Advertisement

Large Problems in Numerical Limit Analysis: A Decomposition Approach

  • F. Pastor
  • Z. Kammoun
  • E. Loute
  • J. Pastor
  • H. Smaoui

Abstract

A decomposition approach of the kinematical method of limit analysis is first presented. It is based on a mixed variational approach and on a convex interior point solver, using linear or quadratic discontinuous velocity fields. Exposed in plane strain, this method appears rapidly convergent, as verified in the Tresca compressed bar problem. Then the method is applied to the classical problem of the stability factor of a Tresca vertical slope: the upper bound is lowered from 3.882 to 3.7778. This value is to be compared to the lower bound just increased from 3.772 to 3.7752 by using the same solver in the extension of the method to the statical decomposition problem with infinite elements.

Keywords

Limit Analysis Decomposition Approach Target Problem Velocity Jump Vertical Slope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderheggen, E., Knopfel, H.: Finite element limit analysis using linear programming. Int. J. Solid. Struct. 8, 1413–1431 (1972)MATHCrossRefGoogle Scholar
  2. 2.
    Capurso, M.: Limit analysis of continuous media with piecewise linear yield conditions. Meccanica 1, 53–58 (1971)CrossRefGoogle Scholar
  3. 3.
    Christiansen, E.: Limit analysis of collapse states. In: Ciarlet, P.G., Lions, J.L. (eds.), Handbook of Numerical Analysis, North-Holland, Amsterdam, pp. 193–312. (1996)Google Scholar
  4. 4.
    Ciria, H., Peraire, J.: Limit analysis and convex optimization:Applications. In: 9th ASCE Specialty Conference on Probabilistic Mechanics and Structural Reliability. Albuquerque (2004)Google Scholar
  5. 5.
    Herskovits, J.: A two-stage feasible directions algorithm for nonlinearly constrained optimization. Math. Program. 36, 19–38 (1986)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Huang, J., Xu, W., Thomson, P., Di, S.: A general rigid-plastic/rigid-viscoplastic FEM for metal-forming processes based on the potential reduction interior point method. Int. J. Mach. Tool Manuf. 43, 379–389 (2003)CrossRefGoogle Scholar
  7. 7.
    Kammoun, Z., Pastor, F., Smaoui, H., Pastor, J.: A decomposition of the static problem in limit analysis. In: Proceedings of the Second Euromediterranean Symposium on Advances in Geomaterials and Structures. Hammamet, Tunisie (2008)Google Scholar
  8. 8.
    Krabbenhoft, K., Damkilde, L.: A general non-linear optimization algorithm for lower bound limit analysis. Int. J. Num. Meth. Engng. 56, 165–184 (2003)MATHCrossRefGoogle Scholar
  9. 9.
    Krabbenhoft, K., Lyamin, A., Hijaj, M., Sloan, S.: A new discontinuous upper bound limit analysis formulation. Int. J. Num. Meth. Engng. 63, 1069–1088 (2005)MATHCrossRefGoogle Scholar
  10. 10.
    Lyamin, A.V., Sloan, S.W.: Lower bound limit analysis using nonlinear programmlng. Int. J. Numer. Meth. Engng. 55, 573–611 (2002)MATHCrossRefGoogle Scholar
  11. 11.
    Lyamin, A.V., Sloan, S.W.: Upper bound limit analysis using linear finite elements and non-linear programming. Int. J. Numer. Anal. Meth. Geomech. 26, 181–216 (2002)MATHCrossRefGoogle Scholar
  12. 12.
    Lysmer, J.: Limit analysis of plane problems in soil mechanics. J. Soil Mech. Found. Div., ASCE 96, 1311–1334 (1970)Google Scholar
  13. 13.
    Makrodimopoulos, A., Martin, C.: Upper bound limit analysis using simplex strain elements and second-order cone programming. Int. J. Num. Anal. Meth. Geomech. 31, 835–865 (2007)CrossRefGoogle Scholar
  14. 14.
    Pastor, F.: Résolution d’un problème d’optimisation à contraintes linéaires et quadratiques par une méthode de point intérieur : application à l’Analyse Limite. Mémoire de DEA de mathématiques appliquées, Université de Lille 1 (2001)Google Scholar
  15. 15.
    Pastor, F.: Résolution par des méthodes de point intérieur de problèmes de programmation convexe posés par l’analyse limite. Thèse de doctorat, Facultés universitaires Notre-Dame de la Paix, Namur (2007)Google Scholar
  16. 16.
    Pastor, F., Loute, E.: Solving limit analysis problems: An interior-point method. Commun. Numer. Meth. Engng. 21(11), 631–642 (2005)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Pastor, F., Loute, E., Pastor, J.: Limit analysis and convex optimization: Applications. In: 17ème Congrès Franç cais de Mécanique-CFM 2005. Université de Troyes (2005)Google Scholar
  18. 18.
    Pastor, F., Loute, E., Pastor, J., Trillat, M.: Mixed method and convex optimization for limit analysis of homogeneous gurson materials: A kinematical approach. Eur. J. Mechan. A/ Solid. 28, 25–35 (2009)CrossRefGoogle Scholar
  19. 19.
    Pastor, F., Thoré, Ph., Loute, E., Pastor, J., Trillat, M.: Convex optimization, limit analysis and porous materials: Application to gurson and porous drucker-prager materials. Engng. Frac. Mechan. 75, 1367–1383 (2008)CrossRefGoogle Scholar
  20. 20.
    Pastor, F., Trillat, M., Pastor, J., Loute, E.: Stress-based upper-bound method and convex optimization: Case of the Gurson material. C. R. Mécanique, Acad. Sc. Paris 334, 213–219 (2006)Google Scholar
  21. 21.
    Pastor, F., Trillat, M., Pastor, J., Loute, E., Thoré, Ph.: Convex optimization and stress-based lower/upper bound methods for limit analysis of porous polymer materials. In: J. Besson, D. Steglish, D. Moinereau (eds.) 9th European Mechanics of Materials Conference, EMMC9. Ecole des Mines de Paris – EDF (May 2006)Google Scholar
  22. 22.
    Pastor, J.: Analyse limite : détermination numérique de solutions statiques complètes. Application au talus vertical. Jl. Méc. Appl. (now Eur. Jl. Mech.-A/Solids) 2, 167–196 (1978)Google Scholar
  23. 23.
    Pastor, J.: Application de la théorie de l’analyse limite auxmilieux isotropes et orthotropes de révolution. Thèse d’Etat, UJF-INPG, Grenoble (1983)Google Scholar
  24. 24.
    Pastor, J., Loute, E., Thai, T.H.: Interior point optimization and limit analysis: an application. Commun. Numer. Meth. Engng. 19, 779–785 (2003)MATHCrossRefGoogle Scholar
  25. 25.
    Pastor, J., Turgeman, S.: Mise en œ uvre numérique desméthodes de l’analyse limite pour les matériaux de von mises et de coulomb standards en déformation plane. Mech. Res. Comm. 3, 469–474 (1976)MATHCrossRefGoogle Scholar
  26. 26.
    Radenkovic, D., Nguyen, Q.S.: La dualité des théorèmes limitespour une structure en matériau rigide-plastique standard. Arch. Mechan. 24(5–6), 991–998 (1972)MATHMathSciNetGoogle Scholar
  27. 27.
    Saad, Y.: Iterative Methods for Sparse Linear Systems, Second SIAM, Philadelphia (2003)MATHGoogle Scholar
  28. 28.
    Salençon, J.: Théorie des charges limites: poinçonnementd’une plaque par deux poinçons symétriques en déformation plane. Comptes Rendus Mécanique, Acad. Sc. Paris 265, 869–872 (1967)Google Scholar
  29. 29.
    Salençon, J.: Théorie de la plasticité pour les applications à la mécanique des sols. Eyrolles, Paris (1974)MATHGoogle Scholar
  30. 30.
    Salençon, J.: Calcul à la rupture et analyse limite. presses des Ponts et Chaussées, Paris (1983)Google Scholar
  31. 31.
    Widlund, O., Keyes, D.: Domain Decomposition Methods in Science and Engineering XVI. Lectures Notes in Computational Science and Engineering. Springer, New York (2007)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • F. Pastor
    • 1
  • Z. Kammoun
    • 2
  • E. Loute
    • 3
  • J. Pastor
    • 4
  • H. Smaoui
    • 5
  1. 1.Université Catholique de LouvainLaboratoire cesameBelgium
  2. 2.Ecole Polytechnique de TunisieLaboratoire de Systèmes et de Mécanique AppliquéeB. P.743Tunisie
  3. 3.Facultés universitaires Saint-Louis and Louvain School of ManagementBld.Jardin Botanique 43Belgium
  4. 4.Université de Savoie, Polytech’ SavoieLaboratoire locieFrance
  5. 5.Ecole Nationale d’Ingénieurs de TunisB. P. 37Le BelvédèreTunisie

Personalised recommendations