Skip to main content

Shakedown Analysis of Composite Materials Based on Non-linear Mathematical Programming

  • Chapter

Abstract

Using a Representative Volume Element (rve) to represent the microstructure of periodic composite materials, a non-linear numerical technique is developed to calculate the macroscopic shakedown domains of composites subjected to cyclic loads. With the aid of homogenization theory, the classical kinematic shakedown theorem is generalized to incorporate the microstructure of composites. Using an associated flow rule, the plastic dissipation power for an ellipsoid yield criterion is expressed in terms of the kinematically admissible velocity. By means of non-linear mathematical programming techniques, a finite element formulation of kinematic shakedown analysis is then developed leading to a non-linear mathematical programming problem subject to only a small number of equality constraints. An effective, direct iterative algorithm is proposed to solve the non-linear programming problem. This can serve as a useful numerical tool for developing engineering design methods involving composite materials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carvelli V. Shakedown analysis of unidirectional fiber reinforced metal matrix composites. Comput. Mater. Sci. 2004; 31: 24–32.

    Article  Google Scholar 

  2. Chen HF., Ponter ARS. Shakedown and limit analyses for 3-D structures using the linear matching method. Int. J. Pres. Ves. Pip. 2001; 78: 443–451.

    Article  Google Scholar 

  3. Cocks ACF., Jansson S., Leckie FA. Effect of cyclic thermal loading on the properties of metal matrix composites. J. Therm. Stress 1992; 15: 175–184.

    Article  Google Scholar 

  4. Daehn GS., Anderson PM., Zhang HY. Temperature change induced plasticity in metal matrix composites. Scripta Metallurgica et Materialia 1991; 25: 2279–2284.

    Article  Google Scholar 

  5. Feng XQ., Liu XS. On shakedown of three-dimensional elastoplastic strain-hardening structures. Int. J. Plasticity 1997; 12: 1241–1256.

    Article  Google Scholar 

  6. Francescato P., Pastor J. Lower and upper numerical bounds to the off-axis strength of unidirectional fiber-reinforced composite by limit analysis methods. Eur. J. Mech. A Solids 1997; 16: 213–234.

    Google Scholar 

  7. Gurson AL. Continuum theory of ductile rupture by void nucleation and growth: Part I – yield criteria and flow rules for porous ductile media. J. Eng. Mat. Tech. 1977; 99: 2–15.

    Google Scholar 

  8. Hill R. A theory of the yielding and plastic flow of anisotropic metals. Proc. Roy. Soc. London 1948; 193: 282–287.

    Google Scholar 

  9. Hill R. A self-consistent mechanics of composite materials. J. Mech. Phys. Solids, 1965; 13: 213–222.

    Article  Google Scholar 

  10. Hill R. Continuum micromechanics of elastoplastic polycristals. J. Mech. Phys. Solids 1965; 13: 89–101.

    Google Scholar 

  11. Himmelblau DM. Applied Non-linear Programming. McGraw-Hill Book Company: New York, 1972.

    Google Scholar 

  12. Huh H., Yang WH. A general algorithm for limit solutions of plane stress problems. Int. J. Solid. Struct. 1991; 28: 727–738.

    Article  MATH  MathSciNet  Google Scholar 

  13. Jansson S., Leckie FA. Transverse tensile and inplane shear strength of weakly bonded fiber reinforced MMC’s subjected to cyclic thermal loading. Mech. Mater. 1994; 18: 205–212.

    Article  Google Scholar 

  14. Jansson S., Leckie FA. Effect of cyclic thermal loading on the inplane shear strength of fiber reinforced MMC’s. Eur. J. Mech. A Solids 1997; 16: 561–572.

    MATH  Google Scholar 

  15. Koiter WT. General theorems for elastic-plastic bodies. In: Sneddon IN, Hill R (eds).Progress in Solid Mechanics, North-Holland: Amsterdam, 1960; 165–221.

    Google Scholar 

  16. König JA. On upper bounds to shakedown loads. ZAMM 1979; 59: 349–354.

    Google Scholar 

  17. König JA. Shakedown of Elastic-Plastic Structure. Elsevier: Amsterdam, 1987.

    Google Scholar 

  18. Li HX., Liu YH., Feng XQ., Cen ZZ. Limit analysis of ductile composites based on homogenization theory. Proc. Roy. Soc. London A 2003; 459: 659–675.

    MATH  Google Scholar 

  19. Liu YH., Cen ZZ., Xu BY. A numerical method for plastic limit analysis of 3-D structures. Int. J. Solid. Struct. 1995; 32: 1645–1658.

    Article  MATH  Google Scholar 

  20. Maier G. Shakedown theory in perfect elastoplasticity with associated and nonassociated flow-laws: a finite element linear programming approach. Meccanica 1969; 4: 250–260.

    Article  MATH  Google Scholar 

  21. Melan E. Theorie Statisch Unbestimmter Tragwerke aus idealplastischem Baustoff. Sitzungsbericht der Akademie der Wissenschaften (Wien) Abt. IIA 1938; 195: 145–195.

    Google Scholar 

  22. Michel JC., Moulinec H., Suquet P. Effective properties of composite materials with periodic microstructure: a computational approach. Comp. Methods Appl. Mech. Engrg. 1999; 172: 109–143.

    Article  MATH  MathSciNet  Google Scholar 

  23. Morelle P. Numerical shakedown analysis of axisymmetric sandwich shells: an upper bound formulation. Int. J. Num. Meth. Eng. 1986; 23: 2071–2088.

    Article  MATH  Google Scholar 

  24. Ponter ARS., Carter KF., Duggan JM. Shakedown limits for a metal matrix composite. J. Comp. Tech. Res. 2001; 23: 197–204.

    Google Scholar 

  25. Ponter ARS., Engelhardt M. Shakedown limits for a general yield condition: implementation and application for a von Mises yield condition. Eur. J. Mech. A/Solids 2000; 19: 423–445.

    Article  MATH  Google Scholar 

  26. Ponter ARS., Leckie FA. Bounding properties of metal-matrix composites subjected to cyclic thermal loading. J. Mech. Phys. Solids 1998; 46: 697–717.

    Article  MATH  MathSciNet  Google Scholar 

  27. Shapiro JF. Mathematical Programming: Structures and Algorithms. A Wiley-Interscience Publication: New York, 1979.

    MATH  Google Scholar 

  28. Sloan SW., Randolph MF. Numerical prediction of collapse loads using finite element methods. Int. J. Numer. Anal. Meth. Eng. Geomech. 1982; 6: 47–76.

    Article  MATH  Google Scholar 

  29. Stein E., Zhang G., Huang Y. Modeling and computation of shakedown problems for non-linear hardening materials. Comput. Meth. Appl. Mech. Eng., 1993; 103: 247–272.

    Article  MATH  MathSciNet  Google Scholar 

  30. Suquet P. Homogenization Techniques for Composite Media. Lecture Notes in Physics 272, Springer: New York, 1987.

    Google Scholar 

  31. Taliercio A. Lower and upper bounds to the macroscopic strength domain of a fiber-reinforced composite material. Int. J. Plasticity 1992; 8: 741–762.

    Google Scholar 

  32. Taliercio A., Sagramoso P. Uniaxial strength of polymeric-matrix fibrous composites predicted through a homogenization approach. Int. J. Solid. Struct. 1995; 14: 2095–2123.

    Article  Google Scholar 

  33. Tarn JQ., Dvorak GJ., Rao MSM. Shakedown of unidirectional composites. Int. J. Solid. Struct. 1975; 11: 751–764.

    Article  MATH  Google Scholar 

  34. Tirosh J. The dual shakedown conditions for dilute fibrous composites. J. Mech. Phys. Solids 1998; 46: 167–185.

    Article  MATH  Google Scholar 

  35. Weichert D., Groß-Weege J. On the influence of geometrical non-linearities on the shakedown of elastic-plastic structures. Int. J. Plasticity 1986; 2: 135–148.

    Article  MATH  Google Scholar 

  36. Weichert D., Hachemi A., Schwabe F. Application of shakedown analysis to the plastic design of composites. Arch. Appl. Mech. 1999; 69: 623–633.

    MATH  Google Scholar 

  37. Weichert D., Hachemi A., Schwabe F. Shakedown analysis of composites. Mech. Res. Commun. 1999; 26: 309–318.

    Article  MATH  Google Scholar 

  38. Xue MD., Wang XF., Williams FW., Xu BY. Lower-bound shakedown analysis of axisymmetric structures subjected to variable mechanical and thermal loads. Int. J. Mech. Sci. 1997; 39: 965–976.

    Article  MATH  Google Scholar 

  39. Yu HS., Hossain MZ. Lower bound shakedown analysis of layered pavements using discontinuous stress field. Comput. Meth. Appl. Mech. Eng. 1998; 167: 209–222.

    Article  MATH  Google Scholar 

  40. Yu HS., Houlsby GT., Burd HJ. A novel isoparametric finite element formulation for axisymmetric analysis of nearly incompressible materials. Int. J. Num. Meth. Eng. 1993; 36: 2453–2472.

    Article  MATH  MathSciNet  Google Scholar 

  41. Yu HS., Netherton MD. Performance of displacement finite elements for modeling incompressible materials. Int. J. Numer. Anal. Meth. Eng. Geomech. 2000; 24: 627–653.

    Article  MATH  Google Scholar 

  42. Zhang HY., Daehn G.S., Wagoner RH. Simulation of the plastic response of whisker reinforced metal matrix composites under thermal cycling conditions. Scripta Metallurgica et Materialia 1991; 25: 2285–2290.

    Article  Google Scholar 

  43. Zhang PX., Lu MW., Hwang K. A mathematical programming algorithm for limit analysis. Acta Mech. Sinica 1991; 7: 267–274.

    Article  Google Scholar 

  44. Zienkiewicz OC., Taylor RL., Too TM. Reduced integration technique in general analysis of plates and shells. Int. J. Num. Meth Eng. 1971; 3: 275–290.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Li, H., Yu, H. (2009). Shakedown Analysis of Composite Materials Based on Non-linear Mathematical Programming. In: Dieter, W., Alan, P. (eds) Limit States of Materials and Structures. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9634-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-9634-1_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-9633-4

  • Online ISBN: 978-1-4020-9634-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics