Small Scale Vertical Behaviour of Juvenile Albacore in Relation to Their Biotic Environment in the Bay of Biscay

  • Nicolas Goñi
  • Igor Arregui
  • Ainhoa Lezama
  • Haritz Arrizabalaga
  • Gala Moreno
Part of the Reviews: Methods and Technologies in Fish Biology and Fisheries book series (REME, volume 9)


The goal of the present study is to analyze the small scale vertical behaviour of juvenile albacore tuna (Thunnus alalunga) in relation to the abundance and distribution of their main prey, which has particular importance regarding catchability by surface fishing gears, such as trolling. A total of six juvenile albacore were tracked in the south east Bay of Biscay in July and August 2005, using ultrasonic transmitters. Two echosounders working at 38 and 120 kHz on the tracking vessel were used to collect data on the biotic environment (krill, small pelagic fish and planktonic layers) between the surface and 200 m depth. These data were echo-integrated in order to relate tuna vertical movements to food availability. The stomach contents of 97 albacore caught during the surveys were analyzed, the comparison of prey occurrences respectively in the stomachs and on the echograms showed selectivity for blue whiting. However, the biotic factors considered in this study had no significant influence on the depth of albacore, which possibly feed during night-time in surface waters. The tracked albacore had a shallow depth distribution and did not exhibit any regular deep-diving behaviour. A significant effect of time of day and body size on albacore depth was shown, all fish remaining deeper during daytime, and smaller fish having a shallower vertical distribution.


Albacore Behaviour Ultrasonic telemetry Echosounding Prey Bay of Biscay Atlantic 


  1. Bard F.X. (1981) Le thon germon (Thunnus alalunga Bonaterre 1788) de l’Océan Atlantique. De la dynamique des populations à la stratégie démographique. Thèse de Doctorat d’État. Université Paris VI: 333 pp.Google Scholar
  2. Bard F.X., Bach, P. and Josse, E. (1998) Habitat et écophysiologie des thons: Quoi de neuf depuis 15 ans? ICCAT Coll. Vol. Sci. Pap. 50, 319–342.Google Scholar
  3. Bertrand A., Josse E., Bach P., Gros P. and Dagorn L. (2002) Hydrological and trophic characteristics of tuna habitat: consequences on tuna distribution and longline catchability. Can. J. Fish. Aquat. Sci. 59, 1002–1013.CrossRefGoogle Scholar
  4. Boyra G., Álvarez P., Cotano U., Arregi I., Martínez U. and Uriarte A. (2006) Spatial distribution of anchovy juveniles in the Bay of Biscay. Orense: Aica Ediciones In I. Álvarez, M. de Castro, M. Gómez-Gesteira, M.N. Lorenzo, R. Prego (eds.). Oceanography of the Bay of Biscay. Abstract.Google Scholar
  5. Brill R.W., Block B., Boggs C., Bigelow K., Freund E. and Marcinek D. (1999) Horizontal movements and depth distribution of large adult yellowfin tuna (Thunnus albacares) near the Hawaiian Islands, recorded using ultrasonic telemetry: implications for the physiological ecology of pelagic fishes. Mar. Biol. 133, 395–408.CrossRefGoogle Scholar
  6. Brill R.W., Lutcavage M.E., Metzger G., Bushnell P., Arendt M., Lucy J., Watson C. and Foley D. (2002) Horizontal and vertical movements of juvenile bluefin tuna (Thunnus thynnus), in relation to oceanographic conditions of the western North Atlantic, determined with ultrasonic telemetry. Fish. Bull. 100, 155–167.Google Scholar
  7. Carey F.G. (1992) Through the thermocline and back again – heat regulation in big fish. Océanus, autumn, 79–85.Google Scholar
  8. Childers J., Kohin S. and LaGrange J. (2007) Migration patterns of juvenile albacore in the Eastern North Pacific as revealed by archival tags. Proceedings of the 58th Tuna Conference, Lake Arrowhead, California, May 21–24, 2007.Google Scholar
  9. Dagorn L., Bach P. and Josse E. (2000a) Movement patterns of large bigeye tuna (Thunnus obesus) in the open ocean, determined using ultrasonic telemetry. Mar. Biol. 136, 361–371.CrossRefGoogle Scholar
  10. Dagorn L., Josse E. and Bach P. (2000b) Individual differences in horizontal movements of yellowfin tuna (Thunnus albacares) in nearshore areas in French Polynesia, determined using ultrasonic telemetry. Aquat. Living Resour. 13, 193–202.CrossRefGoogle Scholar
  11. Diner N. (2001) Correction on school geometry and density: approach based on acoustic image simulation. Aquat. Living Resour. 14, 211–222.CrossRefGoogle Scholar
  12. Diner N., Marchallot C. and Berger L. (2006) Echo-integration by shoal using Movies+ software Version 4.3. Ifremer, Brest.Google Scholar
  13. Domokos R., Seki M.P., Polovina J.J. and Hawn D.R. (2007) Oceanographic investigation of the American Samoa albacore (Thunnus alalunga) habitat and longline fishing grounds. Fish. Oceanogr. 16(6), 555–572.CrossRefGoogle Scholar
  14. Fréon P. and Misund O.A. (1999) Dynamics of pelagic fish distribution and behaviour: Effects on fisheries and stock assessment. Blackwell Science, London. 348 pp.Google Scholar
  15. Girard C., Dagorn L., Taquet M., Aumeeruddy R., Peignon C. and Benhamou S. (2007) Homing abilities of dolphinfish (Coryphaena hippurus) displaced from fish aggregating devices (FADs) determined using ultrasonic telemetry. Aquat. Living Resour. 20 1–9.CrossRefGoogle Scholar
  16. Graham J.B. and Dickson K.A. (1981) Physiological thermoregulation in the albacore Thunnus alalunga. Physiol. Zool. 54(4), 470–486.Google Scholar
  17. Graham J.B. and Laurs R.M. (1982) Metabolic rate of the albacore tuna Thunnus alalunga. Mar. Biol. 72, 1–6.CrossRefGoogle Scholar
  18. Hastie T.J. (1992) Generalized additive models. In S. J.M. Chambers and T.J. Hastie (eds.). Statistical Models. London: Chapman & Hall, pp. 249–307.Google Scholar
  19. Holland K.N., Brill R.W. and Chang R.K.C. (1990) Horizontal and vertical movements of yellowfin and bigeye tuna associated with fish aggregating devices. Fish. Bull. 88, 493–507.Google Scholar
  20. ICCAT (2007) Report of the 2007 ICCAT albacore stock assessment session. Madrid, Spain – July 5 to 12, 2007. ICCAT Standing Committee on Research and Statistics (SCRS)/2007/015 document, 84 pp.Google Scholar
  21. Itoh T., Tsuji S., and Nitta A. (2003) Swimming depth, ambient water temperature preference, and feeding frequency of young Pacific bluefin tuna (Thunnus orientalis) determined with archival tags. Fish. Bull. 101, 535–544.Google Scholar
  22. Josse E., Bach P. and Dagorn L. (1998) Simultaneous observations of tuna movements and their prey by sonic tracking and acoustic surveys. Hydrobiologia 371/372, 61–69.CrossRefGoogle Scholar
  23. Kang M., Furusawa M. and Miyashita K. (2002) Effective and accurate use of difference in mean volume-backscattering strength to identify fish and plankton. ICES J. Mar. Sci. 59,794–804.Google Scholar
  24. Kitagawa T., Kimura S., Nakata H. and Yamada H. (2004) Diving behavior of immature, feeding Pacific bluefin tuna (Thunnus thynnus orientalis) in relation to season and area: the East China Sea and the KuroshioeOyashio transition region. Fish. Oceanogr. 13, 161–180.CrossRefGoogle Scholar
  25. Kitagawa T., Boustany A. M., Farwell C. J., Williams T. D., Castleton M. R. and Block B. A. (2007) Horizontal and vertical movements of juvenile bluefin tuna (Thunnus orientalis) in relation to seasons and oceanographic conditions in the eastern Pacific Ocean. Fish. Oceanogr. 16(5), 409–421.CrossRefGoogle Scholar
  26. Korsmeyer K.E. and Dewar H. (2001) Tuna metabolism and energetics. In B.A. Block and E.D. Stevens (eds.). Tunas: Physiology, Ecology and Evolution. San Diego, CA: Academic Press. pp. 35–78.CrossRefGoogle Scholar
  27. Laurs R.M., Yuen H.S.H. and Johnson J.H. (1977) Small-scale movements of albacore, Thunnus alalunga, in relation to ocean features as indicated by ultra-sonic tracking and oceanographic sampling. Fish. Bull. 75(2), 347–355.Google Scholar
  28. MacLennan D.N., Fernandes P.G. and Dalen J. (2002) A consistent approach to definitions and symbols in fisheries acoustics, ICES J. Mar. Sci. 59, 365–369.CrossRefGoogle Scholar
  29. Madureira L.S.P., Ward P. and Atkinson A. (1993) Diferences in backscattering strength determined at 120 and 38 kHz for three species of Antarctic macroplankton. Mar. Ecol. Prog. Ser. 93, 17–24.CrossRefGoogle Scholar
  30. Mauchline J. (1980) The biology of mysids and euphausiids. Adv. Mar. Biol. 18, 371–678.Google Scholar
  31. Musyl M., Brill R.W., Boggs C., Curran D., Kazama T. and Seki M. (2003) Vertical movements of bigeye tuna (Thunnus obesus) associated with islands, buoys, and seamounts near the main Hawaiian Islands from archival tagging data. Fish. Oceanogr. 12, 152–169.CrossRefGoogle Scholar
  32. Santiago J. (2004) Dinámica de la población de atún blanco (Thunnus alalunga Bonaterre 1788) del Atlántico Norte. PhD Thesis, Euskal Herriko Unibertsitatea, Bilbao, 320 pp.Google Scholar
  33. Santiago J. and Arrizabalaga H. (2005) An integrated growth study for North Atlantic albacore (Thunnus alalunga Bonn. 1788). ICES J. Mar. Sci. 62, 740–749.CrossRefGoogle Scholar
  34. Schaefer K. M. and Fuller D. W. (2005) Behavior of bigeye (Thunnus obesus) and skipjack (Katsuwonus pelamis) tunas within aggregations associated with floating objects in the equatorial eastern Pacific. Mar. Biol. 146, 781–792.CrossRefGoogle Scholar
  35. Stokesbury M. J. W., Teo S. L. H., Seitz A., O’Dor R. K. and Block B. A. (2004) Movement of Atlantic bluefin tuna (Thunnus thynnus) as determined by satellite tagging experiments initiated off New England. Can. J. Fish. Aquat. Sci. 61, 1976–1987.CrossRefGoogle Scholar
  36. Sund P.N., Blackburn M. and Williams F. (1981) Tunas and environment in the Pacific Ocean: A review. Oceanogr. Mar. Biol. Ann. Rev. 19, 443–512.Google Scholar
  37. Uosaki K. (2004) Preliminary results obtained from tagging of North Pacific albacore with archival tag. ICCAT Coll. Vol. Sci. Pap. 56(4), 1496–1503.Google Scholar
  38. Weill A., Scalabrin C. and Diner N. (1993) MOVIES-B: an acoustic detection description software: application to shoal species classification. Aquat. Living Resour. 6, 255–267.CrossRefGoogle Scholar
  39. Wilson S.G., Lutcavage M.E., Brill R.W., Genovese M.P., Cooper A.B. and Everly A.W. (2005) Movements of bluefin tuna (Thunnus thynnus) in the northwestern Atlantic Ocean recorded by pop-up satellite archival tags. Mar. Biol. 146, 409–423.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Nicolas Goñi
    • 1
  • Igor Arregui
    • 1
  • Ainhoa Lezama
    • 1
  • Haritz Arrizabalaga
    • 1
  • Gala Moreno
    • 1
  1. 1.Marine Research DivisionAZTI-TecnaliaGipuzkoaSpain

Personalised recommendations