossRefPubMedGoogle Scholar
  10. 10.
    Ichinose, H., Garnier, J.-M., Chambon, P., and Losson, R. (1997) Ligand-dependent interaction between the estrogen receptor and the human homologues of SWI2/SNF2. Gene 188, 95–100.CrossRefPubMedGoogle Scholar
  11. 11.
    Trouche, D., Chalony, C. L., Muchardt, C., Yaniv, M., and Kouzarides, T. (1997) RB and hbrm cooperate to repress the activation functions of E2F1. Proc. Natl. Acad. Sci. USA 94, 11268–11273.CrossRefPubMedGoogle Scholar
  12. 12.
    Armstrong, J. A., Bieker, J. J., and Emerson, B. M. (1998) A SWI/SNF-related chromatin remodeling complex, E-RC1, is required for tissue-specific transcriptional regulation by EKLF in vitro. Cell 95, 93–104.CrossRefPubMedGoogle Scholar
  13. 13.
    Murphy, D. J., Hardy, S., and Engel, D. A. (1999) Human SWI-SNF component BRG1 represses transcription of the c-fos gene. Mol. Cell. Biol. 19, 2724–2733.PubMedGoogle Scholar
  14. 14.
    Kowenz-Leuts, E. and Leutz, A. (1999) A C/EBPβ isoform recruits the SWI/SNF complex to activate myeloid genes. Mol. Cell 4, 735–743.CrossRefGoogle Scholar
  15. 15.
    Wang, W., Xue, Y., Zhou, S., Kuo, A., Cairns, B. R., and Crabtree, G. R. (1996) Diversity and specialization of mammalian SWI/SNF complexes. Genes Dev. 10, 2117–2130.CrossRefPubMedGoogle Scholar
  16. 16.
    Wang, W., Cote, J., Xue, Y., Zhou, S., Khavari, P. A., Biggar, S. R., Muchardt, C., Kalpana, G. V., Goff, S. P., Yaniv, M., Workman, J. L., and Crabtree, G. R. (1996) Purification and biochemical heterogeneity of the mammalian SWI-SNF complex. EMBO J. 15, 5370–5382.PubMedGoogle Scholar
  17. 17.
    Nie, Z., Xue, Y., Yang, D., Zhou, S., Deroo, B. J., Archer, T. K., and Wang, W. (2000) A specificity and targeting subunit of a human SWI/SNF family-related chromatin-remodeling complex. Mol. Cell. Biol. 20, 8879–8888.CrossRefPubMedGoogle Scholar
  18. 18.
    Debril, M.-B., Gelman, L., Fayard, E., Annicotte, J.-S., Rocchi, S., and Auwerx, J. (2004) Transcription factors and nuclear receptors interact with the SWI/SNF complex through the BAF60c subunit. J. Biol. Chem. 279, 16677–16686.CrossRefPubMedGoogle Scholar
  19. 19.
    Sif, S., Saurin, A. J., Imbalzano, A. N., and Kingston, R. E. (2001) Purification and characterization of mSin3A-containing Brg1 and hBrm chromatin remodeling complexes. Genes Dev. 15, 603–618.CrossRefPubMedGoogle Scholar
  20. 20.
    Pal, S., Yun, R., Datta, A., Lacomis, L., Erdjument-Bromage, H., Kumar, J., Tempst, P., and Sif, S. (2003) mSin3A/histone deacetylase 2- and PRMT5-containing Brg1 complex is involved in transcriptional repression of the Myc target gene cad. Mol. Cell. Biol. 23, 7475–7487.CrossRefPubMedGoogle Scholar
  21. 21.
    Harikrishnan, K. N., Chow, M. Z., Baker, E. K., Pal, S., Bassal, S., Brasacchio, D., Wang, L., Craig, J. M., Jones, P. L., Sif, S., and El-Osta, A. (2005) Brahma links the SWI/SNF chromatin-remodeling complex with MeCP2-dependent transcriptional silencing. Nat. Genet. 37, 254–264.CrossRefPubMedGoogle Scholar
  22. 22.
    Sudarsanam, P., Iyer, V. R., Brown, P. O., and Winston, F. (2000) Whole-genome expression analysis of snf/swi mutants of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 97, 3364–3369.CrossRefPubMedGoogle Scholar
  23. 23.
    Fryer, C. J. and Archer, T. K. (1998) Chromatin remodeling by the glucocorticoid receptor requires the BRG1 complex. Nature 393, 88–91.CrossRefPubMedGoogle Scholar
  24. 24.
    Muchardt, C. and Yaniv, M. (1993) A human homologue of Saccharomyces cerevisiae SNF2/SWI2 and Drosophila brm genes potentiates transcriptional activation by the glucocorticoid receptor. EMBO J. 12, 4279–4290.PubMedGoogle Scholar
  25. 25.
    Dunaief, J. L., Strober, B. E., Guha, S., Khavari, P. A., Alin, K., Luban, J., Begemann, M., Crabtree, G. R., and Goff, S. P. (1994) The retinoblastoma protein and BRG1 form a complex and cooperate to induce cell cycle arrest. Cell 79, 119–130.CrossRefPubMedGoogle Scholar
  26. 26.
    Shanahan, F., Seghezzi, W., Parry, D., Mahony, D., and Lees, E. (1999) Cyclin E associates with BAF155 and BRG1, components of the mammalian SWI-SNF complex, and alters the ability of BRG1 to induce growth arrest. Mol. Cell. Biol. 19, 1460–1469.PubMedGoogle Scholar
  27. 27.
    Pedersen, T. A., Kowenz-Leutz, E., Leutz, A., and Nerlov, C. (2001) Cooperation between C/EBPα TBP/TFIIB and SWI/SNF recruiting domains is required for adipocyte differentiation. Genes Dev. 15, 3208–3216.CrossRefPubMedGoogle Scholar
  28. 28.
    Kadam, S., McAlpine, G. S., Phelan, M. L., Kingston, R. E., Jones, K. A., and Emerson, B. M. (2000) Functional selectivity of recombinant mammalian SWI/SNF subunits. Genes Dev. 14, 2441–2451.CrossRefPubMedGoogle Scholar
  29. 29.
    Machida, Y., Murai, K., Miyake, K., and Iijima, S. (2001) Expression of chromatin remodeling factors during neural differentiation. J. Biochem. 129, 43–49.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Toshinari Itoh
    • 1
  • Katsuhide Miyake
    • 1
  • Shinji Iijima
    • 1
  1. 1.Department of Biotechnology, Graduate school of EngineeringNagoya UniversityFuro-cho, Chikusa-kuJapan

Personalised recommendations