Skip to main content

Gel-forming structures and stages of red algal galactans of different sulfation levels

  • Chapter
Nineteenth International Seaweed Symposium

Part of the book series: Developments in Applied Phycology ((DAPH,volume 2))

Abstract

Sol-gel transition processes of algal galactans were studied using cryofixation method in combination with freeze-drying and scanning electron microscopy (SEM) techniques. The structures formed in successive stages of gelling process upon cooling were rapidly frozen at defined temperature points and viewed by SEM. It was established that in the case of both types of gelling galactans investigated, a fine honeycomb-like network exists for a wide range of solution temperatures. The formation and structure of this network depends on the structural type, gelling stage, and concentration of the galactan in solution. The honeycomb suprastructures exist also in carrageenan and agarose sols (at temperatures considerably exceeding the gelling temperatures). An additional helical network formed showed different behaviour in the case of carrageenan and agar-type polysaccharides. In the gel-formation process, tightening of the network takes place in both types of galactan gels; the honeycomb structures persist in carrageenan (furcellaran) but not in agarose gels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson NS, Campbell JW, Harding MM, Rees DA, Samuel JWB (1969) X-ray diffraction studies of polysaccharide sulfates: double helix model for κ- and ι-carrageenans. J Mol Biol 45:85–99

    Article  PubMed  CAS  Google Scholar 

  • Aymard P, Martin DR, Plucknett K, Foster TJ, Clark AH, Norton IT (2001) Influence of thermal history on the structural and mechanical properties of agarose gels. Biopolymers 59:131–144

    Article  PubMed  CAS  Google Scholar 

  • Borgström J, Piculell L, Viebke C, Talmon Y (1996) On the structure of aggregated kappa-carrageenan helices. A study by cryo-TEM, optical rotation and viscometry. Int J Biol Macromol 18:223–229

    Article  PubMed  Google Scholar 

  • Bourriot S, Garnier C, Doublier J-L (1999) Micellar casein/kappa-carrageenan mixtures. 1. Phase separation and ultrastructure. Carbohydr Polym 40:145–157

    Article  CAS  Google Scholar 

  • Dunstan DE, Chen Y, Liao M-L, Salvatore R, Boger DV, Prica M (2001) Structure and rheology of the kappa-carrageenan/locust bean gum gels. Food Hydrocolloids 15:475–484

    Article  CAS  Google Scholar 

  • Echlin P (1978) Low-temperature biological scanning electron microscopy. In: Koehler KJ (ed) Advanced techniques in biological electron microscopy II. Springer, Berlin, pp 89–122

    Google Scholar 

  • Evageliou V, Kasapis S, Hember MWN (1998) Vitrification of κ-carrageenan in the presence of high levels of glucose syrup. Polymer 39:3909–3917

    Article  CAS  Google Scholar 

  • Fuchigami M, Teramoto A, Jibu Y (2006) Texture and structure of pressure-shift-frozen agar gel with high visco-elasticity. Food Hydrocolloids 20:160–169

    Article  CAS  Google Scholar 

  • Hermansson A-M (1990) Structure and rheological properties of kappa-carrageenan gels. In: Burchard W, Ross-Murphy SB (eds) Physical networks: polymers and gels. Elsevier, London, pp 271–282

    Google Scholar 

  • Knutsen SH, Grasdalen H (1987) Characterization of water-extractable polysaccharides from Norwegian Furcellaria lumbricalis (Huds.) Lamour. (Gigartinales, Rhodophyceae) by IR and NMR spectroscopy. Bot Mar 30:497–505

    CAS  Google Scholar 

  • Lee I, Atkins EDT, Miles MJ (1992) Visualisation of the algal polysaccharide carrageenan by scanning tunnelling microscopy. Ultramicroscopy 42–44:1107–1112

    Article  PubMed  Google Scholar 

  • MacArtain P, Jacquier JC, Dawson KA (2003) Physical characteristics of calcium induced κ-carrageenan networks. Carbohydr Polym 53:395–400

    Article  CAS  Google Scholar 

  • Mangione MR, Giacomazza D, Bulone D, Martorana V, San Biagio PL (2003) Thermoreversible gelation of kappa-carrageenan: relation between conformational transition and aggregation. Biophys Chem 104:95–105

    Article  PubMed  CAS  Google Scholar 

  • Medina-Torres L, Brito-De La Fuente E, Gómez-Aldapa CA, Aragon-Piña A, Toro-Vazquez JF (2006) Structural characteristics of gels formed by mixtures of carrageenan and mucilage gum from Opuntia ficus indica. Carbohydr Polym 63:299–309

    Article  CAS  Google Scholar 

  • Meunier V, Nicolai T, Durand D (2001) Structure of aggregating κ-carrageenan fractions studied by light scattering. Int J Biol Macromol 28:157–165

    Article  PubMed  CAS  Google Scholar 

  • Morris ER, Rees DA, Robinson G (1980) Cation-specific aggregation of carrageenan helices: domain model of polymer gel structure. J Mol Biol 138:349–362

    Article  PubMed  CAS  Google Scholar 

  • Morris VJ (1986) Gelation of polysaccharides. In: Mitchell JR, Ledward DA (eds) Functional properties of food macromolecules. Elsevier, London, pp 121–170

    Google Scholar 

  • Morris VJ, Gunning AP, Kirby AR, Round A, Waldron K, Ng A (1997) Atomic force microscopy of plant cell walls, plant cell wall polysaccharides and gels. Int J Biol Macromol 21:61–66

    Article  PubMed  CAS  Google Scholar 

  • Nickerson MT, Paulson AT, Speers RA (2004) Time-temperature studies of gellan polysaccharide gelation in the presence of low, intermediate and high levels of co-solutes. Food Hydrocolloids 18:783–794

    Article  CAS  Google Scholar 

  • Norziah MH, Foo SL, Karim AA (2006) Rheological studies on mixtures of agar (Gracilaria changii) and κ-carrageenan. Food Hydrocolloids 20:204–217

    Article  CAS  Google Scholar 

  • Ould Eleya MM, Leng XJ, Turgeon SL (2006) Shear effects on the rheology of β-lactoglobulin/β-carrageenan mixed gels. Food Hydrocolloids 20:946–951

    Article  CAS  Google Scholar 

  • Painter TJ (1983) Algal polysaccharides. In: Aspinall GO (ed) The polysaccharides, vol. 2. Academic, New York, pp 195–285

    Google Scholar 

  • Paoletti S, Delben F, Cesàro A, Grasdalen H (1985) Conformational transition of κ-carrageenan in aqueous solution. Macromolecules 18:1834–1841

    Article  CAS  Google Scholar 

  • Piculell L (1995) Gelling carrageenans. In: Stephen AM (ed) Food polysaccharides and their applications. Marcel Dekker, New York, pp 205–244

    Google Scholar 

  • Rees DA (1969) Structure, conformation, and mechanism in the formation of polysaccharide gels and networks. Adv Carbohydr Chem Biochem 24:267–332

    Article  PubMed  CAS  Google Scholar 

  • Rees DA (1972) Polysaccharide gels. A molecular view. Chem Ind (London) 19:630–636

    Google Scholar 

  • Richardson RH, Norton IT (1998) Gelation behavior of concentrated locust bean gum solutions. Macromolecules 31:1575–1583

    Article  CAS  Google Scholar 

  • Robards AW (1991) Rapid-freezing methods and their applications. In: Hall JL, Hawks C (eds) Electron microscopy of plant cells. Academic, London, pp 257–312

    Google Scholar 

  • Robinson G, Morris ER, Rees DA (1980) Role of double helices in carrageenan gelation: the domain model. J Chem Soc Chem Commun 1980:152–153

    Article  Google Scholar 

  • Rochas C, Rinaudo M (1984) Mechanism of gel formation in κ-carrageenan. Biopolymers 23:735–745

    Article  CAS  Google Scholar 

  • Ross KA, Pyrak-Nolte LJ, Campanella OH (2006) The effect of mixing conditions on the material properties of an agar gel. Food Hydrocolloids 20:79–87

    Article  CAS  Google Scholar 

  • San Biagio PL, Bulone D, Emanuele A, Palma-Vittorelli MB, Palma MU (1996) Spontaneous symmetry-breaking pathways: time-resolved study of agarose gelation. Food Hydrocolloids 10:91–97

    Article  CAS  Google Scholar 

  • Smidsrød O, Grasdalen H (1982) Some physical properties of carrageenan in solution and gel state. Carbohydr Polym 2:270–272

    Article  Google Scholar 

  • Stokke BT, Elgsaeter A, Kitamura S (1993) Macrocyclization of polysaccharides visualized by electron microscopy. Int J Biol Macromol 15:63–68

    Article  PubMed  CAS  Google Scholar 

  • Therkelsen GH (1993) Carrageenan. In: Whistler RL, BeMiller JN (eds) Industrial gums: polysaccharides and their derivatives, 3rd ed. Academic, San Diego, pp 145–180

    Google Scholar 

  • Truus K, Tuvikene R, Vaher M, Kailas T, Toomik P, Pehk T (2006) Structural and compositional characteristics of gelling galactan from the red alga Ahnfeltia tobuchiensis (Ahnfeltiales, the Sea of Japan). Carbohydr Polym 63:130–135

    Article  CAS  Google Scholar 

  • Tuvikene R, Truus K, Vaher M, Kailas T, Martin G, Kersen P (2006) Extraction and quantification of hybrid carrageenans from the biomass of the red algae Furcellaria lumbricalis and Coccotylus truncatus. Proc Estonian Acad Sci Chem 55:40–53

    CAS  Google Scholar 

  • Usov AI (1998) Structural analysis of red seaweed galactans of agar and carrageenan groups. Food Hydrocolloids 12:301–308

    Article  CAS  Google Scholar 

  • Usov AI, Shashkov AS (1985) Polysaccharides of algae. XXIV. Detection of iota-carrageenan in Phyllophora brodiaei (Turn.) J. Ag. (Rhodophyta) using 13C-NMR spectroscopy. Bot Mar 28:367–373

    Article  CAS  Google Scholar 

  • Usov AI, Yarotsky SV, Shashkov AS (1980) 13C NMR spectroscopy of red algal galactans. Biopolymers 19:977–990

    Article  CAS  Google Scholar 

  • Van de Velde F, Knutsen SH, Usov AI, Rollema HS, Cerezo AS (2002) 1H and 13C high resolution NMR spectroscopy of carrageenans: applications in research and industry. Trends Food Sci Technol 13:73–92

    Article  Google Scholar 

  • Watase M, Kohyama K, Nishinari K (1992) Effects of sugars and polyols on the gel-sol transition of agarose by differential scanning calorimetry. Thermochim Acta 206:163–173

    Article  CAS  Google Scholar 

  • Whittaker LE, Al-Ruqaie IM, Kasapis S, Richardson RK (1997) Development of composite structures in the gellan polysaccharide/sugar system. Carbohydr Polym 33:39–46

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rando Tuvikene .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science + Business Media B.V.

About this chapter

Cite this chapter

Tuvikene, R., Truus, K., Kollist, A., Volobujeva, O., Mellikov, E., Pehk, T. (2007). Gel-forming structures and stages of red algal galactans of different sulfation levels. In: Borowitzka, M.A., Critchley, A.T., Kraan, S., Peters, A., Sjøtun, K., Notoya, M. (eds) Nineteenth International Seaweed Symposium. Developments in Applied Phycology, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9619-8_11

Download citation

Publish with us

Policies and ethics