Skip to main content

Class Liliopsida (Monocotyledons)

  • Chapter
Flowering Plants
  • 3217 Accesses

Embryo, when differentiated, always with one cotyledon. The cotyledon usually with two main vascular bundles. Leaf venation striate or of derived types, mostly arcuate-striate or longitudinally striate (parallel), less often palmate-striate or pinnate-striate, almost always more or less closed at the apex (the veins emerging from the leaf base usually run together again at their apices). Leaves usually not clearly divided into petiole and lamina, less often more or less differentiated, but in these cases the “petiole” and the “lamina” are not homologous to those of magnoliopsids (are of secondary origin), often with sheathing base. Leaf traces usually numerous. Prophylls (including bracteoles) usually solitary and nearly always adaxial. Vascular bundles usually without cambium or rarely with vestigial cambium only. Vascular system of the stem usually consists of many separate scattered bundles or sometimes of two or more rings of vascular bundles, and the axis mostly attains its full diameter early, after which no increase in thickness takes place; only in some groups does thickening of the axis occur by means of division and enlargement of ground parenchyma cells (so-called diffuse secondary growth), as in palms, or by means of special kind of cambium that arises in the parenchyma outside the primary vascular system, as in some herbaceous and woody Lilianae. Sieve-element plastids of P-type with several to numerous cuneate (triangular) crystalloid bodies (lacking in all magnoliopsids studied except Saruma and Asarum in Aristolochiaceae). Phloem without parenchyma. Usually without clearly differentiated bark and pith. The primary root is usually ephemeral, dries out early in the growth of the plant, and is replaced by an adventitious root system that develops from the stem or (as in grasses) directly from the hypocotyl. Ontogenetically root cap and root epidermis are of different origin. Usually herbs, but often secondarily arborescent plants (primary woody plants are absent among the monocots). Flowers usually 3-merous, sometimes 4- or 2-merous, very rarely 5-merous. Nectaries predominantly septal. Pollen grains mostly 1-colpate (sulcate) or of derived types, often 1-porate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arber A. 1920. Water plants: a study of aquatic angiosperms. Cambridge University Press, Cambridge.

    Google Scholar 

  • Arber A. 1925. Monocotyledons: a morphological study. Cambridge University Press, Cambridge.

    Google Scholar 

  • Bancroft N. 1914. A review of the literature concerning the evolution of Monocotyledons. New Phytol. 13: 285–303.

    Article  Google Scholar 

  • Batygina TB and MS Yakovlev, eds. 1990. Comparative embryology of flowering plants: monocotyledons. Nauka, Leningrad (in Russian).

    Google Scholar 

  • Behnke H-D. 1981. Siebelement-plastiden, phloem-protein, und evolution der blütenpflanzen: II. Monocotyledonen. Ber. Deutsch. Bot. Ges. 94: 647–662.

    Google Scholar 

  • Behnke H-D. 1998. Forms and sizes of sieve-element plastids and evolution of the monocotyledons. In Monocots II, pp. 8–9 (abstract). Sydney.

    Google Scholar 

  • Behnke H-D. 2000. Forms and sized of sieve-element plastids and evolution of the monocotyledons. In: KL Wilson and DA Morrison, eds. Monocots: systematics and evolution, pp.163–188. CSIRO, Collingwood.

    Google Scholar 

  • Behnke H-D. 2002(2003). Sieve-element plastids and evolution of Monocotyledons, with emphasis on Melanthiaceae sensu lato and Aristolochiaceae-Asaroideae, a putative Dicotyledon sister group. Bot. Rev. 68: 524–544.

    Article  Google Scholar 

  • Bennett MD and IJ Leitch. 2000. Variation in nuclear DNA amount (C-value) in monocots and its significance. In: KL Wilson and DA Morrison, eds. Monocots: systematics and evolution, pp.137–146. CSIRO, Collingwood.

    Google Scholar 

  • Bews JW. 1927. Studies in the ecological evolution of the angio-sperms. New Phytologist reprint 16. Wheldon & Wesley, London.

    Google Scholar 

  • Bharathan G, G Lambert, and DW Galbraith. 1944. Nuclear DNA content of monocotyledons and related taxa. Am. J. Bot. 81: 381–386.

    Article  Google Scholar 

  • Boyd L. 1932. Monocotyledons seedlings: morphological studies in the post-seminal development of the embryo. Trans. Proc. Bot. Soc. Edinb. 31: 5–224.

    Google Scholar 

  • Brickell CD et al., eds. 1980. Petaloid monocotyledons: horticultural and botanical research. Linn. Soc. Symposium, No. 8. London/New York.

    Google Scholar 

  • Burger WC. 1977. The Piperales and the monocots: alternate hypotheses for the origin of monocotyledonous flowers. Bot. Rev. 43: 345–393.

    Article  Google Scholar 

  • Burger WC. 1981. Heresy revised: the monocot theory of angio-sperm origin. Evol. Theory (Chicago) 3: 189–225.

    Google Scholar 

  • Charlton WA. 1999. Morphological traffic between the inflores-cence and the vegetative shoot in Helobial Monocotyledons. Bot. Rev. 65: 370–384.

    Article  Google Scholar 

  • Chase MW. 2004. Monocot relationships: an overview. Am. J. Bot. 91: 1645–1655.

    Article  CAS  Google Scholar 

  • Chase MW, DE Soltis, PS Soltis, PJ Rudall, MF Fay, WH Hahn, S Sullivan, J Joseph, M Molvray, PJ Kores, TJ Givnish, KJ Sytsma, and JC Pires. 2000. Higher-level systematics of the monocotyledons: an assessment of current knowledge and a new classification. In: KL Wilson and DA Morrison, eds. Monocots: systematics and evolution, pp. 3–16. CSIRO, Sydney.

    Google Scholar 

  • Cheadle VI. 1942. The occurrence and types of vessels in the various organs of the plant in the Monocotyledoneae. Am. J. Bot. 29: 441–450.

    Article  Google Scholar 

  • Cheadle VI. 1943a. The origin and certain trends of specialization of the vessels in the Monocotyledoneae. Am. J. Bot. 30: 11–17.

    Article  Google Scholar 

  • Cheadle VI. 1943b. Vessel specialization in the late metaxylem of the various organs in the Monocotyledoneae. Am. J. Bot. 30: 484–490.

    Article  Google Scholar 

  • Cheadle VI. 1944. Specialization of vessels within the xylem of each organ in the Monocotyledoneae. Am. J. Bot. 31: 81–92.

    Article  Google Scholar 

  • Cheadle VI and JM Tucker. 1961. Vessels and phylogeny of Monocotyledoneae. In Recent advances in botany, pp. 161–165. University of Toronto Press, Toronto.

    Google Scholar 

  • Clifford HT. 1977. Quantitative studies of interrelationships amongst the Liliatae. Plant Syst. Evol. Suppl. 1: 77–95.

    Google Scholar 

  • Clifford HT and WT Williams. 1980. Interrelationships amongst the Liliatae: a graph theory approach. Aust. J. Bot. 28: 261–268.

    Article  Google Scholar 

  • Conran JG. 2000. Biogeographic studies in the monocotyledons: an overview of methods and literature. In: KL Wilson and DA Morrison, eds. Monocots: systematics and evolution, pp. 35–43. CSIRO, Collingwood.

    Google Scholar 

  • Daghlian CP. 1981. A review of the fossil record of monocotyledons. Bot. Rev. 47: 517–555.

    Article  Google Scholar 

  • Dahlgren RMT and FN Rasmussen. 1983. Monocotyledon evolution: characters and phylogenetic estimation. In: MK Hecht, B Wallace, and GT Prance, eds. Evolutionary biology, vol. 16, pp. 255–395. Plenum, New York.

    Google Scholar 

  • Dahlgren RMT, HT Clifford, and PF Yeo. 1985. The families of the monocotyledons: structure, evolution, and taxonomy. Springer, Berlin.

    Google Scholar 

  • Danilova MF, EN Nemirovich-Danchenko, GA Komar, and MM Lodkina. 1990. Some trends of structural evolution of seeds in monocotyledons. Bot. Zhurn. 75: 755–773 (in Russian with English summary).

    Google Scholar 

  • Danilova MF, EN Nemirovich-Danchekno, GA Komar, and MM. Lodkina. 1995. The seed structure of monocotyledons. In: P Rudal, PJ Cribb, DF Cutler, and CJ Humphries, eds. Monocotyledons: systematics and evolution, pp. 461–472. Royal Botanic Gardens. Kew.

    Google Scholar 

  • Davis JI, DW Stevenson, G Petesen, O Seberg, LM Campbell, JV Freudenstein, DH Goldman, CR Hardy, FA Michelangeli, MP Simmons, CD Specht, F Vergara-Silva, and M Gandolfo. 2004. A phylogeny of the monocots, as inferred from rbcL and atpA sequence variation, and a comparison of methods for calculating jackknife and bootstrap values. Syst. Bot. 29: 467–510.

    Article  Google Scholar 

  • Delpino F. 1903. Aggiunte alla teoria della classificazione della Monocotyledoni. Mem. Acad. Bologna, ser. V, 10: 569–584.

    Google Scholar 

  • Daumann E. 1970. Das Blütennektarium der Monocotyledonen unter besonderer Berucksichtigung seiner systematischen und phylogenetischen Bedeutung. Feddes Repert. 80: 463–590.

    Google Scholar 

  • Davis JI, DW Stevenson, CD Specht, JV Freudenstein, and R DeSalle. 1998. A phylogenetic analysis of the monocotyledons: based on morphological and molecular character sets. In Monocots II, p.18 (abstract). Sydney.

    Google Scholar 

  • Deyl M. 1955. The evolution of the plants and the taxonomy of the monocotyledons. Acta Mus. Natl. Prag., ser. 11B, 3(6): 1–143.

    Google Scholar 

  • Doyle JA. 1973. The monocotyledons: their evolution and comparative biology. Quart. Rev. Biol. 48: 399–413.

    Article  Google Scholar 

  • Duval MR et al. 1993. Phylogenetic hypotheses for the monocotyledons constructed from rbcL sequence data. Ann. Missouri Bot. Gard. 80: 607–619.

    Article  Google Scholar 

  • Duvall MR. 2000. Seeking the dicot sister group of the mono-cots. In: KL Wilson and DA Morrison, eds. Monocots: sys-tematics and evolution, pp. 25–32. CSIRO, Collingwood.

    Google Scholar 

  • Eber E. 1934. Karpellbau und Pflanzenverhaltnisse in dem Reiche der Helobiae. Flora 127: 273–330.

    Google Scholar 

  • El-Gazzar A and MK Hamza. 1975. On the monocots-dicots distinction. Publ. Cairo Univ. Herb. 6: 15–28.

    Google Scholar 

  • Endress PK 1995. Major evolutionary traits of monocot flowers. In: PJ Rudall, PJ Cribb, DF Cutler, and CJ Humphries, eds. Monocotyledons: systematics and evolution, pp. 43–79. Royal Botanic Gardens, Kew.

    Google Scholar 

  • Erbar C and P Leins. 1994. Flowers in Magnoliidae and the origin of flowers in other subclasses of the angiosperms. I. The relationships between flowers of Magnoliidae and Alismatidae. Plant Syst. Evol. Suppl. 8: 193–208.

    Google Scholar 

  • Fisher JB and JC French. 1978. Internodal meristems of monocotyledons: further studies and general taxonomic summary. Ann. Bot. 42: 41–50.

    Google Scholar 

  • French JC, MC Chung, and YK Hur. 1995. Chloroplast DNA phylogeny of the Ariflorae. In: PJ Rudall, PJ Cribb, DF Cutler, and CJ Humphries, eds. Monocotyledons: systematics and evolution, pp. 255–275. Royal Botanic Gardens, Kew.

    Google Scholar 

  • Frolich D and W Barthlott. 1988. Micromorphologie der epicu-ticularen Wachse und das System der Monocotylen. Trop. Subtrop. Pflanzenwelt, vol. 63. Stuttgart.

    Google Scholar 

  • Furness CA and PJ Rudall. 1998a. The tapetum and systematics in monocotiledons. Bot. Rev. 64: 201–239.

    Article  Google Scholar 

  • Furness CA and PJ Rudall. 1998b. Microsporogenesis in monocotyledons. In Monocots II, p. 21 (abstract). Sydney.

    Google Scholar 

  • Furness CA and PJ Rudall. 1999. Inaperturate pollen in Monocotyledons. Int. J. Plant. Sci. 160 (2): 195–414.

    Article  Google Scholar 

  • Furness CA and PJ Rudall. 2000a. The systematic significance of simultaneous cytokinesis during microsporogenesis in monocotyledons. In: KL Wilson and DA Morrison, eds. Monocots: systematics and evolution, pp. 189–193. CSIRO, Collingwood.

    Google Scholar 

  • Furness CA and PJ Rudall. 2000b. Aperture absence in pollen of monocotyledons. In: MM Harley, CM Morton, and S Blackmore, eds. Pollen and spores: morphology and biology, pp. 249–257. Royal Botanic Gardens, Kew.

    Google Scholar 

  • Furness CA and PJ Rudall. 2001. Pollen and anther characters in monocot systematics. Grana 40: 17–25.

    Article  Google Scholar 

  • Furness CA and PJ Rudall. 2003. Apertures with lids: distribution and significance of operculate pollen in monocotyledons. Int. J. Plant Sci. 164: 835–854.

    Article  Google Scholar 

  • Furness CA and PJ Rudall. 2006. The operculum in pollen of monocotyledons. In: JT Columbus, EA Friar, JM Porter, LM Prince, and MG Simpson, eds. Monocots: comparative biology and evolution (excluding Poales), pp. 191–196, Rancho Santa Ana Botanical Garden, Claremont (Aliso 22: 191–196).

    Google Scholar 

  • Gandolfo MA, KC Nixon, and WL Crepet. 1998. Monocotyledons and their fossil record: a review. In Monocots II, p. 21 (abstract). Sydney.

    Google Scholar 

  • Gandolfo MA, KC Nixon, and WL Crepet. 2000. Monocotyledons: a review of their Early Cretaceous record. In: KL Wilson and DA Morrison, eds. Monocots: systematics and evolution, pp. 44–51. CSIRO, Collingwood.

    Google Scholar 

  • Gaut B, S Muse, WD Clark, and M Clegg. 1992. Relative rates of nucleotide substitution at the rbcL locus of monocotyle-donous plants. J. Molec. Evol. 35: 292–303.

    Article  PubMed  CAS  Google Scholar 

  • Givnish TJ, JC Pires JC, SW Graham, MA McPherson, LM Prince, TB Patterson, HS Rai, EH Roalson, TM Evans, HJ Hahn, KC Millam, AW Meerow, M Molvray, PJ Kores, HE O'Brien, JC Hall, WJ Kress, and KJ Sytsma. 2006. Phylogeny of the monocots based on ndhF: evidence for widespread concerted convergence. In: JT Columbus, EA Friar, CW Hamilton, JM Porter, LM Prince, and MG Simpson, eds. Monocots: comparative biology and evolution (excluding Poales), vol. 2, pp. 28–51. Rancho Santa Ana Botanical Garden, Claremont.

    Google Scholar 

  • Gluck H. 1901. Die Stipulargebilde der Monocotyledonen. Verhandl. Naturhist. Med. Vereins zu Heidelberg, N. F, 7: 1–96.

    Google Scholar 

  • Goldberg A. 1989. Classification, evolution, and phylogeny of the families of monocotyledons. Smithsonian Contr. Bot. 71.

    Google Scholar 

  • Graham SW, JM Zgurski, MA McPherson, DM Cherniawsky, JM Saarela, ESC Horne, SY Smith, WA Wong, HE O'Brien, VL Biron, JC Pires, RG Olmstead, MW Chase, and HS Rai. 2006. Robust inference of monocot deep phylogeny using an expanded multigene plastid data set. In: JT Columbus, EA Friar, CW Hamilton, JM Porter, LM Prince, and MG Simpson, eds. Monocots: comparative biology and evolution, vol. 2, pp. 3–21. Rancho Santa Ana Botanical Garden, Claremont.

    Google Scholar 

  • Greilhuber J. 1995. Chromosomes of the monocotyledons (general aspects). In: PJ Rudall, PJ Cribb, DF Cutler, and CJ Humphries, eds. Monocotyledons: systematics and evolution, vol. 2, pp. 379–414. Royal Botanic Gardens, Kew.

    Google Scholar 

  • Guerra M. 2000. Chromosome number variation and evolution in monocots. In: KL Wilson and DA Morrison, eds. Monocots: systematics and evolution, pp. 127–136. CSIRO, Collingwood.

    Google Scholar 

  • Guignard J-L. 1975. Du cotyledon des monocotyledones. Phytomorphology 25: 193–200.

    Google Scholar 

  • Gunawardena A and NG Dengler. 2006. Alternative modes of leaf dissection in monocotyledons. Bot. J. Linn. Soc. 150: 25–44.

    Article  Google Scholar 

  • Haines RW and KA Lye. 1979. Monocotylar seedlings: a review of evidence supporting origin by fusion. Bot. J. Linn. Soc. 78: 123–140.

    Article  Google Scholar 

  • Halbitter H and M Hesse. 1993. Sulcus morphology in some monocot families. Grana 32: 87–99.

    Google Scholar 

  • Harley MM and MS Zavada. 2000. Pollen of the monocotyledons: selecting characters for cladistic analysis. In: KL Wilson and DA Morrison, eds. Monocots: systematics and evolution, pp. 194–213. CSIRO, Collingwood.

    Google Scholar 

  • Harris PJ. Compositions of monocotyledon cell walls: implications for biosystematics. In: KL Wilson and DA Morrison, eds. Monocots: systematics and evolution, pp. 114–126. CSIRO, Collingwood.

    Google Scholar 

  • Harris PJ and RD Hartley. 1980. Phenolic constituents of the cell walls of monocotyledons. Biochem. Syst. Ecol. 8: 153–160.

    Article  CAS  Google Scholar 

  • Heel van WA. 1988. On the development of some gynoecia with septal nectaries. Blumea 33: 477–504.

    Google Scholar 

  • Hegnauer R. 1963. Chemotaxonomie der Pflanzen: 2. Monocotyledoneae. Basel.

    Google Scholar 

  • Henslow G. 1893. A theoretical origin of endogens from exo-gens through self-adaptation to an aquatic habit. Bot. J. Linn. Soc. 29: 485–528.

    Article  Google Scholar 

  • Henslow G. 1911. The origin of monocotyledons from dicotyledons through self-adaptation to a moist or aquatic habit. Ann. Bot. 26: 717–744.

    Google Scholar 

  • Hofmeister W. 1861. Neue Beiträge zur Erkenntnis der Embryobildung der Phanerogamen: 2. Monokotyledonen. Abh. Kongl. Sachs. Ges. Wiss. 5: 629–760.

    Google Scholar 

  • Holttum RE. 1955. Growth-habits of Monocotyledons: Variation on a theme. Phytomorphology 5: 399–413.

    Google Scholar 

  • Huber H. 1969. Die Samenmerkmale und Verwandts-chaftsverhaltnisse der Liliifloren. Mitt. Bot. Staatssamml. München 8: 219–538.

    Google Scholar 

  • Huber H. 1977. The treatment of the monocotyledons in an evolutionary system of classification. Plant Syst. Evol., Suppl., 1: 285–298.

    Google Scholar 

  • Igersheim A, M Buzgo and PK Endress. 2001. Gynoecium diversity and systematics in basal monocots. Bot. J. Linn. Soc. 136: 1–65.

    Article  Google Scholar 

  • Janssen T and K Bremer. 2004. The age of major monocot groups inferred from 800 + rbcL sequences. Bot. J. Linn. Soc. 146: 385–398.

    Article  Google Scholar 

  • Johnson KA. 2000. Development of non-zygotic embryos from callus in three Australian monocots. In: KL Wilson and DA Morrison, eds. Monocots: systematics and evolution, pp. 218–220. CSIRO, Collingwood.

    Google Scholar 

  • Kaplan DR. 1973. The monocotyledons: their evolution and comparative biology: VII. The problem of leaf morphology and evolution in the monocotyledons. Quart. Rev. Biol. 48: 437–457.

    Article  Google Scholar 

  • Kaplan DR. 1975. Comparative developmental evaluation of the morphology of unifacial leaves in the monocotyledons. Bot. Jahrb. Syst. 95: 1–105.

    Google Scholar 

  • Kellog EA. 2000. A model of inflorescence development. In: KL Wilson and DA Morrison, eds. Monocots: systematics and evolution, pp. 84–88. CSIRO, Collingwood.

    Google Scholar 

  • Khokhrjakov AP. 1975. Somatic evolution of the monocotyledons. Nauka, Moscow (in Russian).

    Google Scholar 

  • Kimura Y. 1956. Systeme et phylogenie des monocotyledones. Notul. Syst. (Paris) 15: 137–159.

    Google Scholar 

  • Kite GC, RJ Grayer, PJ Rudall, and MSJ Simmonds. 2000. The potential for chemical characters in monocotyledon systematics. In: KL Wilson and DA Morrison, eds. Monocots: systematics and evolution, pp. 101–113. CSIRO, Collingwood.

    Google Scholar 

  • Kubitzki K, ed. 1998. The families and genera of vascular plants, vols. 3 and 4. Monocotyledons. Springer, Berlin/Heidelberg/ New York.

    Google Scholar 

  • Les DH and EL Schneider. 1995. The Nymphaeales, Alismatiodae, and the theory of an aquatic monocotyledon origin. In: PJ Rudall, PJ Cribb, DF Cutler, and CJ Humphries, eds. Monocotyledons: systematics and evolution, vol. 1, pp. 23–42. Royal Botanic Gardens, Kew.

    Google Scholar 

  • Li X-X and Z-K Zhou. 2006. A cladistic analysis of monocotyledons at the family level based on morphological data. Acta Bot. Yunn. 28: 241–249 (in Chinese).

    Google Scholar 

  • Li X-X and Z-K Zhou. 2007. The higher-level phylogeny of monocots based on matK, rbcL and 18 S rDNA sequences. Acta Phytotax. Sinica 45: 113–133 (in Chinese).

    Google Scholar 

  • Lodkina MM. 1988. Evolutionary relations between mono- and dicotyledons based on embryo and seedling investigation. Bot. Zhurn. 73: 617–630 (in Russian with English summary).

    Google Scholar 

  • Metcaife CR. 1961. The anatomical approach to systematics: general introduction with special reference to recent work on monocotyledons. In recent advances in botany, pp. 146–150. University of Toronto Press, Toronto.

    Google Scholar 

  • Metcalfe CR, ed. 1960–1982. Anatomy of the monocotyledons, 7 vols. Clarendon, Oxford.

    Google Scholar 

  • Meusel I, E Leistner, and W Barthlott. 1994. Chemistry and micromorphology of compound epicuticular wax crystalloids (Strelitzia type). Plant Syst. Evol. 193: 115–123.

    Article  CAS  Google Scholar 

  • Nadot S, G Bittar, L Carter, R Lacroix, and B Lejune. 1995. A phylogenetic analysis of monocotyledons based on the chloroplast gene rps4, using parsimony and a new numerical phenetics method. Mol. Phylogenet. Evol. 4: 257–282.

    Article  PubMed  CAS  Google Scholar 

  • Paliwal GS. 1969. Stomatal ontogeny and phylogeny: 1. Monocotyledons. Acta Bot. Neerl. 18: 654–668.

    Google Scholar 

  • Parkin J. 1923. The strobilus theory of angiospermous descent. Proc. Linn. Soc. Lond. 153: 51–64.

    Google Scholar 

  • Prychid CJ and PJ Rudall. 1999. Calcium oxalate crystals in monocotyledons: structure and systematics. Ann. Bot. 84: 725–739.

    Article  CAS  Google Scholar 

  • Prychid CJ and PJ Rudall. 2000. Distribution of calcium oxalate crystals in monocotyledons. In: KL Wilson and DA Morrison, eds. Monocots: systematics and evolution, pp. 159–162. CSIRO, Collingwood.

    Google Scholar 

  • Puri V. 1989. Monocotyledons: some comments on their morphology and evolution. Professor Panchanan Maheshwari Memorial Lecture. New Delhi.

    Google Scholar 

  • Ronse Decraene LP and EF Smets. 1995. The androecium of monocotyledons. In: P Rudall, PJ Cribb, DF Cutler, and CJ Humphries, eds. Monocotyledons: systematic and evolution, pp. 243–254. Royal Botanic Gardens. Kew.

    Google Scholar 

  • Rudall P. 1991. Lateral meristems and stem thickening growth in monocotyledons. Bot. Rev. 57: 150–163.

    Article  Google Scholar 

  • Rudall P. 1997. The nucellus and chalaza in Monocotyledons: structure and systematics. Bot. Rev. 63: 140–181.

    Article  Google Scholar 

  • Rudall PJ. 2000. ‘Cryptic’ characters in monocotyledons: homology and coding. In: Scotland R and RT Pennington, eds. Homology and systematics: coding characters for phylogenetic analysis, pp. 114–123. Taylor & Francis, London.

    Google Scholar 

  • Rudall PJ. 2002a. Homologies of inferior ovaries and septal nectaries in monocotyledons. Int. J. Plant Sci. 163: 261–276.

    Article  Google Scholar 

  • Rudall PJ. 2002b. Unique floral structures and iterative evolutionary themes in Asparagales: insights from a morphological cladistic analysis. Bot. Rev. 68: 488–509.

    Article  Google Scholar 

  • Rudall PJ. and R Caddick. 1994. Investigation on the presence of phenolic compounds in monocotyledonous cell walls, using UV fluorescence microscopy. Ann. Bot. 74: 483–491.

    Article  CAS  Google Scholar 

  • Rudall P, PJ Cribb, DF Cutler, and CJ Humphries, eds. 1995. Monocotyledons: systematics and evolution, 2 vols. Royal Botanic Gardens. Kew.

    Google Scholar 

  • Rudall PJ, CJ Prychid, and CJ Jones. 1998. Intra-ovarian trichomes in monocotyledons. In: SJ Owens and PJ Rudall, eds. Reproductive biology, pp. 219–230. Royal Botanic Gardens, Kew.

    Google Scholar 

  • Sargant E. 1903. A theory of the origin of monocotyledons, founded on the structure of their seedlings. Ann. Bot. 17: 1–92.

    Google Scholar 

  • Sargant E. 1904. The evolution of Monocotyledons. Bot. Gaz. 37: 325–345.

    Article  Google Scholar 

  • Scotland R and RT Pennington, eds. 2000. Homology and sys-tematics: coding characters for phylogenetic analysis. Taylor and Francis, London.

    Google Scholar 

  • Sharma AK 1969. Evolution and taxonomy of monocotyledons. In: CD Darlington and KR Lewis, eds. Chromosomes today, vol. 2, pp. 241–249. Plenum, New York.

    Google Scholar 

  • Smets EF, L-P Ronse Decraene, P Caris, and PJ Rudall. 2000. Floral nectaries in monocotyledons: distribution and evolution. In: KL Wilson and DA Morrison, eds. Monocots: sys-tematics and evolution, pp. 221–229. CSIRO, Collingwood.

    Google Scholar 

  • Stebbins GL and GS Khush. 1961. Variation in the organization of the stomatal complex in the leaf epidermis of monocotyledons and its bearing on their phylogeny. Am. J. Bot. 48: 51–59.

    Article  Google Scholar 

  • Stevenson DW, JI Davis, JV Freudenstein, CR Hardy, MP Simmons, and CD Specht. 2000. A phylogenetic analysis of the monocotyledons based on morphological and molecular character sets, with comments on the placement of Acorus and Hydatellaceae. In: KL Wilson and DA Morrison, eds. Monocots: systematics and evolution, pp. 17–24. CSIRO, Collingwood.

    Google Scholar 

  • Stevenson DW and H Loconte. 1995. Cladistic analysis of monocotyledons. In: PJ Rudall, PJ Cribb, DF Cutler, and CJ Humphries, eds. Monocotyledons: systematics and evolution, vol. 2, pp. 543–576. Royal Botanic Gardens, Kew.

    Google Scholar 

  • Takhtajan A, ed. 1982. Plant life: 6. Liliopsids or monocotyledons. Nauka, Moscow (in Russian).

    Google Scholar 

  • Takhtajan A, ed. 1985. Comparative seed anatomy: 1. Monocotyledons. Nauka, Leningrad (in Russian).

    Google Scholar 

  • Tamura MN, J Yamashita, S Fuse, and M Haraguchi. 2004. Molecular phylogeny of monocotyledons inferred from combined analysis of plastid matK and rbcL gene sequences. J. Plant Res. 117: 109–120.

    Article  PubMed  CAS  Google Scholar 

  • Thorne RF. 2000. The classification and geography of the monocotyledon subclasses Alismatidae, Liliidae and Commeli-nidae. In: Nordenstam et al., eds. Plant systematics for the 21st century, pp. 75–122. Portland, London.

    Google Scholar 

  • Tieghem R van and H Duliot. 1888. Recherches comparatives sur 1'origine des membres endogenes dans les plantes vascu-laires. Ann. Sci. Nat., ser. 7, 8: 1–666.

    Google Scholar 

  • Tillich H-J. 1992. Bauprinzipien und Evolutionslinien bei mono-cotylen Keimpflanzen. Bot. Jahrb. Syst. 114: 91–132.

    Google Scholar 

  • Tillich H-J. 1995. Seedlings and systematics in monocotyledons. In: PJ Rudall, PJ Cribb, DF Cutler, and CJ Humphries, eds. Monocotyledons: systematics and evolution, 1: 303–352. Royal Botanic Gardens, Kew.

    Google Scholar 

  • Tillich H-J. 1998. Plesiomorphies and apomorphies in seedlings of monocotyledons. In Monocots II, p. 53 (abstract). Sydney.

    Google Scholar 

  • Tillich H-J. 2000. Ancestral and derived character states in seedlings of monocotyledons. In: KL Wilson and DA Morrison, eds. Monocots: systematics and evolution, pp. 221–229. CSIRO, Collingwood.

    Google Scholar 

  • Tomlinson RB. 1970. Monocotyledons: towards an understanding of their morphology and anatomy. In: RD Preston, ed. Advances in botanical research, pp. 207–292. Academic, New York.

    Google Scholar 

  • Tomlinson PB 1974. Development of the stomatal complex as a taxonomic character in the monocotyledons. Taxon 23: 109–128.

    Article  Google Scholar 

  • Tomlinson PB. 1995. Non-homology of vascular organization in monocotyledons and dicotyledons. In: PJ Rudall, PJ Cribb, DF Cutler, CJ Humphries, eds. Monocotyledons: systemat-ics and evolution, pp. 489–622. Royal Botanic Gardens. Kew.

    Google Scholar 

  • Tomlinson PB and JB Fisher. 2000. Stem vasculature in climbing monocotyledons: a comparative approach. In: KL Wilson and DA Morrison, eds. Monocots: systematics and evolution, pp. 89–100. CSIRO, Collingwood.

    Google Scholar 

  • Van Heel WA. 1988. On the development of some gynoecia with septal nectaries. Blumea 33: 477–504.

    Google Scholar 

  • Von Staudermann W. 1924. Die Haare der Monocotyledonen. Bot. Arch. 8: 105–184.

    Google Scholar 

  • Wagner A. 1977. Vessel types of the monocotyledons: a survey Bot. Not. 130: 383–402.

    Google Scholar 

  • Weber A. 1980. Die Homologie des Perigons der Zingiberaceen: Ein Beitrag zur Morphologic und Phylogenie des Monocotylen-Perigons. Plant Syst. Evol. 133: 149–179.

    Article  Google Scholar 

  • Williams CA, JB Harborne, and B Mathew. 1988. A chemical appraisal via leaf flavonoids of Dahlgren's Liliiflorae. Phytochemistry 27: 2609–2629.

    Article  CAS  Google Scholar 

  • Wilson KL and DA Morison, eds. 2000. Monocots: systematics and evolution. CSIRO, Collingwood.

    Google Scholar 

  • Yeo PE. 1989. What is happening to the monocotyledons? Plant Syst. Evol. 167: 75–86.

    Article  Google Scholar 

  • Zavada M. 1983. Comparative morphology of monocot pollen and evolutionary trends of apertures and wall structures. Bot. Rev. 49: 331–379.

    Article  Google Scholar 

  • Zimmerman MH and PB Tomlinson. 1972. The vascular system of Monocotyledonous stems. Bot. Gaz. 133: 141–155.

    Article  Google Scholar 

  • Arber A. 1923. On the “squamulae intravaginales” of the Helobiae. Ann. Bot. 37: 31–41.

    Google Scholar 

  • Buchenau F. 1882. Beiträge zur Kenntnis der Butomaceen, Alismaceen, und Juncaginaceen. Engler's Bot. Jahrb. 2: 465–510.

    Google Scholar 

  • Chen J-M, D Chen, GW Robert, Q-F Wang, and Y-H Guo. 2004a. Evolution of apocarpy in Alismatidae using phyloge-netic evidence from chloroplast rbcL sequence data. Bot. Bull. Acad. Sinica 45: 33–40.

    Google Scholar 

  • Chen J-M, GW Robert, Q-F Wang. 2004b. Evolution of aquatic life forms in Alismatidae: phylogenetic estimation from chloroplast rbcL sequence data. Israel J. Plant Sci. 52: 323–329.

    Article  CAS  Google Scholar 

  • Eber E. 1934. Karpellbau und Plazentationsverhaltnisse in der Reihe der Helobiae. Flora 127: 273–330.

    Google Scholar 

  • Gibson RJH. 1905. The axillary scales of aquatic monocotyledons. Bot. J. Linn. Soc. 37: 228–236.

    Article  Google Scholar 

  • Harada I. 1956. Cytological studies in Helobiae: I. Chromosome idiograms and a list of chromosome numbers in seven families. Cytologia 21: 306–328.

    Google Scholar 

  • Haynes RR and LB Holm-Nielsen. 1985 (1987). A generic treatment of Alismatidae in the Neotropics with special reference to Brazil. Acta Amazonica Suppl. 15: 153–193.

    Google Scholar 

  • Haynes RR and LB Holm-Nielsen. 1989. Speciation of Alismatidae in the Neotropics. In: LB Holm-Nielsen, IC Nielsen, and H Balslev, eds. Tropical forests: botanical dynamics, speciation, and diversity, pp. 211–219. Academic, London.

    Google Scholar 

  • Lakshmanan KK. 1970. Hydrocharitaceae, Juncaginaceae, Scheuchzeriaceae, Potamogetonaceae, Zannichelliaceae, Najadaceae. Bull. Ind. Natl. Sci. Acad. 41: 336–357.

    Google Scholar 

  • Les DH and MA Cleland. 1997. Phylogenetic studies in Alismatidae, II. Evolution of marine angiosperms (sea grasses) and hydrophily. Syst. Bot. 22: 443–463.

    Article  Google Scholar 

  • Les DH and RR Haynes. 1995. Systematics of subclass Alismatidae: a synthesis of approaches. In: PJ Rudall, PJ Cribb, DF Cutler, and CJ Humphries, eds. Monocotyledons: systematics and evolution 2: 353–377. Royal Botanic Gardens, Kew.

    Google Scholar 

  • Les DH, DK Garvin, and CF Wimpee. 1993. Phylogenetic studies in the monocot subclass Alismatidae, evidence for a reappraisal of the aquatic order Najadales. Mol. Phylogeb. Evol. 2: 304–314.

    Article  CAS  Google Scholar 

  • Markgraf F. 1936. Blütenbau und Verwandtschaft bei den ein-fachsten Helobiae. Ber. Deutsch. Bot. Ges. 54: 191–229.

    Google Scholar 

  • Mavrodiev EV and DD Sokolov. 1998. On the morphology of European species of Zannichelliaceae, Ruppiaceae, Potamogetonaceae and Zosteraceae. Byull. Mosk. Obshch. Ispyt. Prir., Biol. 103(5): 49–60 (in Russian).

    Google Scholar 

  • Pettitt JM and AC Jenny 1975. Pollen in hydrophilous angio-sperms. Micron 5: 377–405.

    Google Scholar 

  • Posluszny U and WA Charlton. 1993. Evolution of the helobial flower. Aquatic Bot. 44: 303–324.

    Article  Google Scholar 

  • Salisbury EJ 1926. Floral construction in Helobiales. Ann. Bot. 40: 419–455.

    Google Scholar 

  • Sharma AK and T Chaterjee. 1967. Cytotaxonomy of Helobiae with special reference to the mode of evolution. Cytologia 32: 286–307.

    Google Scholar 

  • Singh V. 1966. Morphological and anatomical studies of the flower of Helobiae. Agra Univ. J. Res. (Sci.) 15: 147–150.

    Google Scholar 

  • Tomlinson PB. 1982. Helobiae (Alismatidae), including the sea grasses. In: CR Metcalfe, ed. Anatomy of monocotyledons, vol. 3. Clarendon, Oxford.

    Google Scholar 

  • Wilder GJ. 1974. Symmetry and development of Butomus umbellatus (Butomaceae) and Limnocharis flava (Limnocharitaceae). Am. J. Bot. 61: 379–394.

    Article  Google Scholar 

  • Wilder GJ. 1975. Phylogenetic trends in the Alismatidae (Monocotyledoneae). Bot. Gaz. 136: 159–170.

    Article  Google Scholar 

  • Ambrose JD. 1985. Lophiola, familial affinity with the Liliaceae. Taxon 34: 149–150.

    Article  Google Scholar 

  • Beccari O. 1871. Petrosavia: Nuovo genere di piante parasite della famiglia delle Melanthiaceae. Nuovo Giorn. Bot. Ital. 3: 7–11.

    Google Scholar 

  • Browne ET, Jr. 1961. Morphological studies in Aletris. I. Development of the ovule, megaspores and megagameto-phyte of A. aurea and their connection with the systematics of the genus. Am. J. Bot. 48: 143–147.

    Article  Google Scholar 

  • Cameron KM. 1998. Systematics of heteromycotrophic Petrosaviaceae. In Monocots II, p. 64 (abstract). Sydney.

    Google Scholar 

  • Cameron KM, MW Chase, and PJ Rudall. 2003. Recircum-scription of the monocotyledonous family Petrosaviaceae to include Japonolirion. Brittonia 55: 214–225.

    Article  Google Scholar 

  • Eie S. 1972. Floral anatomy in Tofieldia fusilla (Michx.) Pers. with special reference to the gynoecium. Norweg. J. Bot. 19: 31–36.

    Google Scholar 

  • Groom P. 1892. On the embryo of Petrosavia Beccari. Ann. Bot. 6: 380–382.

    Google Scholar 

  • Groom P. 1895. On a new saprophytic monocotyledon. Ann. Bot. 9: 45–58.

    Google Scholar 

  • Hara H. 1967. The status of the genus Metanarthecium Maxim. Jpn. J. Bot. 42: 312–316.

    Google Scholar 

  • Kosenko VN. 1987. Pollen morphology of Tofieldieae, Narthecieae, Xerophylleae, Melanthieae (Melanthiaceae). Bot. Zhurn. 72: 1318–1330 (in Russian with English summary).

    Google Scholar 

  • Lersten NR and JD Curtis. 1977. Anatomy and distribution of secretory glands and other emergences in Tofieldia (Liliaceae). Ann. Bot. (UK) 41(174): 879–882.

    Google Scholar 

  • McDaniel S. 1968. Harperocallis. A new genus of the Liliaceae from Florida. J. Arnold Arbor. 49: 35–40.

    Google Scholar 

  • Ohba H 1984. A review of Petrosavia (Liliaceae), with special reference to the floral features. J. Jpn. Bot. 59: 106–109.

    Google Scholar 

  • Remizova M and D Sokoloff. 2003. Inflorescence and floral morphology in Tofieldia (Tofieldiaceae) compared with Araceae, Acoraceae and Alismatales s. str. Bot. Jahrb. Syst. 124: 255–271.

    Article  Google Scholar 

  • Remizowa M, D Sokoloff, and PJ Rudall. 2006a. Evolution of the monocot gynoecium: evidence from comparative morphology and development in Tofieldia, Japonolirion, Petrosavia and Narthecium. Plant Syst. Evol. 258: 183–209.

    Article  Google Scholar 

  • Remizowa M, D Sokoloff, and PJ Rudall. 2006b. Comparative patterns of floral orientation, bracts and bracteoles in Tofieldia, Japonolirion, and Narthecium. Aliso 24: 157–169.

    Google Scholar 

  • Sokolowska-Kulczycka A. 1980. Embryological studies of Tofieldia calyculata (l.) Whlb. Acta Biol. Cracov. Ser. Bot. 22: 113–128.

    Google Scholar 

  • Stant M Y. 1970. Anatomy of Petrosavia stellaris Becc., a sapro-phytic monocotyledon. Bot. J. Linn Soc. 63(Suppl. 1): 147–161.

    Google Scholar 

  • Sterling C. 1978. Comparative morphology of the carpel of the Liliaceae: Hewardieae, Petrosavieae, and Tricyrteae. Bot. J. Linn. Soc. 77: 95–106.

    Article  Google Scholar 

  • Sterling C. 1979. Comparative morphology of the carpel in the Liliaceae: Tofieldieae. Bot. J. Linn. Soc. 79: 321–332.

    Article  Google Scholar 

  • Takahashi HR, E Nishio, and H Hayashi. 1993. Pollination biology of the saprophytic species Petrosavia sakuraii (Makino) J. J. Smith ex van Steenis in central Japan. J. Plant Res. 106: 213–217.

    Article  Google Scholar 

  • Takhtajan AL. 1994. Six new families of flowering plants. Bot. Zhurn. 79(1): 96–97 (in Russian).

    Google Scholar 

  • Takhtajan AL. 1994 (1995). New families of the monocotyledons. Bot. Zhurn. 79(12): 65–66 (in Russian).

    Google Scholar 

  • Takhtajan AL. 1996. Validization of some formerly established families of flowering plants. Bot. Zhurn. 81(2): 85–86.

    Google Scholar 

  • Tamura MN. 1998b. Nartheciaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 381–392. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Tamura MN and H Takahashi. 1998. Karyotype analysis of the saprophyte Petrosavia sakuraii (Makino) J. J. Smith ex van Steenis. And its systematic implications. Acta Phytotax. Geobot. 49.

    Google Scholar 

  • Tanaka R and N Tanaka. 1976. Karyomorphological studies in Tofieldia of Japan. Chromosome Inform. Serv., no. 19: 9–11.

    Google Scholar 

  • Tomimatsu H, A Hoya, H Takahashi, and M Ohara. 2004. Genetic diversity and multilocus genetic structure in the relictual endemic herb Japonolirion osense (Petrosaviaceae). J. Plant Res. 117: 13–18.

    Article  PubMed  Google Scholar 

  • Utech FH. 1978a. Floral vascular anatomy of monotypic Japanese Metanarthecium luteoviride Maxim. (Liliaceae-Melanthioideae). Ann. Carnegie Mus. 47: 455–477.

    Google Scholar 

  • Utech FH. 1978b. Floral vascular anatomy of Pleea tenuifolia Michx. (Liliaceae-Tofieldieae) and its reassignment to Tofieldia. Ann. Carnegie Mus. 47: 423–454.

    Google Scholar 

  • Utech FH. 1979. Karyotype analysis, palynology, and external seed morphology of Tofieldia tenuifolia Michx. Utech (Liliaceae-Tofieldieae). Ann. Carnegie Mus. 48: 161–174.

    Google Scholar 

  • Utech FH. 1984. Floral vascular anatomy of Japonolirion osense Nakai (Liliaceae) and its tribal relationship. Ann. Carnegie Mus. 53: 447–461.

    Google Scholar 

  • Zomlefer WB. 1997a. The genera of Tofieldiaceae in the southeastern United States. Harvard Pap. Bot. 2: 179–194.

    Google Scholar 

  • Zomlefer WB. 1997b. The genera of Nartheciaceae in southeastern United States. Harvard Pap. Bot. 2: 195–211.

    Google Scholar 

  • Ancibor E. 1979. Systematic anatomy of vegetative organs of the Hydrocharitaceae. Bot. J. Linn. Soc. 78: 237–266.

    Article  Google Scholar 

  • Argue CL. 1971. Pollen of the Butomaceae and Alismataceae: I. Development of the pollen wall in Butomus umbellatus L. Grana 11: 131–144.

    Google Scholar 

  • Balfour IB. 1870. On the genus Halophila. Trans. Proc. Bot. Soc. Edinb. 13: 290–343.

    Google Scholar 

  • Baude E. 1956. Die Embryoentwicklung von Stratiotes aloides L. Planta 46: 649–671.

    Article  Google Scholar 

  • Bercu R and M Fagaras. 2002. Anatomical features of the root, stem and leaf blade of Potamogeton pectinatus L. and Vallisneria spiralis L. Contrib. Bot. Univ. Babes Rolyal Gard. Bot. (Cluj Napoca) 37: 41–47.

    Google Scholar 

  • Bolkhovskikh Z V. 1983. On the morphology of pollen grains of Najas major (Najadaceae). Bot. Zhurn. 68: 448–452 (in Russian with English summary).

    Google Scholar 

  • Bouman F. 1985. Embryology. In: HWE van Bruggen, ed. Monograph of the genus Aponogeton (Aponogetonaceae). Bibl. Bot. 137: 4–9.

    Google Scholar 

  • Bruggen HWE von, ed. 1985. Monograph of the genus Aponogeton (Aponogetonaceae). Bibl. Bot. 137: 1–76.

    Google Scholar 

  • Bruggen HWE von. 1998. Aponogetonaceae. In: K Kubitzki, ed. The families and genera of vascular plants vol. 4, pp. 21–25. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Brunaud A. 1976, 1977. Ramification chez les Hydrocharitaceae: I. Ontogenie du systeme des pousses. II. Organisation des rameaux lateraux. Rev. Gen. Bot. 83: 397–413, 1976; 84: 137–157, 1977.

    Google Scholar 

  • Campbell DH. 1897. A morphological study of Najas and Zannichellia. Proc. Calif. Acad. Sci., 3d ser., 1: 1–61.

    Google Scholar 

  • Caspary R. 1858. Die Hydrilleen. Jahrb. Wiss. Bot. 1: 377–513.

    Google Scholar 

  • Chanda S, S Nusson, and S Blackmore. 1988. Phylogenetic trends in the Alismatales with reference to pollen grains. Grana 27: 257–272.

    Google Scholar 

  • Charlton WA and A Ahmed. 1973. Studies in the Alismataceae: IV. Developmental morphology of Ra-nalisma humile and comparisons with two members of the Butomaceae, Hydrocleis nymphoides and Butomus umbellatus. Canad. J. Bot. 51: 899–910.

    Article  Google Scholar 

  • Cook CDK. 1982. Pollination mechanisms in the Hydrocharitaceae. In: JJ Symoens, SS Hooper, and F Compere, eds. Studies on aquatic vascular plants, pp. 1–15. Royal Botanical Society of Belgium, Brussels.

    Google Scholar 

  • Cook CDK. 1998a. Butomaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol 4, pp. 100–102. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Cook CDK. 1998b. Hydrocharitaceae. In: K Kubitzki, ed. The families and genera of vascular plants vol 4, pp. 234–248. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Govindappa DA and TRB Najdu. 1956. The embryo sac and endosperm Blyxa oryzetorum Hook. f. J. Indian Bot. Soc. 35: 417–422.

    Google Scholar 

  • Guo YH and SQ Huang. 1999. Evolution of pollination system and characters of stigmas in Najadales. Acta Phytotax Sinica 37(2): 131–136.

    Google Scholar 

  • Haynes RR. 1977. The Najadaceae in the Southeastern United states. J. Arnold Arbor. 58: 161–170.

    Google Scholar 

  • Haynes RR. 1979. Revision of north and central American Najas (Najadaceae). SIDA 8: 34–56.

    Google Scholar 

  • Haynes RR and LB Holm-Nielsen. 2001. The genera of Hydrocharitaceae in the southeastern United States. Harvard Pap. Bot. 5: 201–275.

    Google Scholar 

  • Haynes RR, LB Holm-Nielsen, and DH Les. 1998. Najadaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol 4, pp. 301–306. Springer, Berlin/Heidelberg/ New York.

    Google Scholar 

  • Islam AS. 1950. A contribution to the life history of Ottelia alismoides Pers. J. Indian Bot. Soc. 29: 79–91.

    Google Scholar 

  • Kaul RB. 1965. Development and vasculature of the androecium in the Butomaceae. Am. J. Bot. 52: 624 (Abstract).

    Google Scholar 

  • Kaul RB. 1968. Floral morphology and phylogeny in the Hydrocharitaceae. Phytomorphology 18: 13–35.

    Google Scholar 

  • Kaul RB. 1969. Morphology and development of the flowers of Boottia cordata, Ottelia alismoides, and their synthetic hybrid (Hydrocharitaceae). Am. J. Bot. 58: 951–959.

    Article  Google Scholar 

  • Kaul RB. 1970. Evolution and adaptation of inflorescences in the Hydrocharitaceae. Am. J. Bot. 57: 708–715.

    Article  Google Scholar 

  • Kaul RB. 1976. Conduplicate and specialized carpels in the Alismatales. Am. J. Bot. 63: 175–182.

    Article  Google Scholar 

  • Kun S, QF Wang, JK Chen. 1997. Micromorphological characters of seed coats of Chinese Najadaceae and their systematic significance. Acta Phytotax. Sinica 35: 521–526.

    Google Scholar 

  • Lakshmanan KK. 1961. Embryological studies in the Hydrocharitaceae: I. Blyxa octandra Planch. J. Madras Univ. 31B: 133–142.

    Google Scholar 

  • Lakshmanan KK. 1963. Embryological studies in the Hydrocharitaceae: II. Halophila ovata Gaudich. J. Indian Bot. Soc. 42: 15–18.

    Google Scholar 

  • Lakshmanan KK. 1965. Embryological studies in the Hydrocharitaceae: III. Nechamandra alternifolia. Phyton (Buenos Aires) 20: 49–58. I V. Post-fertilization development in the Hydrilla verticillata Royle. Phyton (Buenos Aires) 22: 13–14.

    Google Scholar 

  • Les DH, DK Garvin, and CF Wimpee. 1993. Phylogenetic studies in the monocot subclass Alismatidae: evidence for a reappraisal of the aquatic order Najadales. Mol. Phylogenet. Evol. 2: 304–314.

    Article  PubMed  CAS  Google Scholar 

  • Les DH, ML Moody, and SWL Jacobs. 2005. Phylogeny and systematics of Aponogeton (Aponogetonaceae): the Australian species. Syst. Bot. 30: 503–519.

    Article  Google Scholar 

  • Les DH, ML Moodly, and CL Soros. 2006. A reappraisal of phy-logenetic relationships in the monocotyledon family Hydrocharitaceae (Alismatidae). In: JT Columbus, EA Friar, JM Porter, LM Prince, and MG Simpson, eds. Monocots: comparative biology and evolution (excluding Poales), pp. 211–230. Rancho Santa Ana Botanical Garden, Claremont (Aliso 22: 211–230).

    Google Scholar 

  • Lowden RM. 1986. Taxonomy of the genus Najas L. (Najadaceae) in the neotropics. Aquat. Bot. 24: 147–187.

    Article  Google Scholar 

  • Magnus P. 1894. Uber die Gattung Najas. Ber. Deutsch. Bot. Ges. 12: 214–224.

    Google Scholar 

  • Miki S. 1937. The origin of Najas and Potamogeton. Bot. Mag. (Tokyo) 51: 472–480.

    Google Scholar 

  • Naidoo Y, JR Lawton, AD Barnabas, and J Goetzee. 1990. Ultrastructure and cytochemistry of squamulae intravagina-les of the marine angiosperm, Halophila ovalis. South Afr. Tydskr. Plantk. 56: 546–553.

    Google Scholar 

  • Pettitt JM. 1980. Reproduction in sea grasses: nature of the pollen and receptive surface of the stigma in the Hydrocharitaceae. Ann. Bot. 45: 257–271.

    CAS  Google Scholar 

  • Pettitt JM. 1981. Reproduction in sea grasses: pollen development in Thalassia hemprichii, Halophila stipulacea, and Thalassodendron ciliatum. Ann. Bot. 48: 609–622.

    Google Scholar 

  • Posluszny U and R Sattler. 1976. Floral development of Najas flexilis. Canad. J. Bot. 54: 1140–1151.

    Article  Google Scholar 

  • Rangasamy K. 1941. A morphological study of the flower of Blyxa echinosperma Hook. f. J. Indian Bot. Soc. 20: 123–133.

    Google Scholar 

  • Rao YS. 1953. Karyosystematic studies of Helobiales: I. Butomaceae. Proc. Natl. Inst. Sci. India 19: 563–581.

    Google Scholar 

  • Rendle AE. 1899. A systematic revision of the genus Najas. Trans. Linn. Soc., Bot., ser. 2, 5: 379–444.

    Google Scholar 

  • Roper RB. 1952. The embryo sac of Butomus umbellatus L. Phytomorphology 2: 61–74.

    Google Scholar 

  • Sane YK. 1939. A contribution to the embryology of the Aponogetonaceae. J. Indian Bot. Soc. 18: 79–91.

    Google Scholar 

  • Sattler R and V Singh. 1978. Floral development of Hydrocleis nymphoides. Canad. J. Bot. 51: 2455–2458.

    Article  Google Scholar 

  • Scribailo RW and U Posluszny. 1985. Floral development of Hydrocharis morsus-ranae (Hydrocharitaceae). Am. J. Bot. 72: 1678–1589.

    Article  Google Scholar 

  • Shaffer-Fehre M. 1991a. The endotegmen tuberculae: An account of little-known structures from the seed coat of the Hydro-charitoideae (Hydrocharitaceae) and Najas (Najadaceae). Bot. J. Linn. Soc. 107: 169–188.

    Article  Google Scholar 

  • Shaffer-Fehre M. 1991b. The position of Najas within the subclass Alismatidae (Monocotyledones) in the light of new evidence from seed coat structures in the Hydrocharitoideae (Hydrocharitales). Bot. J. Linn. Soc. 107: 189–209.

    Article  Google Scholar 

  • Singh V. 1965. Morphological and anatomical studies in Helobiae: III. Vascular anatomy of the node and flower of Najadaceae. Proc. Indian Acad. Sci. 61B: 98–108.

    Google Scholar 

  • Singh V. 1966. Morphological and anatomical studies in Helobiae: VII. Vascular anatomy of the flower of Butomus umbellatus Linn. Proc. Indian Acad. Sci. 63B: 313–320.

    Google Scholar 

  • Singh V and R Sattler. 1974. Floral development of Butomus umbellatus. Canad. J. Bot. 52: 223–230.

    Article  Google Scholar 

  • Singh V and R Sattler. 1977. Floral development of Aponogeton natans and A. undulatus. Canad. J. Bot. 55: 1106–1120.

    Article  Google Scholar 

  • Soros CL and DH Les. 2002. Phylogenetic relationships in the Alismataceae. In Botany 2002: Botany in the Curriculum. Abstracts, p. 152. Madison, WI.

    Google Scholar 

  • Stant MY. 1967. Anatomy of the Butomaceae. Bot. J. Linn. Soc. 60: 31–60.

    Article  Google Scholar 

  • Sun K, Q-F Wang, and J-K Chen. 1997. Micromorphological characters of seed coats of Chinese Najadaceae and their systematic significance. Acta Phytotax. Sinica 35: 521–526 (in Chinese with English summary).

    Google Scholar 

  • Sun K, J-K Chen, and Z-Y Zhang. 2001. Pollen morphology of Najadaceae and Zannichelliaceae. Acta Phytotax. Sinica 39: 31–37 (in Chinese with English summary).

    Google Scholar 

  • Sun K, J-K Chen, and Z-Y Zhang. 2002. Studies on pollen morphology of Aponogetonaceae. Bull. Bot. Res. (China) 22: 33–36.

    Google Scholar 

  • Swamy BGL and KK Lakshmanan. 1962. Contributions to the embryology of the Najadaceae. J. Indian Bot. Soc. 41: 247–267.

    Google Scholar 

  • Tanaka N, H Setoguchi, and J Murata. 1997. Phylogeny of the family Hydrocharitaceae inferred from rbcL and matK gene sequence data. J. Plant Res. 110: 329–337.

    Article  CAS  Google Scholar 

  • Tanaka N, K Uehara, and J Murata. 2004. Correlation between pollen morphology and pollination mechanisms in the Hydrocharitaceae. J. Plant Res. 117: 265–276.

    Article  PubMed  Google Scholar 

  • Terekhin EC. 1985. Hydrocharitaceae. In: A Takhtajan, ed. Comparative seed anatomy vol 1, pp. 38–43. Nauka, Leningrad (in Russian).

    Google Scholar 

  • Thanikaimoni G. 1985. Palynology and phylogeny. In: HWE van Bruggen, ed. Monograph of the genus Aponogeton (Aponogetonaceae). Bibl. Bot. 137: 11–14.

    Google Scholar 

  • Tomlinson PB. 1969, 1972. On the morphology and anatomy of turtle grass, Thalassia testudinum (Hydrocharitaceae): II. Anatomy and development of the root in relation to function. I V. Leaf anatomy and development. Bull. Marine Sci. 19 (I): 57–71, 1969; 22(1): 75–93, 1972.

    Google Scholar 

  • Troll W. 1931. Beitrage zur Morphologic des Gynaeceums: I. Über das Gynaeceum der Hydrocharitaceen. Planta 14: 1–18.

    Article  Google Scholar 

  • Vijayaraghavan MR and T Kapoor. 1985. Embryogenesis in Najas marina L.: Structural and histochemical approach. Aquatic Bot. 22: 45–60.

    Article  Google Scholar 

  • Argue CL. 1973. The pollen of Limnocharis flava Buch., Hydrocleis nymphoides (Willd.) Buch., and Tenogacharis latifolia (Don) Buch. (Limnocharitaceae). Grana 13: 108–113.

    Google Scholar 

  • Argue CL. 1976. Pollen studies in the Alismataceae with special reference to taxonomy. Pollen et Spores 18: 161–201.

    Google Scholar 

  • Chanda S, S Nilsson, and S Blackmore. 1988. Phylogenetic trends in the Alismatales with reference to pollen grains. Grana 27: 257–272.

    Google Scholar 

  • Charlton WA. 1968, 1973, 1991. Studies in the Alismataceae: I. Developmental morphology of Echinodorus tenellus. II. Inflorescences of Alismataceae. IX. Development of the flower of Ranalisma humile. Canad. J. Bot. 46: 1345–1360, 1968; 51: 775–789, 1973; 69: 2790–2796, 1991.

    Article  Google Scholar 

  • Charlton WA. 2004. Studies in the Alismataceae. XII. Floral organogenesis in Damasonium alisma and Baldellia ranun-culoides, and comparisons with Butomus umbellatus. Canad. J. Bot. 82: 528–539.

    Article  Google Scholar 

  • Charlton WA and A Ahmed. 1973. Studies in the Alismataceae: III. Floral anatomy of Ranalisma humile. I V. Developmental morphology of Ranalisma humile and comparison with two members of the Butomaceae, Hydrocleis nymphoides and Butomus umbellatus. Canad. J. Bot. 51: 891–897, 899–910.

    Article  Google Scholar 

  • Chen J-M, D Chen, GW Robert, Q-F Wang, and Y-H Guo. 2004a. Evolution of apocarpy in Alismatidae using phyloge-netic evidence from chloroplast rbcL sequence data. Bot. Bull. Acad. Sinica 45: 33–40.

    Google Scholar 

  • Chen J-M, GW Robert, and Q-F Wang. 2004b. Evolution of aquatic life forms in Alismatidae: phylogenetic estimation from chloroplast rbcL sequence data. Israel J. Plant Sci. 52: 323–329.

    Article  CAS  Google Scholar 

  • Daumann E. 1964. Zur Morphologic der Blüte von Alisma plantago-aquatica L. Preslia 36: 226–239.

    Google Scholar 

  • Forni Martins ER and KP Calligaris. 2002. Chromosomal studies on neotropical Limnocharitaceae (Alismatales). Aquatic Bot. 74(1): 33–41.

    Article  CAS  Google Scholar 

  • Harley MM. 1982. Palynological evidence of a close association between Butomopsis Kunth and Hydrocleys L. C. Rich. (Limnocharitaceae). In: JJ Symoens, SS Hooper, and P Compere, eds. Studies on aquatic vascular plants, pp. 61–65. Botanical Society of Belgium, Brussels.

    Google Scholar 

  • Haynes RR and LB Holm-Nielsen. 1992. Limnocharitaceae. Flora Neotropica 56: 1–34.

    Google Scholar 

  • Haynes RR and LB Holm-Nielsen. 1994. Alismataceae. Flora Neotropica 64: 1–112.

    Google Scholar 

  • Haynes RR, DH Les, and LB Holm-Nielsen. 1998a. Alismataceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol 4, pp 11–18. Springer, Berlin/Heidelberg/ New York.

    Google Scholar 

  • Haynes RR, DH Les, and LB Holm-Nielsen. 1998b. Limnocharitaceae. In: K. Kubitzki, ed. The families and genera of vascular plants vol 4, pp 271–275. Springer, Berlin/ Heidelberg/New York.

    Google Scholar 

  • Hooper SS and JJ Symoens. 1982. Observations on the family Limnocharitaceae Takhtajan ex Hooper and Symoens. In: JJ Symoens, SS Hooper, and P Compere, eds. Studies on aquatic vascular plants, pp. 56–60. Royal Botanical Society of Belgium, Brussels.

    Google Scholar 

  • Johri BM. 1936. The life-history of Butomopsis lanceolata Kunth. Proc. Indian Acad. Sci. 4B: 139–162.

    Google Scholar 

  • Johri BM. 1938a. The embryo sac of Hydrocleis nymphoides Buchen. Beih. Bot. Centralbl. 58A: 165–172.

    Google Scholar 

  • Johri BM. 1938b. The embryo sac of Limnocharis emarginata L. New Phytol. 37: 279–285.

    Article  Google Scholar 

  • Kak AM and S Durani. 1989. Seed morphology of the family Alismataceae. J. Econ. Taxon, Bot. 13: 501–509.

    Google Scholar 

  • Kaul RB. 1967a. Development and vasculature of the flowers of Lophotocarpus calycinus and Sagittaria latifolia (Alismataceae). Am. J. Bot. 54: 914–920.

    Article  Google Scholar 

  • Kaul RB. 1967b. Ontogeny and anatomy of the flower of Limmnocharis flava (Butomaceae). Am. J. Bot. 54: 1223–1230.

    Article  Google Scholar 

  • Kaul RB. 1968. Floral development and vasculature in Hydrocleis nymphoides (Butomaceae). Am. J. Bot. 55: 236–242.

    Article  Google Scholar 

  • Kaul RB. 1976. Conduplicate and specialized carpels in the Alismatales. Am. J. Bot. 63: 175–182.

    Article  Google Scholar 

  • Kudryashov LV and EI Savich. 1963. Some data on the embryology of Alisma plantago-aquatica L. Bull. Moscow Soc. Naturalists Div. Biol. 68(4): 50–63 (in Russian).

    Google Scholar 

  • Leins P and P Stadler. 1973. Entwicklungsgeschichtliche Untersuchungen am Androeceum der Alismatales. Oesterr. Bot. Z. 121: 51–63.

    Article  Google Scholar 

  • Liu K-M, L-G Lei, and G-W Hu. 2002. Developmental study on the inflorescence and flower of Caldesia grandis Samuel (Alismataceae). Bot. J. Linn. Soc. 140: 39–47.

    Article  Google Scholar 

  • Markgraf F. 1936. Blütenbau und Verwandtschaft bei den ein-fachsten Helobiae. Ber. Deutsch. Bot. Ges. 54: 191–229.

    Google Scholar 

  • Mayr F. 1943. Beiträge zur Anatomic der Alismataceen: Die Blattanatomie von Caldesia parnassifolia (Bassi) Parl. Beih. Bot. Centralbl. 62: 61–77.

    Google Scholar 

  • Meyer FJ 1932. Beiträge zur Anatomic der Alismataceen. Beih. Bot. Centralbl. 49(I): 54–63, 272–91, 309–68; 50 (I): 54–63; 52B: 96–111; 54A: 156–69.

    Google Scholar 

  • Pichon M. 1946. Sur les Alismatacees et les Butomacees. Notul. Syst. (Paris) 12: 170–183.

    Google Scholar 

  • Rogers GK. 1983. The genera of Alismataceae in the southeastern United States. J. Arnold Arbor. 64: 383–420.

    Google Scholar 

  • Sattler R and V Singh. 1973. Floral development of Hydrocleis nymphoides. Canad. J. Bot. 51: 2455–2458.

    Article  Google Scholar 

  • Sattler R and V Singh. 1977. Floral organogenesis of Limnocharis flava. Canad. J. Bot. 55: 1076–1086.

    Article  Google Scholar 

  • Sattler R and V Singh. 1978. Floral organogenesis of Echinodorus amazonicus Rataj and floral construction of the Alismatales. Bot. J. Linn. Soc. 77: 141–156.

    Article  Google Scholar 

  • Singh V. 1966. Morphological and anatomical studies in Helobiae: VI. Vascular anatomy of the flower of Alismaceae. Proc. Natl. Acad. Sci. India B 36: 329–344.

    Google Scholar 

  • Singh V and R Sattler. 1972. Floral development of Alisma triv-iak. Canad. J. Bot. 50: 619–627.

    Article  Google Scholar 

  • Singh V and R Sattler, 1973. Nonspiral androecium and gynoe-cium of Sagittaria latifolia. Canad. J. Bot. 51: 1093–1095.

    Article  Google Scholar 

  • Singh V and R Sattler. 1977. Development of the inflorescence and flower of Sagittaria cuneata. Canad. J. Bot. 55: 1087–1105.

    Article  Google Scholar 

  • Stant MY. 1964. Anatomy of the Alismataceae. Bot. J. Linn. Soc. 59: 1–42.

    Article  Google Scholar 

  • Troll W. 1932. Beiträge zur Morphologic des Gynaeceums: II. Über das Gynaeceum von Limnocharis Humb. and Bonpl. Planta 17: 453–460.

    Article  Google Scholar 

  • Wilder GJ. 1974. Symmetry and development of Butomus umbellatus (Butomaceae) and Limnocharis flava (Limnocharitaceae). Am. J. Bot. 61: 379–394.

    Article  Google Scholar 

  • Wodehouse RP. 1936. Pollen grains in the identification and classification of plants: VIII. The Alismataceae. Am. J. Bot. 23: 535–539.

    Article  Google Scholar 

  • Aalto M. 1970. Potamogetonaceae fruits. I. Recent and subfossil endocarps of the Fennoscandian species. Acta Bot. Fenn. 88: 1–85.

    Google Scholar 

  • Agrawal JS 1952. The embryology of Lilaea subulata H. B. K. with a discussion on its systematic position. Phytomorphology 2: 15–29.

    Google Scholar 

  • Albergoni FG, B Basso, and G Tedesco. 1978. Considerations sur l'anatomie de Posidonia oceanica (Zosteraceae). Plant Syst. Evol. 130: 191–210.

    Article  Google Scholar 

  • Arber A. 1940. Studies in flower structure: VI. On the residual vascular tissue in the apices of reproductive shoots, with special reference to Lilaea and Amherstia. Ann. Bot. 2(4): 617–627.

    Article  Google Scholar 

  • Barnabas AD. 1982. Fine structure of the leaf epidermis of Thalassodendron ciliatum (Forsk.) den Hartog. Aquatic Bot. 12: 41–55.

    Article  Google Scholar 

  • Barnabas AD. 1983. Composition and fine structural features of longitudinal veins in leaves of Thalassodendron ciliatum. South Afr. J. Bot. 2: 317–325.

    Google Scholar 

  • Barnabas AD. 1994. Anatomical, histochemical and ultrastruc-tural features of the seagrass Phyllospadix scouleri Hook. Aquatic Bot. 49: 167–182.

    Article  Google Scholar 

  • Barnabas AD and HJ Arnott. 1987. Zostera capensis Setchell: root structure in relation to function. Aquatic Bot. 27: 309–322.

    Article  Google Scholar 

  • Barnabas AD and S Kasavan. 1983. Structural features of the leaf epidermis of Halodule uninervis. South Afr. J. Bot. 2: 311–316.

    Google Scholar 

  • Black JM. 1913. The flowering and fruiting of Pectinella antarctica (Cymodocea antarctica). Trans. Proc. Roy. Soc. South Australia 37: 1–5.

    Google Scholar 

  • Bowes G, SK Rao, GM Estavillo, and JB Reiskind. 2002. C4 mechanisms in aquatic angiosperms: Comparisons with terrestrial C4 systems. Funct. Plant Biol. 29: 379–392.

    Article  CAS  Google Scholar 

  • Buzgo M and PK Endress. 1999. The gynoecium of Gymnostachys (Araceae) and Potamogeton (Potomagetonaceae). In XVI Int. Bot. Congr. Abstracts, p. 240. Missouri Botanical Garden, St. Louis, MO.

    Google Scholar 

  • Buzgo M, DE Soltis, PS Soltis, S Kim, H Ma, BA Hauser, J Leebens-Mackl, and B Johansen. 2006. Perianth development in the basal monocot Triglochin maritime (Juncginaceae). In: JT Columbus, EA Friar, JM Prince, MG Simpson, eds. Monocots: comparative biology and evolution (excluding Poales), pp. 107–125. Clermont (Aliso 22: 107–125).

    Google Scholar 

  • Cambridge ML and J Kuo. 1982. Morphology, anatomy and his-tochemistry of the Australian seagrasses genus Posidonia sinuosa Cambridge & Kuo. Aquatic Bot. 14: 1–14.

    Article  Google Scholar 

  • Campbell DH. 1897. A morphological study of Nolas and Zannichellia. Proc. Calif. Acad. Set., ser. 3, 1: 1–71.

    Google Scholar 

  • Campbell DH. 1898. Development of the flower and embryo of Lilaea subulata H. B. K. Ann. Bot. 12: 1–12.

    Google Scholar 

  • Campbell GKG. 1936. The anatomy of Potamogeton pectinatus. Trans. Proc. Bot. Soc. Edinb. 32: 179–186.

    Google Scholar 

  • Charlton WA. 1981. Features of the inflorescence of Triglochin maritimum. Canad. J. Bot. 59: 2108–2115.

    Article  Google Scholar 

  • Chrysler MA. 1907. The structure and relationships in Potamogetonaceae and allied families. Bot. Gaz. 44: 161–188.

    Article  Google Scholar 

  • Cook MT. 1908. The development of the embryo sac and embryo of Potamogeton lucens. Bull. Torrey Bot. Club 35: 209–218.

    Article  Google Scholar 

  • Cox PA and CJ Humphries. 1993. Hydrophilous pollination and breeding system evolution in sea grasses: a phylogenetic approach to the evolutionary ecology of the Cymodoceaceae. Bot. J. Linn. Soc. 113: 217–226.

    Article  Google Scholar 

  • Cox PA, PB Tomlinson, and K Nieznanski. 1992. Hydrophilous pollination and reproductive morphology in the seagrass Phyllospadix scouleri (Zosteraceae). Plant Syst. Evol. 180: 65–75.

    Article  Google Scholar 

  • Dahlgren KVO. 1939. Endosperm- und Embryobildung bei Zostera marina. Bot. Not. 1939: 607–615.

    Google Scholar 

  • De Cock AWAM. 1978. Germination of the thread like pollen grains of the seagrass Zostera marina L. Bull. Soc. Bot. France Act. Bot. 1–2: 145–148.

    Google Scholar 

  • De Cock AWAM. 1980. Flowering pollination and fruiting in Zostera marina L. Aquatic Bot. 9: 201–220.

    Article  Google Scholar 

  • Ducker SC, NJ Foord, and RB Knox. 1977. Biology of Australian sea grasses: the genus Amphibolis C. Agardh (Cymodoeaceae). Aust. J. Bot. 25: 67–95.

    Article  Google Scholar 

  • Ducker SC, JM Pettitt, and RB Knox. 1978. Biology of Australian sea grasses: Pollen development and submarine pollination in Amphibolis antarctica and Thalassodendron ciliatum (Cymodoceaceae). Aust. J. Bot. 26: 265–285.

    Article  Google Scholar 

  • Gardner RO. 1976. Binucleate pollen in Triglochin L. N. Z. J. Bot. 14: 115–116.

    Google Scholar 

  • Graves AH. 1908. The morphology of Ruppia maritima. Conn. Acad. Arts. Sci. 14: 59–170.

    Google Scholar 

  • Grönland J. 1851. Beitrag zur Kenntnis der Zostera marina. Bot. Z. 9: 185–192.

    Google Scholar 

  • Guo Y-H and CDK Cook. 1990. The floral biology of Groenlandia densa (L.) Fourreau (Potamogetonaceae). Aquatic Bot. 38: 283–288.

    Article  Google Scholar 

  • Gupta BL. 1934. Contribution to the life history of Potamogeton crispus. J. Indian Bot. Soc. 13: 51–65.

    Google Scholar 

  • Hagstrom ML. 1916. Critical researches on the Potamogeton. Kongl. Svenska Vetenskapsakad. Handl. 55: 1–281.

    Google Scholar 

  • Hartog C den. 1970. Sea grasses of the World. Verh. Kon. Ned. Akad. Wetensch. Afd. Natuurk. Tweede Sect. 59(I): 1–275.

    Google Scholar 

  • Haynes RR. 1978. The Potamogetonaceae in the southeastern United States. J. Arnold Arbor. 59: 170–191.

    Google Scholar 

  • Haynes RR and LB Holm-Nielsen. 1987. The Zannichelliaceae in the southeastern United States. J. Arnold Arbor. 68: 259–268.

    Google Scholar 

  • Haynes RR, DH Les, and LB Holm-Nielsen. 1998a. Juncaginaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol 4, 260–263. Springer, Berlin/ Heidelberg/New York.

    Google Scholar 

  • Haynes RR, DH Les, and LB Holm-Nielsen. 1998b. Potamogetonaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol 4, pp. 408–415. Springer, Berlin/ Heidelberg/New York.

    Google Scholar 

  • Haynes RR, LB Holm-Nielsen, and DH Les. 1998c. Ruppiaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol 4, pp. 445–448. Springer, Berlin/Heidelberg/ New York.

    Google Scholar 

  • Haynes RR, DH Les, and LB Holm-Nielsen. 1998d. Scheuchzeriaceae. In: K Kubitzki ed., The families and genera of vascular plants, vol 4, pp. 449–451. Springer, Berlin/ Heidelberg/New York.

    Google Scholar 

  • Haynes RR, DH Les, and LB Holm-Nielsen. 1998e. Zannichelliaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol 4, pp. 470–474. Springer, Berlin/ Heidelberg/New York.

    Google Scholar 

  • Hegelmaier F. 1870. Über die Entwicklung der Blütenteile von Potamogeton. Bot. Z. 18: 283–320.

    Google Scholar 

  • Hofmeister W. 1852. Zur Entwicklungsgeschichte der Zostera. Bot. Z. 10: 121–131, 137–149, 157–158.

    Google Scholar 

  • Holferty GM. 1901. Ovule and embryo of Potamogeton natans. Bot. Gaz. 31: 339–346.

    Article  Google Scholar 

  • Isaac FM. 1969 (1970). Floral structure and germination in Cymodocea ciliata. Phytomorphology 19: 44–51.

    Google Scholar 

  • Jacobs SWL and MA Brock. 1982. A revision of the genus Ruppia (Potamogetonaceae) in Australia. Aquatic Bot. 14: 325–337.

    Article  Google Scholar 

  • Kamelina OP. 1990. Potamogetonaceae. In: TB Batygina and MS Yakovlev, eds. Comparative embryology of flowering plants. Monocotyledons. Butomaceae — Lemnaceae, vol 1, pp 34–39. Nauka, Leningrad (in Russian).

    Google Scholar 

  • Kamelina OP and ES Terekhin. 1990. Ruppiaceae. In: TB Batygina and MS Yakovlev, eds. Comparative embryol- ogy of flowering plants. Monocotyledons. Butomaceae – Lemnaceae, vol 1, pp. 39–44. Nauka, Leningrad (in Russian).

    Google Scholar 

  • Kato Y, K Aioi, Y Omori, N Takahata, and Y Satta. 2003. Phylogenetic analyses of Zostera species based on rbcL and matK sequences: implications for the origin and diversification of seagrasses in Japanese waters. Genes Genet. Syst. 78: 329–342.

    Article  PubMed  CAS  Google Scholar 

  • Kay QON. 1971. Floral structure in the marine angiosperms Cymodocea serrulata and Thalassodendron ciliatum (Cymodocea ciliata). Bot. J. Linn. Soc. 64: 423–429.

    Article  Google Scholar 

  • Keighery GJ and DJ Coates. 1981. Chromosome counts in Posidonia (Posidoniaceae). Plant Syst. Evol. 137: 221–222.

    Article  Google Scholar 

  • Kirkman H. 1975. Male floral structure in the marine angio-sperm Cymodocea serrulata (R. Br.) Ascherson and Magnus (Zannichelliaceae). Bot. J. Linn. Soc. 79: 267–268.

    Article  Google Scholar 

  • Kuo J. 1978. Morphology, anatomy and histochemistry of the Australian sea grasses genus Posidonia Konig (Posidoniaceae). I. Leaf blade and leaf sheath of Posidonia australis Hook.f. Aquatic Bot. 5: 171–190.

    Article  Google Scholar 

  • Kuo J. 1983. The nacreous walls of sieve elements in sea grasses. Am. J. Bot. 70: 159–164.

    Article  Google Scholar 

  • Kuo J. 1993a. Functional leaf anatomy and ultrastructure in a marine angiosperm, Syringodium isoetifolium (Aschers.) Dandy (Cymodoceaceae). Aust. J. Mar. Freshwater Res. 44: 59–73.

    Google Scholar 

  • Kuo J. 1993b. Root anatomy and rhizosphere ultrastructure in tropical sea grasses. Aust. J. Mar. Freshwater Res. 44: 75–84.

    Google Scholar 

  • Kuo J. 2001. Chromosome numbers of the Australian Zosteraceae. Plant Syst. Ecol. 226(3–4): 155–163.

    Article  Google Scholar 

  • Kuo J and ML Cambridge. 1978a. Morphology, anatomy, and histochemistry of the Australian sea grasses of the genus Posidonia Konig (Posidoniaceae): I. Leaf blade and leaf sheath of Posidonia australis Hook. f. Aquatic Bot. 5: 163–170.

    Article  Google Scholar 

  • Kuo J and ML Cambridge. 1978b. Morphology, anatomy, and histochemistry of the Australian species of the genus Posidonia Konig (Posidoniaceae): rhizome and root of Posidonia australis Hook. f. Aquatic Bot. 5: 191–206.

    Article  Google Scholar 

  • Kuo J and H Kirkman. 1987. Floral and seeding morphology and anatomy of Thalassodendron pachyrhizum den Hartog (Cymodoceaceae). Aquatic Bot. 29: 1–17.

    Article  Google Scholar 

  • Kuo J and H Kirkman. 1990. Anatomy of vipiparous sea grasses of Amphibolis and Thalassodendron and their nutrient supply. Bot. Mar. 33: 117–126.

    Google Scholar 

  • Kuo J and AJ McComb. 1989. Sea grass taxonomy, structure and development. In: AWD Larkum, AJ McComb, SA Shephard, eds. Biology of seagrasses. A treatise on the biology of seagrasses with special reference to the Australian region, pp. 6–73. Elsevier Science, Amsterdam.

    Google Scholar 

  • Kuo J and AJ McComb. 1998a. Cymodoceaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol 4, pp 133–140. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Kuo J and AJ McComb. 1998b. Posidoniaceae. In: K Kubitzki, ed., The families and genera of vascular plants, vol 4, pp 404–408. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Kuo J and AJ McComb. 1998c. Zosteraceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol 4, pp. 496–502. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Kuo J, K Aioi, and H Iizumi. 1988. Comparative leaf structure and its functional significance in Phyllospadix iwatensis Makino and Phyllospadix japonicus Makino (Zosteraceae). Aquatic Bot. 30: 169–187.

    Article  Google Scholar 

  • Kuo J, K Seto, T Nasu, H Iizumi, and K Aioi. 1989. Notes on Archaeozostera in relation to the Zosteraceae. Aquatic Bot. 34: 317–328.

    Article  Google Scholar 

  • Kuo J, RW Ridge, and S Lewis. 1990a. Leaf internal morphology and ultrastructure of Zostera moelleri Irmisch ex Aschers.: a comparative study of intertidal and subtidal forms. Aquatic Bot. 36: 217–236.

    Article  Google Scholar 

  • Kuo J, K Aioi, and H Iizumi. 1990b. Chromosome numbers and their systematic implications in Australian marine angio-sperms: The Posidoniaceae. Plant Syst. Evol. 171: 199–204.

    Article  Google Scholar 

  • Lakshmanan KK. 1965. Note on the endosperm formation in Zannichellia palustris L. Phyton 22: 13–14.

    Google Scholar 

  • Larkum AWD, AJ McComb, and SA Shepherd, eds. 1989. Biology of sea grasses: a treatise on the biology of sea grasses with special reference to the Australian region. Elsevier, Amsterdam.

    Google Scholar 

  • Larsen K. 1966. Cytotaxonomical note on Lilaea. Bot. Not. 119: 496–497.

    Google Scholar 

  • Les DH and RR Haynes. 1996. Coleogeton (Potamogetonaceae), a new genus of pondweeds. Novon 6: 389–391.

    Article  Google Scholar 

  • Les DH and DJ Sheridan. 1990a. Hagstrom's concept of phylo-genetic relationships in Potamogeton L. (Potamogetonaceae). Taxon 39: 41–58.

    Article  Google Scholar 

  • Les DH and DJ Sheridan. 1990b. Biochemical heterophylly and flavonoid evolution in North American Potamogeton (Potamogetonaceae). Am. J. Bot. 77: 453–465.

    Article  CAS  Google Scholar 

  • Les DH, ML Moody, SWL Jacobs, and RJ Bayer. 2002. Systematics of Seagrasses (Zosteraceae) in Australia and New Zealand. Syst. Bot. 27: 468–484.

    Google Scholar 

  • Lieu SM. 1979. Organogenesis in Triglochin striata. Canad. J. Bot. 57: 1418–1438.

    Article  Google Scholar 

  • Lindqvist C, J de Laet, RR Haynes, L Aagesen, BR Keener, and VA Albert. 2006. Molecular phylogenetics of an aquatic plant lineage, Potamogetonaceae. Cladistics 22: 568–588.

    Article  Google Scholar 

  • Lupnitz D. 1969. Histogenese and Anatomie von Primarwurzeln und sprossburtigen Wurzeln einer Potamogetonaceae. Beitr. Biol. Pflanz. 46 : 247–313.

    Google Scholar 

  • McConchie CA, SC Ducker, and RB Knox. 1982a Biology of Australian seagrasses: floral development and morphology in Amphibolis (Cymodoceaceae). Aust. J. Bot. 30: 251–264.

    Article  Google Scholar 

  • McConchie CA, RB Knox, and SC Ducker. 1982b. Pollen wall structure and cytochemistry in the seagrass Amphibolis grif-fithii (Cymodoceaceae). Ann Bot. 50: 792–732.

    Google Scholar 

  • McMillan C. 1983. Seed germination in Halodule wrightii and Syringodium filiforme from Texas and the US Virgin Islands, Aquatic Bot. 15: 217–220.

    Google Scholar 

  • McMillan C and LH Bragg. 1987. Comparison of fruits of Syringodium (Cymodoceaceae) from Texas, the US Virgin Islands and the Philippines. Aquatic Bot. 28: 97–100.

    Article  Google Scholar 

  • Muenscher WC. 1936. The germination of seeds of Potamogeton (pondweeds). Mich. Bot. 23: 35–38.

    Google Scholar 

  • Murbeck S. 1902. Über die Embryologie von Ruppia rostellata Koch. Koninkl. Sven. Vetensk. Ak. Handl. 36(5): 1–21.

    Google Scholar 

  • Nikiticheva ZI and OB Proskurina. 1992. Embryology of Scheuchzeria palustris (Scheuchzeriaceae). Bot. Zhurn. 77: 3–18 (in Russian with English summary).

    Google Scholar 

  • Pettitt JM and AC Jenny. 1975. Pollen in hydrophilous angio-sperms. Micron 5: 377–405.

    Google Scholar 

  • Plisco MA. 1985. Scheuchzeriaceae. In: A Takhtajan, ed. Comparative seed anatomy, vol 1, pp. 47–49. Nauka, Leningrad (in Russian).

    Google Scholar 

  • Posluszny U. 1981. Unicarpellate floral development in Potamogeton zosteriformis. Canad. J. Bot. 59: 495–504.

    Google Scholar 

  • Posluszny U. 1983. Re-evaluation of certain key relationships in the Alismatidae: floral organogenesis of Scheuchzeria palus-tris. Am. J. Bot. 70: 925–933.

    Article  Google Scholar 

  • Posluszny U and R Sattler. 1973. Floral development of Potamogeton densus. Canad. J. Bot. 51: 647–656.

    Article  Google Scholar 

  • Posluszny U and R Sattler. 1974a. Floral development of Potamogeton richardsonii. Am. J. Bot. 61: 209–216.

    Article  Google Scholar 

  • Posluszny U and R Sattler. 1974b. Floral development of Ruppia maritima var. maritima. Canad. J. Bot. 52: 1607–1612.

    Article  Google Scholar 

  • Posluszny U and R Sattler. 1976. Floral development of Zannichellia palustris. Canad. J. Bot. 54: 651–662.

    Article  Google Scholar 

  • Posluszny U and PB Tomlinson. 1977. Morphology and development of floral shoots and organs in certain Zannichelliaceae. Bot. J. Linn. Soc. 75: 21–46.

    Article  Google Scholar 

  • Posluszny U, WA Charlton, and DK Jain. 1986. Morphology and development of the reproductive shoots of Lilaea scilloides (Poir.) Hauman (Alismatidae). Bot. J. Linn. Soc. 92: 323–342.

    Article  Google Scholar 

  • Reinecke P. 1964. A contribution to the morphology of Zannichellia aschersoniana Graebn. South Afr. J. Bot. 30: 93–101.

    Google Scholar 

  • Roth I. 1961. Histogenese der Laubblatter von Zostera nana. Bot. Jahrb. Syst. 80: 500–507.

    Google Scholar 

  • Sattler R. 1965. Perianth development of Potamogeton richard-sonii. Am. J. Bot. 52: 35–41.

    Article  Google Scholar 

  • Schneider EL and S Carlquist. 1997. Origins and nature of vessels in monocotyledons. 2. Juncaginaceae and Scheuchzeriaceae. Nord. J. Bot. 17: 397–401.

    Article  Google Scholar 

  • Schwantz G. 1967. Untersuchungen zur postmeiotischen Mikrosporogenese. I. Morphogenese des Ruppia-Pollens. Pollen et Spores 9: 9–48.

    Google Scholar 

  • Singh V. 1964. Morphological and anatomical studies in Helobiae: I. Vegetative anatomy of some members of Potamogetonaceae. Proc. Indian Acad. Sci. 60B: 214–231.

    Google Scholar 

  • Singh V. 1965. Morphological and anatomical studies in Helobiae. V. Vascular anatomy of the flower of Lilaea scilloides (Poir.) Hamm. Proc. Indian Acad Sci. B, 61: 316–535.

    Google Scholar 

  • Soros-Pottruff C and U Posluszny. 1994. Developmental morphology of reproductive structures of Phyllospadix (Zosteraceae). Int. J. Plant Sci. 155: 405–420.

    Article  Google Scholar 

  • Soros-Pottruff C and U Posluszny. 1995. Developmental morphology of reproductive structures of Zostera and a reconsideration of Heterozostera (Zosteraceae). Int. J. Plant Sci. 156: 143–158.

    Article  Google Scholar 

  • Sorsa P. 1988. Pollen morphology of Potamogeton and Groenlandia (Potamogetonaceae) and its taxonomic signifi-cance. Ann. Bot. Fenn. 25: 179–199.

    Google Scholar 

  • Soueges R. 1943. Embryogenie des Scheuchzeriacées: Developpement de 1'embryon chez le Triglochin mariti-mum L. Compt. Rend. Hebd. Seances Acad. Sci. 216: 746–748.

    Google Scholar 

  • Stenar H. 1935. Embryologische Beobachtungen fiber Scheuchzeria palustris L. Bot. Not. 1935: 78–86.

    Google Scholar 

  • Stewart JG and L Ludenberg. 1980. Microsporocyte growth and meiosis in Phyllospadix torreyi, a marine monocotyledon. Am. J. Bot. 67: 949–954.

    Article  Google Scholar 

  • Sun K, J-K Chen, and Z-Y Zhang. 2001. Pollen morphology of Najadaceae and Zannichelliaceae. Acta Phytotax. Sinica 39: 31–37 (in Chinese with English summary).

    Google Scholar 

  • Takaso T and F Bouman. 1984. Ovule ontogeny and seed development in Potamogeton natans L. (Potamogetonaceae), with a note on the campylotropous ovule. Acta Bot. Neerl. 33: 519–533.

    Google Scholar 

  • Talavera S, P Garcia-Murillo, and J Herrera. 1993. Chromosome numbers and a new model for karyotype evolution in Ruppia L. (Ruppiaceae). Aquatic Bot. 45: 1–13.

    Article  Google Scholar 

  • Taylor ARA. 1957a. Studies of the development of Zostera marina L.: 1. The embryo and seed. Canad. J. Bot. 35: 477–499.

    Article  Google Scholar 

  • Taylor ARA. 1957b. Studies of the development of Zostera marina L.: 2. Germination and seedling development. Canad. J. Bot. 35: 681–695.

    Google Scholar 

  • Terekhin ES. 1985. Potamogetonaceae, Ruppiaceae. In: A Takhtajan, ed. Comparative seed anatomy, vol 1, pp. 51–55. Nauka, Leningrad (in Russian).

    Google Scholar 

  • Terechin ES and SI Chubarov. 1991. The embryological and carpological investigation of Althenia jiliformis (Zannichelliaceae). Bot. Zhurn. 76: 226–236 (in Russian with English summary).

    Google Scholar 

  • Terechin ES and GV Shibakina. 1985. Zosteraceae. In: A. Takhtajan, ed. Comparative seed anatomy, vol 1, pp. 62–64. Nauka, Leningrad (in Russian).

    Google Scholar 

  • Tomlinson PB and U Posluszny. 1976. Generic limits in the Zannichelliaceae (sensu Dumortier). Taxon 25: 273–279.

    Article  Google Scholar 

  • Tomlinson PB and U Posluszny. 1978. Aspects of floral morphology and development in the sea grass Syringodium filiformis (Cymodoceaceae). Bot. Gaz. 139: 333–345.

    Article  Google Scholar 

  • Tomlinson PB and U Posluszny. 2001. Generic limits in the seagrass family Zosteraceae. Taxon 50: 429–437.

    Article  Google Scholar 

  • Tutin TG. 1938. The autecology of Zostera marina in relation to its wasting disease. New Phytol. 37: 50–71.

    Article  Google Scholar 

  • Vijayraghavan MR and A Vidya Kumari. 1974, Embryology and systematic position of Zannichellia palustris L. J. Indian Bot. Soc. 53: 292–302.

    Google Scholar 

  • Waycott M and DH Less. 1996. An integrated approach to the evolutionary study of seagrasses. In: J Kuo, RC Phillios, DI Walker, and H Kirkman, eds. Seagrass biology. Proceedings of an International Workshop, Rottnest Island, Western Australia. 25–29 January 1996, pp. 71–78. Perth.

    Google Scholar 

  • Weigleb G. 1988. Notes on pondweeds, outline for a mono-graphical treatment of the genus Potamogeton L. Feddes Repert. 99: 249–266.

    Google Scholar 

  • Yamashita T. 1972. Eigenartige Wurzelanlage der Embryos bei Ruppia maritima L. Beitr. Biol. Pfl. 48: 157–170.

    Google Scholar 

  • Yamashita T. 1973. Über die Embryo- und Wurzelentwicklung bei Zostera japonicus Aschers. et Graebn. J. Fac. Sci. Univ. Tokyo III, Bot. 11: 175–193.

    Google Scholar 

  • Yamashita T. 1976. Über die Pollenbildung bei Halodule pinifolia und H. uninervis. Beitr. Biol. Pfl. 52: 217–226.

    Google Scholar 

  • Zapata O and C McMillan. 1979. Phenolic acids in seagrasses. Aquatic Bot. 7: 307–317.

    Article  CAS  Google Scholar 

  • Amelunxen VF and G Gronau. 1969. Untersuchungen an den Gerbstoffzellen der Niederblatter von Acorus calamus L. Cytobiologie 1: 58–69.

    Google Scholar 

  • Arber A. 1919. The vegetative morphology of Pistia and the Lemnaceae. Proc. Roy. Soc. Lond., Ser. B, Biol. Sci. 91: 96–103.

    Article  Google Scholar 

  • Barabe D and S Forget. 1988. Anatomie des fleurs fertiles et steriles de Zamioculcas (Araceae). Bull. Mus. Natl. Hist. Nat. B Adansonia 10: 411–419.

    Google Scholar 

  • Barabé D, S Forget, and S Chrétien 1986. Sur les gynécées pseudo-monomeres: Cas de Symplocarpus. Compte Rendu Acad. Sci. Paris, sér.3, 302: 429–434.

    Google Scholar 

  • Barabé D, S Forget, and S Chrétien. 1987. Organogénese de la fleur de Symplocarpus foetidus (Araceae). Canad. J. Bot. 65: 446–455.

    Article  Google Scholar 

  • Barabe D, A Bruneau, F Forest, and C Lacroix. 2002. The correlation between development of atypical bisexual flowers and phylogeny in the Aroideae (Araceae). Plant Syst. Evol. 232: 1–19.

    Article  Google Scholar 

  • Barabé D, C Lacroix, A Bruneau, A Archambault, and M Gibernau. 2004. Floral development and phylogenetic position of Schismatoglottis (Araceae). Int. J. Plant Sci. 165: 173–189.

    Article  Google Scholar 

  • Behnke H-D. 1995. P-type sieve-element plastids and the ssystematics of the Arales (sensu Cronquist 1988) – with S-type plastids in Pistia. Plant Syst. Evol. 195: 87–119.

    Article  Google Scholar 

  • Beppu T and A Takimoto. 1981. Geographical distribution and cytological variation of Lemna paucicostata Hegelm. Jpn. Bot. Mag. (Tokyo) 94: 11–20.

    Article  Google Scholar 

  • Blanc P. 1977. Contribution a l'etude des aracees. II. Remarques sur la croissance sympodiale chez l'Anthurium scandens Engl., le Philodendron fenzlii Engl. Et le Philodendron speciosum Schott. Rev. Gen. Bot. 84: 319–331.

    Google Scholar 

  • Blanc P. 1980. Observations sur les flagelles des Araceae. Adansonia II 20: 325–338.

    Google Scholar 

  • Blodgett F-H. 1923. The embryo of Lemna. Am. J. Bot. 10: 336–342.

    Article  Google Scholar 

  • Bogner J. 1979. A critical list of the aroid genera. Aroideana 1: 63–73.

    Google Scholar 

  • Bogner J. 1987. Morphological variations in aroids. Aroideana 10(2): 4–16.

    Google Scholar 

  • Bogner J and A Hay. 2000. Schismatoglottideae (Araceae) in Malesia. II — Aridarum, Bucephalandra, Phymatarum and Piptospatha. Telopea 9: 179–222.

    Google Scholar 

  • Bogner J and M Hesse. 2005. Zamioculcadoideae, a new subfamily of Araceae. Aroideana 28: 3–20.

    Google Scholar 

  • Bogner J and SJ Mayo. 1998. Acoraceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol 4, pp. 7–11. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Bogner J and DH Nicolson. 1991. A revised classification of the Araceae with dichotomous keys. Willdenowia 21: 35–50.

    Google Scholar 

  • Bown D. 1988. Aroids – plants of the Arum family. Century, London.

    Google Scholar 

  • Bown D. 2000. Aroids: Plants of the Arum family. Timber Press, Portland, OR.

    Google Scholar 

  • Boyce PC. 1993. The genus Arum. Royal Botanic Gardens, Kew.

    Google Scholar 

  • Boyce PC and A Hay. 2001. A taxonomic revision of Araceae tribe Potheae (Pothos, Pothoidium and Pedicellarum) for Malesia, Australia and the tropical western Pacific. Telopea 9: 449–571.

    Google Scholar 

  • Buell MF. 1935. Seed and seeding of Acorus calamus. Bot. Gaz. 96: 758–795.

    Article  Google Scholar 

  • Buell MF. 1938. Embryology of Acorus calamus. Bot. Gaz. 99: 556–568.

    Article  Google Scholar 

  • Buscalioni L and D Lanza. 1935. Le basi morfologiche, anato-miche, teratologiche della nuova famiglia delle Pistiaceae (Buscalioni e Lanza) rappresentate dai duegeneri Pistia ed Ambrosinia. Malpighia 34: 103–180.

    Google Scholar 

  • Buzgo M. 1994. Inflorescence development of Pistia stratiotes (Araceae). Bot. Jahrb. Syst. 115: 557–570.

    Google Scholar 

  • Buzgo M. 2001. Flower structure and development of Araceae compared with alismatids and Acoraceae. Bot. J. Linn. Soc. 136: 393–425.

    Article  Google Scholar 

  • Buzgo M and PK Endress. 1998. Floral development of Acorus calamus (Acoraceae) in comparison with other basal mono-cots. In Monocots II, p. 13 (abstract). Sydney.

    Google Scholar 

  • Buzgo M and PK Endress. 1999. The gynoecium of Gymnostachys (Araceae) and Potamogeton (Potomagetonaceae). In XVI International Botanical Congress: Abstracts, p. 240. St. Louis, MO.

    Google Scholar 

  • Buzgo M and PK Endress. 2000. Floral structure and development of Acoraceae and its systematic relationships with basal angiosperms. Int. J. Plant Sci. 161: 23–41.

    Article  PubMed  Google Scholar 

  • Campbell DH 1899. Notes on the structure of the embryo sac in Sparganium and Lysichiton. Bot. Gaz. 27: 153–166.

    Article  Google Scholar 

  • Campbell DH. 1900. Studies on the Araceae. 1. Ann. Bot. 14: 1–15.

    Google Scholar 

  • Carlquist S and EL Schneider. 1997. Origins and nature of vessels in Monocotyledons. 1. Acorus. Int. J. Plant Sci. 158: 51–56.

    Article  Google Scholar 

  • Carlquist S and EL Schneider 1998. Origin and nature of vessels in monocotyledons. 5. Araceae subfamily Colocasioideae. Bot. J. Linn. Soc. 128: 71–86.

    Article  Google Scholar 

  • Chao Y and JD Palmer. 1999. Multiple acquisitions via horizontal transfer of a group I intron in the mitochondrial coxI gene during evolution of the Araceae family. Mol. Biol. Evol. 16: 1155–1165.

    Google Scholar 

  • Chen YY, Li DZ, and H Wang. 2002. Infrageneric phylogeny and systematic position of the Acoraceae inferred from ITS, 18S and rbcL sequences. Acta Bot. Yunn. 24: 699–706.

    CAS  Google Scholar 

  • Chouteau M, D Barabé, and M Gibernau. 2006. Pollen-ovule ratios in some Neotropical Araceae and their putative signifi-cance. Plant Syst. Evol. 257: 147–157.

    Article  Google Scholar 

  • Crawford DJ, E Landolt, DH Les, and RT Kimb. 2001. Allozyme studies in Lemnaceae: variation and relationships in Lemna sections Alatae and Biformes. Taxon 50: 987–999.

    Article  Google Scholar 

  • Crawford DJ, E Landolt, DH Les, and RT Kimball. 2006. Speciation in duckweeds (Lemnaceae): phylogenetic and ecological inferences. In: JT Columbus, EA Friar, JM Porter, LM Prince, and MG Simpson, eds. Monocots: comparative biology and evolution (excluding Poales), pp. 231–242, Rancho Santa Ana Botanical Garden, Claremont.

    Google Scholar 

  • Croat TC. 1990. A comparison of aroid classification systems. Aroideana 13: 44–63.

    Google Scholar 

  • Croat TC. 1998. History and current status of systematic research with Araceae. Aroideana. 21: 26–145.

    Google Scholar 

  • Daubs EN. 1965. A monograph of Lemnaceae. Illinois Biological Monographs 34.

    Google Scholar 

  • Den Hartog C and F van der Plas. 1970. A synopsis of the Lemnaceae. Blumea 18: 355–368.

    Google Scholar 

  • Duvall MR. 2001. An anatomical study of anther development in Acorus L.: phylogenetic implications. Plant Syst. Evol. 228: 143–152.

    Article  Google Scholar 

  • Duvall MR, MT Clegg, MW Chase, WD Clark, WJ Kress, HG Hims, LE Eguiarte, JF Smith, BS Gaut, EA Zimmer, and GH Learn, Jr. 1993a. Phylogenetic hypotheses for the monocotyledons constructed from rbcL sequence data. Ann. Missouri Bot. Gard. 80: 607–619.

    Article  Google Scholar 

  • Duvall MR, GH Leaen, Jr., LE Eguiarte, and MT Clegg. 1993b. Phylogenetic analysis of rbcL sequences identifies Acorus calamus as the primal extant monocotyledon. Proc. Natl. Acad. Sci. USA 90: 4641–4644.

    Article  CAS  Google Scholar 

  • Engler A. 1876. Vergleichende Untersuchungen über die mor-phologischen Verhaltnisse der Araceae: I. Naturliches System der Araceae. Nova Acta Acad. Caes. Leop.-Carol. German. Nat. Cur. 39: 133–155.

    Google Scholar 

  • Engler A. 1884. Beitrage zur Kenntnis der Araceae: V. 1, 2. Über den Entwicklungsgang in der Familie der Araceen und über die Blutenmorphologie derselben. Bot. Jahrb. Syst. 5: 141–188, 287–336.

    Google Scholar 

  • Erti PO. 1932. Vergleichende Untersuchungen über die Entwicklung der Blattnervatur der Araceen. Flora 126: 115–248.

    Google Scholar 

  • Evstatieva LN, MN Todorova, IV Ognyanov, and LV Kuleva. 1996. Chemical composition of the essential oil in Acorus calamus L. (Araceae). Fitologija (Bulgaria) 48: 19–23.

    Google Scholar 

  • Eyde RH, DH Nicolson, and P Sherwin. 1967. A survey of floral anatomy in Araceae. Am. J. Bot. 54: 478–497.

    Article  Google Scholar 

  • Fox MG and JC French. 1988. Systematic occurrence of sterols in latex of Araceae: Colocasioideae. Am. J. Bot. 75: 132–137.

    Article  CAS  Google Scholar 

  • French JC. 1986a. Patterns of stamen vascularity in the Araceae. Am. J. Bot. 73: 434–449.

    Article  Google Scholar 

  • French JC. 1986b. Ovular vasculature in Araceae. Bot. Gaz. 147: 478–495.

    Article  Google Scholar 

  • French JC. 1986c. Patterns of endothecial wall thickenings in Araceae: subfamilies Colocasioideae, Aroideae, and Pistioideae. Bot. Gaz. 147: 166–179.

    Article  Google Scholar 

  • French JC. 1987a. Systematic occurrence of a sclerotic hypo-dermis in roots of Araceae. Am. J. Bot. 74: 891–903.

    Article  Google Scholar 

  • French JC. 1987b. Structure of ovular and placental trichomes of Araceae. Bot. Gaz. 148: 198–208.

    Article  Google Scholar 

  • French JC. 1987c. Systematic survey of resin canals in roots of Araceae. Bot. Gaz. 148: 360–371.

    Article  Google Scholar 

  • French JC. 1988. Systematic occurrence of anastomosing latic-ifers in Araceae. Bot. Gaz. 149: 71–81.

    Article  Google Scholar 

  • French JC. 1997. Vegetative anatomy. In: SJ Mayo, J Bogner, and PC Boyce. The genera of Araceae, pp. 9–24. Royal Botanic Gardens, Kew.

    Google Scholar 

  • French JC and CT Kessler. 1989. Molecular systematics of the Araceae: are Acorus and Gymnostachys aroids? Am. J. Bot. 76(Suppl.): 242.

    Google Scholar 

  • French JC and PB Tomlinson. 1981a. Vascular patterns in stems of Araceae: subfamily Pothoideae. Am. J. Bot. 68: 713–729.

    Article  Google Scholar 

  • French JC and PB Tomlinson. 1981b. Vascular patterns in stems of Araceae: subfamily Monsteroideae. Am. J. Bot. 68: 1115–1129.

    Article  Google Scholar 

  • French JC and PB Tomlinson. 1981c. Vascular patterns in stems of Araceae: subfamilies Calloideae and Lasioideae. Bot. Gaz. 142: 366–381.

    Article  Google Scholar 

  • French JC and PB Tomlinson. 1981d. Vascular patterns in stems of Araceae: subfamily Philodendroideae. Bot. Gaz. 142: 550–563.

    Article  Google Scholar 

  • French JC and PB Tomlinson. 1983. Vascular patterns in stems of Araceae: subfamilies Calocasioideae, Aroideae and Pistioideae. Am. J. Bot. 70: 756–771.

    Article  Google Scholar 

  • Gonçalves EG, Élder AS Paiva, and MA Nadruz Coelho. 2004. A preliminary survey of petiolar collenchyma in the Araceae. Ann. Missouri Bot. Gard. 91: 473–484.

    Google Scholar 

  • Goremykin VM, B Holland, KI Hirsch-Ernst, and FH Hellwig. 2005. Analysis of Acorus calamus genome and its phylo-genetic implications. Mol. Biol. Evol. 22: 1813–1222.

    Article  PubMed  CAS  Google Scholar 

  • Gow JE. 1913. Phylogeny of the Araceae. Proc. Iowa Acad. Sci. 20: 161–168.

    Google Scholar 

  • Govaerts R and DG Frodin. 2002. World checklist and bibliography of Araceae (and Acoraceae). Royal Botanic Gardens, Kew.

    Google Scholar 

  • Grayum MH. 1984. Palynology and phylogeny of the Araceae. Ph.D. dissertation, University of Massachusetts, Amherst, MA.

    Google Scholar 

  • Grayum MH. 1985. Evolutionary and ecological significance of starch storage in pollen of the Araceae. Am. J. Bot. 72: 1565–1577.

    Article  Google Scholar 

  • Grayum MH. 1986. Phylogenetic implications of pollen nuclear number in the Araceae. Plant Syst. Evol. 151: 145–161.

    Article  Google Scholar 

  • Grayum MH. 1987. A summary of evidence and arguments supporting the removal of Acorus from the Araceae. Taxon 36: 723–729.

    Article  Google Scholar 

  • Grayum MH. 1990. Evolution and phylogeny of the Araceae. Ann. Missouri Bot. Gard. 77: 628–697.

    Article  Google Scholar 

  • Grayum MH. 1991. Systematic embryology of the Araceae. Bot. Rev. 57: 167–203.

    Article  Google Scholar 

  • Grayum MN. 1992. Comparative external pollen ultrastructure of the Araceae and putatively related taxa. Monogr. Syst. Bot. Missouri Bot. Gard. 43: 1–167.

    Google Scholar 

  • Grob GB, B Gravendeel, MCM Eurlings, and WLA Hetterscheld. 2002. Phylogeny of the tribe Thomsonieae (Araceae) based on chloroplast matK and trnL intron sequences. Syst. Bot. 27: 453–467.

    Google Scholar 

  • Gupta BL. 1935. Studies on the development of the pollen grain and embryo sac of Wolffia arrhiza. Curr. Sci. 4: 104–105.

    Google Scholar 

  • Haccius B and KK Lakshmanan. 1966. Vergleichende Untersuchung der Entwicklung von Kotyledon und Sprofischeitel bei Pistia stratiotes und Lemna gibba: Ein Beitrag zum Problem der sogenannten terminalen Blattorgane. Beitr. Biol. Pfl. 42: 425–443.

    Google Scholar 

  • Hartog C den and F von der Plas. 1970. A synopsis of the Lemnaceae. Blumea 18: 355–368.

    Google Scholar 

  • Hay A. 1992. Tribal and subtribal delimitation and circumscription of the genera of Araceae tribe Lasieae. Ann. Missouri Bot. Gard. 79: 184–205.

    Article  Google Scholar 

  • Hesse M. 2002. The uniquely designed pollen aperture in Lasioideae (Araceae). Aroideana. 25: 51–59.

    Google Scholar 

  • Hesse, M. 2006a. Pollen wall ultrastructure in Araceae and Lemnaceae in relation to molecular classifications. In: JT Columbus, EA Friar, JM Porter, LM Prince, and MG Simpson, eds. Monocots: comparative biology and evolution (excluding Poales), pp. 204–208. Rancho Santa Ana Botanical Garden, Claremont.

    Google Scholar 

  • Hesse M. 2006b. Reasons and consequences of the lack of sporopollenin ektexine in Aroideae (Araceae). Flora 201: 421–428.

    Google Scholar 

  • Hesse M, M Weber, and H Halbritter. 1998. Pollen wall stratifi-cation: its possible role in Araceae systematics. In Monocots II, p. 28. Sydney.

    Google Scholar 

  • Hesse M, J Bogner, H Halbritter, and M Weber. 2001. Palynology of the perigoniate Aroideae: Zamioculcas, Gonatopus and Stylochaeton (Araceae). Grana 40: 26–34.

    Article  Google Scholar 

  • Hotta M. 1971. Study of the family Araceae — general remarks. Jpn. J. Bot. 20: 269–310.

    Google Scholar 

  • Jussen FJ. 1929. Die Haploidgeneration der Araceen und ihre Verwertung fur die Systematik. Bot. Jahrb. Syst. 62: 155–283.

    Google Scholar 

  • Il'ina GM. 1990. Lemnaceae. In: TB Batygina and MS Yakovlev, eds. Comparative embryology of flowering plants. Monocotyledons, pp. 279–286. Nauka, Leningrad (in Russian).

    Google Scholar 

  • Ivanova IE. 1973. On the systematics of the family Lemnaceae. Bot. Zhurn. 58: 1413–1428 (in Russian).

    Google Scholar 

  • Kaplan DR. 1970. Comparative foliar histogenesis of Acorus calamus and its bearing on the phyllode theory of monocoty-ledonous leaves. Am. J. Bot. 57: 331–361.

    Article  Google Scholar 

  • Kaplan DR. 1973. Comparative developmental analysis of het-eroblastic leaf series of axillary shoots of Acorus calamus L. Cellule 69: 253–290.

    Google Scholar 

  • Keating RC. 2000. Collenchyma in Araceae: trends and relation to classification. Bot. J. Linn. Soc. 134: 203–214.

    Google Scholar 

  • Keating RC. 2002. Leaf anatomical characters and their value in understanding morphoclines in the Araceae. Bot. Rev. 68: 510–523.

    Article  Google Scholar 

  • Keating RC. 2003a. Acoraceae and Araceae. In M Gregory and D Cutler, eds. The anatomy of the Monocotyledons, vol. 9, pp. 1–327. Oxford University Press, Oxford.

    Google Scholar 

  • Keating RC. 2003b. Leaf anatomical characters and their value in understanding morphoclines in the Araceae. Bot. Rev. 68: 510–523.

    Article  Google Scholar 

  • Keating RC. 2004a. Vegetative anatomical data and its relationship to a revised classification of the genera of Araceae. Ann. Missouri Bot. Gard. 91: 485–494.

    Google Scholar 

  • Keating RC. 2004b. Systematic occurrence of raphide crystals in Araceae. Ann. Missouri Bot. Gard. 91: 495–504.

    Google Scholar 

  • Korobova SN and NA Zhinkina. 1990. Araceae. In: TB Batygina and MS Yakovlev, eds. Comparative embryology of flower-ing plants. Monocotyledons, pp. 275–279. Nauka, Leningrad (in Russian).

    Google Scholar 

  • Kozhevnikov DA. 1878. On the history of development of flower in the fam. Araceae. Nauka, Moscow (in Russian).

    Google Scholar 

  • Kulkarni AR, D Dosi, and VM Manoj. 1990. Fruit and seed structure in Araceae. Proc. Indian Acad. Sci. 100B: 61–70.

    Google Scholar 

  • Kuprianova LA and VF Tarasevich. 1984. The ultra-structure of the surface of pollen grain wall in some genera of the family Lemnaceae and the related genera of the family Araceae. Bot. Zhurn. 69: 1656–1661 (in Russian with English summary).

    Google Scholar 

  • Landolt E. 1986. The family of Lemnaceae — a monographic study. Vol. 1: Morphology; karyology; ecology; geographic distribution; systematic position; nomenclature; descriptions. Veroff. Geobot. Inst. Eidg. Tech. Hochsch. Stift. Rubel Zuer. 71: 566.

    Google Scholar 

  • Landolt E. 1998. Lemnaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol 4, pp. 264–270. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Landolt E and R Kandeler. 1987. The family of Lemnaceae — a monographic study. Vol. 2: Phytochemistry; physiology; application; bibliography. Veroff. Geobot. Inst. Eidg. Tech. Hochsch. Stift Rubel Zuer. 95: 638.

    Google Scholar 

  • Lawalree A. 1952. L'embryologie des Lemnaceae. Observations sur Lemna minor. Cellule 54: 305–326.

    Google Scholar 

  • Lawalree A. 1961. La polinisation de Lemna minor L. Nat. Belg. 42: 164–165.

    Google Scholar 

  • Lemon GD and U Posluszny. 2000a. Shoot development and evolution in Pistia stratiotes (Araceae). Int. J. Plant Sci. 161: 721–732.

    Article  Google Scholar 

  • Lemon GD and U Posluszny. 2000b. Comparative shoot development and evolution in the Lemnaceae. Int. J. Plant Sci. 161: 733–748.

    Article  Google Scholar 

  • Les DH and DJ Crawford. 1999. Landoltia (Lemnaceae) a new genus of duckweeds. Novon 9: 530–533.

    Article  Google Scholar 

  • Les DH, E Landolt, and DJ Crawford. 1994. Molecular system-atics of the Lemnaceae. Am. J. Bot. 81: 168–169.

    Google Scholar 

  • Les DH, E Landolt, and DJ Crawford. 1997. Systematics of Lemnaceae (duckweeds), inferences from micromolecular and morphological data. Plant Syst. Evol. 204: 161–177.

    Article  Google Scholar 

  • Les DH, DJ Crawford, E Landolt, JD Gabel, and RT Kimball. 2002. Phylogeny and systematics of Lemnaceae, the duckweed family. Syst. Bot. 27: 221–240.

    Google Scholar 

  • Lodkina MM. 1985. Lemnaceae. In: A Takhtajan, ed. Comparative seed anatomy, vol 1, pp. 275–280. Nauka, Leningrad (in Russian).

    Google Scholar 

  • Maheshwari SC. 1954. The embryology of Wolffia. Phytomorphology 4: 355–365.

    Google Scholar 

  • Maheshwari SC. 1956. The endosperm and embryo of Lemna and systematic position of Lemnaceae. Phytomorphology 6: 51–55.

    Google Scholar 

  • Maheshwari SC. 1958. Spirodela polyrrhiza: the link between the aroids and the duckweeds. Nature 181: 1745–1756.

    Article  Google Scholar 

  • Maheshwari SC and RN Kapil. 1963a. Morphological and embryological studies on the Lemnaceae. I. The floral structure and gametophytes of Lemna paucicostata. Am. J. Bot. 50: 677–686.

    Article  Google Scholar 

  • Maheshwari SC and RN Kapil. 1963b. Morphological and embry-ological studies on the Lemnaceae. II. The endosperm and embryo of Lemna paucicostata. Am. J. Bot. 50: 907–914.

    Article  Google Scholar 

  • Maheshwari SC and PP Khanna. 1956. The embryology of Arisaema wallichianum Hook. f. and the systematic position of the Araceae. Phytomorphology 6: 379–388.

    Google Scholar 

  • Maheshwari SC and N Maheshwari. 1963. The female gameto-phyte, endosperm and embryo of Spirodela polyrrhiza. Beitr. Biol. Pflanz. 39: 179–188.

    Google Scholar 

  • Mayo SJ, J Bogner, and PC Boyce. 1995. The Arales. In: PJ Rudall, PJ Cribb, DF Cutler, CJ Humphries, eds. Monocotyledons: systematics and evolution, pp. 277–286. Royal Botanic Gardens, Kew, London.

    Google Scholar 

  • Mayo SJ, J Bogner, and PC Boyce. 1997. The genera of Araceae. Royal Botanic Gardens, Kew.

    Google Scholar 

  • Mayo SJ, J Bogner, and PC Boyce. 1998. Araceae. In: K Kubitzki, ed. Families and genera of vascular plants, vol 4, pp. 26–74. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Mayo SJ, L Cabrera, G Salazar, and MW Chase. 2003. Aroids and their watery beginnings. Ms.

    Google Scholar 

  • McClure JW and RE Alston. 1966. A chemotaxonomic study of Lemnaceae. Am. J. Bot. 53: 849–860.

    Article  PubMed  CAS  Google Scholar 

  • Mercado-Noriel LR and BT Mercado. 1978. Floral anatomy and seed morphology of water lettuce (Pistia stratiotes). Philipp. Agric. 61: 281–290.

    Google Scholar 

  • Mucke M. 1908. Über den Bau und die Entwicklung der Fruchte und über die Herkunft von Acorus calamus L. Bot. Zeit. 66: 1–123.

    Google Scholar 

  • Nahrstedt A. 1975. Triglochinin in Araceen. Phytochemistry 14: 2627–2628.

    Article  CAS  Google Scholar 

  • Nicolson DH. 1984. Suprageneric names attributable to Araceae. Taxon 33: 680–690.

    Article  Google Scholar 

  • Nicolson DH. 1988. History of Araceae systematics. Aroideana 10: 23–30.

    Google Scholar 

  • Oganezova GG and NA Barsegyan. 1999. Some peculiarities of the generative organs of Acorus calamus L. from Armenian populations. Flora Rastitelnost Rast. Res. Armenia 12: 39–41 (in Russian).

    Google Scholar 

  • Pan YH, KM Liu, and LG Lei. 2002. Advances in the systemat-ics of Acorus L. and the re-establishment of Acoraceae. Bull. Bot. Res. (China). 22: 417–421.

    Google Scholar 

  • Petersen G. 1989. Cytology and systematics of Araceae. Nord. J. Bot. 9: 116–166.

    Article  Google Scholar 

  • Ray TS. 1987. Leaf types in the Araceae. Am. J. Bot. 74: 1359–1372.

    Article  Google Scholar 

  • Ray TS. 1988. Survey of shoot organization in the Araceae. Am. J. Bot. 75: 56–84.

    Article  Google Scholar 

  • Remizova M and D Sokoloff. 2003. Inflorescence and floral morphology in Tofieldia (Tofieldiaceae) compared with Araceae, Acoraceae and Alismatales s.str. Bot. Jahrb. Syst. 124: 255–271.

    Article  Google Scholar 

  • Riaz M, S Qamar, and FM Chaudhary. 1995. Chemistry of the medicinal plants of the genus Acorus (family Araceae). Hamdard Med. 38(2): 50–62.

    Google Scholar 

  • Rost LCM. 1979. Biosystematic inversigations with Acorus. 4. Communication: a synthetic approach to the classification of the genus. Planta Med. 37: 289–307.

    Article  Google Scholar 

  • Rostowzew S. 1905. Biology and morphology of duckweeds. Nauka, Moscow (in Russian).

    Google Scholar 

  • Rothwell GW, MR Van Atta, HE Ballard Jr, and RA Stockey. 2004. Molecular phylogenetic relationships among Lemnaceae and Araceae using the chloroplast trnL-trnF intergenic spacer. Mol. Phylogenet. Evol. 30: 378–385.

    Article  PubMed  CAS  Google Scholar 

  • Rudall PJ and CA Furness. 1997. Systematics of Acorus: ovule and anther. Int. J. Plant Sci. 158(5): 640–651.

    Article  Google Scholar 

  • Schneider EL and S Carlquist. 1998. Origin and nature of vessels in monocotyledons. 4. Araceae subfamily Philodendroideae. J. Torrey Bot. Soc. 125: 253–260.

    Article  Google Scholar 

  • Scribailo RW and PB Tomlinson. 1992. Shoot and floral development in Calla palustris (Araceae-Calloideae). Int. J. Plant Sci. 153: 1–13.

    Article  Google Scholar 

  • Seubert E. 1993. Die Samenmerkmale der Araceen und ihre Bedeutung für die Gliederum der Familie. Koeltz, Koenigstein.

    Google Scholar 

  • Seubert E. 1997a. The sclereids of Araceae. Flora 192: 31–37.

    Google Scholar 

  • Seubert E. 1997b. A comparative study of the seeds of Lasieae (Araceae). Bot. Jahrb. Syst. 119: 407–426.

    Google Scholar 

  • Shadowsky AF. 1931. Einige Angaben fiber die Embryogenie von Pistia stratiotes L. Ber. Deutsch. Bot. Ges. 49: 350–356.

    Google Scholar 

  • Silva CJ da. 1981. Observacoes sobre a biologia repro-dutiva Pistia stratiotes L. (Araceae). Acta Amazonica 11: 487–504.

    Google Scholar 

  • Soukup A, JL Seago Jr, and O Votrubová. 2005. Developmental anatomy of the root cortex of the basal Monocotyledon, Acorus calamus (Acorales, Acoraceae). Ann. Bot. 96: 379–385.

    Article  PubMed  Google Scholar 

  • Stevenson DW, JI Davis, JV Freudenstein, CR Hardy, MP Simmonds, and CD Specht. 2000. A phylogenetic analysis of the monocotyledons based on morphological and molecular character sets, with comments on the placement of Acorus and Hydatellaceae. In: KL Wilson and DA Morrison, eds. Monocots: systematics and evolution, pp. 17–24. CSIRO, Collingwood.

    Google Scholar 

  • Su XH, GM He, KL Sun, DL Bi, and M Wang. 2004. Study of comparative anatomy on structure of seedlings of Acorus tatarinowii and Zantedeschia aethiopica. Acta Bot. Bor. Occid. Sinica 24(3): 504–509.

    Google Scholar 

  • Tam S-M, PC Boyce, TM Upson, D Barabé, A Bruneau, F Forest, and JS Parker. 2004. Intergeneric and infrafamilial phylogeny of subfamily Monsteroideae (Araceae) revealed by chloroplast trnL-F sequences. Am. J. Bot. 91: 490–498.

    Article  CAS  Google Scholar 

  • Tarasevich VF. 1989. Pollen grain ultrastructure in the genus Anthurium (Araceae) in connection with its systematics. Bot. Zhurn. 74: 314–324 (in Russian with English summary).

    Google Scholar 

  • Tarasevich VF. 1990. Palynological evidence on the position of the Lemnaceae family in the system of flowering plants. Bot. Zhurn. 75: 959–965 (in Russian with English summary).

    Google Scholar 

  • Tillich H-J. 1985. Keimlingsbau und verwandtschaftliche Bezeihungen der Araceae. Gleditschia 13: 63–73.

    Google Scholar 

  • Tillich H-J. 2003. Seedling diversity in Araceae and its systematic implications. Feddes Repert. 114: 454–487.

    Article  Google Scholar 

  • Van der Ham RWJM, WLA Hetterscheid, and BJ Van Heuven. 1998. Notes on the genus Amorphophallus (Araceae) – 8 Pollen morphology of Amorphophallus and Pseudodracontium. Rev. Palaeobot. Palynol. 103: 95–142.

    Article  Google Scholar 

  • Vyshenskaya TD. 1985. Araceae. In: A Takhtajan, ed. Comparative seed anatomy, 1: 264–275. Nauka, Leningrad (in Russian).

    Google Scholar 

  • Wang HZ, YG Chen, and CS Fan. 1998. Review of studies on chemical constituents and pharmacology in genus Acorus in China. Acta Bot. Yunn. Suppl. 10: 96–100.

    Google Scholar 

  • Wang HZ, WL Li, ZJ Gu, and YY Chen. 2001. Cytological study on Acorus L. in southwestern China, with some cyto-geographical notes on A. calamus. Acta Bot. Sinica 43: 354–358.

    Google Scholar 

  • Wang PL and H Li. 1998. Report of pollen morphology of Araceae. Acta Bot. Yunn. Suppl. 10: 41–42.

    Google Scholar 

  • Wang W and NX Zhao. 2002. Epidermal characters of leaves in Araceae. J. Wuhan Bot. Res. 20: 343–349.

    Google Scholar 

  • Watling JR, SA Robinson, and RS Seymour. 2006. Contribution of the alternative pathway to respiration during thermo-genesis in flowers of the Sacred Lotus. Plant. Physiol. 140: 1367–1373.

    Article  PubMed  CAS  Google Scholar 

  • Weber M, H Halbritter, and M Hesse. 1999. The basic pollen wall types in Araceae. Int. J. Plant Sci. 160: 415–423.

    Article  Google Scholar 

  • Williams NH, JB Harborne, and SJ Mayo. 1981. Anthocyanin pigments and leaf flavonoids in the family Araceae. Phytochemistry 20: 217–234.

    Article  CAS  Google Scholar 

  • Wilson KA. 1960. The genera of the Arales in the southeastern United States. J. Arnold Arbor. 41: 47–72.

    Google Scholar 

  • Zennie TM and JW McClure. 1977. The flavonoid chemistry of Pistia stratiotes L. and the origin of the Lemnaceae. Aquatic Bot. 3: 49–54.

    Article  CAS  Google Scholar 

  • Zhu ZY. 1985 Some new taxa of Acorus (Araceae) from Sichuan. Acta Bot. Bor.-Occid. Sinica 5: 118–121.

    Google Scholar 

  • Ambrose JD. 1980. A re-evaluation of the Melanthioideae (Liliaceae) using numerical analyses. In: CD Brickell et al., eds. Petaloid Monocotyledons, pp. 65–81. Academic, London.

    Google Scholar 

  • Cheadle VI and H Kosakai. 1971 (1972). Vessels in Liliaceae. Phytomorphology 21: 320–333.

    Google Scholar 

  • Chupov VS. 1994. Phylogeny and systematics of the Liliales and Asparagales. Bot. Zhurn. 79(3): 1–12 (in Russian with English summary).

    Google Scholar 

  • Conover MV. 1983. The vegetative morphology of the reticulate-veined Liliiflorae. Telopea 2: 491–412.

    Google Scholar 

  • Conover M V. 1991. Epidermal patterns of the reticulate-veined Liliiflorae and their parallel-veined allies. Bot. J. Linn. Soc. 107: 295–312.

    Google Scholar 

  • Conran JG. 1989. Cladistic analysis of some net-veined Liliiflorae. Plant Syst. Evol 168: 123–141.

    Article  Google Scholar 

  • Fay MF, PJ Rudall, S Sullivan, KL Stobart, AY de Bruijn, G Reeves, F Qamaruz-Zaman, W-P Hong, J Joseph, WJ Hahn, JG Conran, and MW Chase. 2000. Phylogenetic studies of Asparagales based on four plastid DNA regions. In: KL Wilson and DA Morrison, eds. Monocots: systemat-ics and evolution, pp. 360–371. CSIRO, Collingwood.

    Google Scholar 

  • Goldblatt P. 1995. The status of R. Dahlgten's orders Liliales and Melanthiales. In: PJ Rudall, PJ Cribb, DF Cutler, and CJ Humphries, eds. Monocotyledons: systematics and evolution, vol. 1, pp. 181–200. Royal Botanic Gardens, Kew.

    Google Scholar 

  • Huber H. 1969. Die Samenmerkmale und Ver-wandtschaftsverhaltnisse der Liliifloren. Mitt. Bot. Staatssamml. München 8: 219–538.

    Google Scholar 

  • Kauff F, PJ Rudall, and JG Conran. 2000. Systematic root anatomy of Asparagales and other monocotyledons. Plant Syst. Evol. 223: 139–154.

    Article  Google Scholar 

  • Komar GA. 1978. Arils and aril-like formations in some Liliales. Bot. Zhurn. 63: 937–955 (in Russian).

    Google Scholar 

  • Kosenko VN. 2001. Palynological data on the systematics of the superorder Lilianae. Bot. Zhurn. 86(8): 1–17 (in Russian with English summary).

    Google Scholar 

  • Nair PKK and M Sharma. 1965. Pollen morphology of Liliaceae. J. Palyn. (Lucknow) 1: 39–61.

    Google Scholar 

  • Oganezova GH. 2000. Systematic position of the Trilliaceae, Smilacaceae, Herreriaceae, Tecophilaeaceae, Dioscoreaceae families and the volume and phylogeny of the Asparagales (based on the seed structure). Bot. Zhurn. 85(9): 9–25 (in Russian with English summary).

    Google Scholar 

  • Radulescu D. 1973. Liliiflorae: Discussions et consideradons phylogenetiques a 1'aide de quelques recherches mor-phologiques. Acta Bot. Horti Bucurest. 1972–1973: 249–283.

    Google Scholar 

  • Rudall PJ, KL Stobart, W-P Hong, JG Conran, CA Furness, G Kite, and MW Chase. 2000. Consider the Lilies: Systematics of Liliales. In: KL Wilson and D Morison, eds. Monocots: systematics and evolution, pp. 347–359. CSIRO, Collingwood.

    Google Scholar 

  • Rudall PG and RM Bateman. 2002. Roles of synorganisation, zygomorphy and heterotopy in floral evolution: the gynostemium and labellum of orchids and other lilioid monocots. Biol. Rev. 77: 403–441.

    Article  PubMed  Google Scholar 

  • Satô D. 1942. Karyotype alteration and phylogeny in Liliaceae and allied families. Jpn. J. Bot. 12: 57–161.

    Google Scholar 

  • Sen S. 1975. Cytotaxonomy of Liliales. Feddes Repert. 86: 255–305.

    Google Scholar 

  • Shamrov II. 1999. The ovule and seed development in some representatives of the orders Liliales and Amaryllidales. Bot. Zhurn. 84(2): 13–33 (in Russian).

    Google Scholar 

  • Slob A, B Jekel, and E Schlatmann. 1975. On the occurrence of tuliposides in the Liliiflorae. Phytochemistry 14: 1997–2005.

    Article  CAS  Google Scholar 

  • Vijayavalli B and PM Mathew. 1990. Cytotaxonomy of the Liliaceae and allied families. Continental Publishers, Kerala, India.

    Google Scholar 

  • Vinersten A and K Bremer. 2001. Age and biogeography of major clades in Liliales. Amer. J. Bot. 88: 1695–1703.

    Article  Google Scholar 

  • Watson S. 1879. Contributions to American botany: I. Revision of the North American Liliaceae. Proc. Am. Acad. Arts Sci. 14: 213–288.

    Google Scholar 

  • Williams CA, JB Harborne, and B Mathew. 1988. A chemical appraisal via leaf flavonoids of Dahlgren's Liliiflorae. Phytochemistry 27: 2609–2629.

    Article  CAS  Google Scholar 

  • Wunderlich R. 1936. Vergleichende Untersuchungen von Pollenkornern einiger Liliaceen und Amarylidaceen. Oesterr. Bot. Z. 85: 30–55.

    Article  Google Scholar 

  • Zomlefer WB. 1999. Advances in angiosperm systematics: examples from the Liliales and Asparagales. J. Torrey Bot. Soc. 126: 58–62.

    Article  Google Scholar 

  • Alison B, P Whiting, SD Sarker, L Dinan, E Underwood, V Sik, and HH Rees. 1997. 20-Hydroxyecdysone 2-B-D-glucopy-ranoside from the seeds of Xerophyllum tenax. Biochem. Syst. Ecol. 25: 255–261.

    Article  CAS  Google Scholar 

  • Ambrose JD. 1975. Comparative anatomy and morphology of the Melanthioideae (Liliaceae). Ph.D. dissertation, Cornell University. Ithaca, NY.

    Google Scholar 

  • Ambrose JD. 1980. A re-evaluation of the Melanthioideae (Liliaceae) using numerical analyses. In: CD Brickell, DF Cutler and M Gregory, eds. Petaloid monocotyledons, pp. 65–81, pl. 1–2. Academic, London.

    Google Scholar 

  • Badawi A. 1986. The main taxonomic view points on the intra-and the interrelationships of Melanthioideae (Liliaceae). Phytologia 61: 346–350.

    Google Scholar 

  • Baillon H. 1893. L'organisation et les affinites des Campynemees. Bull. Mens. Soc. Linn. Paris 2: 1105–1109.

    Google Scholar 

  • Behnke H-D. 2000. Forms and sizes of sieve-element plastids and evolution of the monocotyledons. In: Wilson KL and DA Morrison, eds. Monocots: systematics and evolution, pp. 163–188. CSIRO, Collingwood.

    Google Scholar 

  • Behnke H-D. 2002 (2003). Sieve-element plastids and evolution of monocotyledons with emphasis on Melanthiaceae sensu lato and Aristolochiaceae-Asaroideae, a putative dicotyledon sister group. Bot. Rev. 68: 524–544.

    Article  Google Scholar 

  • Buxbaum F. 1925. Vergleichende Anatomic der Melan-thioideae. Repert. Spec. Nov. Reg. Veget. 29: 1–80.

    Google Scholar 

  • Buxbaum F. 1927. Nachtrage zur vergleichenden Anatomic der Melanthioideae, part 1. Beih. Bot. Centralbl. 44: 255–263.

    Google Scholar 

  • El-Hamidi A. 1952. Vergleichend-morphologische Unter-suchungen am Gynoeceum der Unterfamilien Melan-thioideae and Asphodelioideae der Liliaceae. Arbeit. Inst. allgem. Bot., Univ. Zürich, ser. A, 4: 1–50.

    Google Scholar 

  • Frame DM. 2001. Chromosome studies in Schoenocaulon (Liliaceae: Melanthieae) a relict genus. An. Inst. Biol. Univ. Nac. Auton. Mex., Bot. 72: 123–129.

    Google Scholar 

  • Frame DM, A Espejo, and AR López-Ferrari. 1999. A conspectus of Mexican Melanthiaceae including a description of new taxa of Schoenocaulon and Zigadenus. Acta Bot. Mexicana 48: 27–50.

    Google Scholar 

  • Fuse S and MN Tamura 2000. A phylogenetic analysis of the plastid matK gene with emphasis on Melanthiaceae sensu lato. Plant Biol. 2: 415–427.

    Article  CAS  Google Scholar 

  • Gates RR. 1918. A systematic study of the North American Melanthiaceae from a genetic standpoint. Bot. J. Linn. Soc. 44: 131–172.

    Article  Google Scholar 

  • Goldblatt P. 1995. The statis of R. Dahlgren's orders Liliales and Melanthiales. In: PJ Rudall, PJ Cribb, DF Cutler, and CJ Humphries, eds. Monocotyledons: systematics and evolution, pp. 181–200. Royal Botanic Gardens, Kew.

    Google Scholar 

  • Gray A. 1837. Melanthacearum Americae Septentrionalis Revisio. Ann. Lyceum Nat. Hist. New York 4: 104–140.

    Google Scholar 

  • Hara H. 1968. A revision of the genus Chionographis (Liliaceae). J. Jpn. Bot. 43: 257–267.

    Google Scholar 

  • Kosenko VN. 1988. Pollen morphology in Chiono-graphideae, Uvularieae, Tricyrtideae, Scoliopeae, Anguillarieae, Iphigenieae, Glorioseae, Colchiceae (Melanthiaceae). Bot. Zhurn. 73: 172–185 (in Russian with English summary).

    Google Scholar 

  • Kupchan SM, JH Zimmerman, and A Afonso. 1961. The alkaloids and taxonomy of Veratrum and related genera. Lloydia 24: 1–22.

    Google Scholar 

  • Oganezova GG. 1984. Morphological and anatomical specific features of seed and fruit in some representatives of the subfamily Melanthioideae (Liliaceae) in relation with their sys-tematics and phylogeny. Bot. Zhurn. 69: 772–781 (in Russian with English summary).

    Google Scholar 

  • Oikawa K. 1961. The embryo sac of Chionographis japonica Maxim. Sci. Rep. Tohoku Imp. Univ., 4th ser. (Biol.) 2: 155–158.

    Google Scholar 

  • Ono T. 1920. Embryologie der Liliaceae, mit besonderer Rücksicht auf die Endospermbildung. I. Melanthioideae und Aletroideae. Sci. Rep. Tohoku Univ. Biol. 4: 381–393.

    Google Scholar 

  • Ono T. 1926. Embryologische Studien an Heloniopsis brevis-capa. Sci. Rep. Tohoku Imp. Univ., 4th ser. (Biol) 2: 93.

    Google Scholar 

  • Ono T. 1928. Endosperm development in Liliaceae. Bot. Mag. (Tokyo) 42: 335–440. (In Japanese).

    Google Scholar 

  • Schulze W. 1978. Beiträge zur Taxonomie der Liliifloren. I V. Melanthiaceae. Wiss. Z. Friedrich-Schiller-Univ. Jena. Math.-Naturwiss. Reihe 27: 87–95.

    Google Scholar 

  • Stenar H. 1928. Zur Embryologie der Veratrum und Anthericum Gruppe. Bot. Not. 1928: 357–378.

    Google Scholar 

  • Sterling C. 1978. Comparative morphology of the carpel of the Liliaceae: Hewardieae, Petrosavieae, and Tricyrteae. Bot. J. Linn. Soc. 77: 95–106.

    Article  Google Scholar 

  • Sterling C. 1980. Comparative morphology of the carpel in the Liliaceae: Helonieae. Bot. J. Linn. Soc. 80: 341–356.

    Article  Google Scholar 

  • Sterling C. 1982. Comparative morphology of the carpel in the Liliaceae: Veratreae. Bot. J. Linn. Soc. 84: 57–77.

    Article  Google Scholar 

  • Takahashi M and S Kawano. 1989. Pollen morphology of the Melanthiaceae and its systematic implications. Ann. Missouri Bot. Gard. 76: 863–876.

    Article  Google Scholar 

  • Takhtajan AL. 1994. Six new families of flowering plants. Bot. Zhurn. 79(1): 96–97 (in Russian).

    Google Scholar 

  • Takhtajan AL. 1994 (1995). New families of the monocotyledons. Bot. Zhurn. 79(12): 65–66 (in Russian).

    Google Scholar 

  • Takhtajan AL. 1996. Validization of some formerly established families of flowering plants. Bot. Zhurn. 81(2): 85–86 (in Russian).

    Google Scholar 

  • Tamura MN. 1998a. Melanthiaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 369–380. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Tanaka NY. 1997, 1998. Phylogenetic and taxonomic studies on Helonias, Ypsilandra and Heloniopsis. I. Comparison of character states. II. Evolution and geographical distribution. III. Taxonomic revision. J. Jpn. Bot. 72: 286–292, 329–336; 73: 102–115.

    Google Scholar 

  • Tanaka NY. 1997. Taxonomic significance of some floral characters in Helonias and Ypsilandra. J. Jpn. Bot. 72: 110–116.

    Google Scholar 

  • Tanaka NY and N Tanaka. 1977, 1979, 1980. Chromosome studies in Chionographis (Liliaceae). I. On the holokinetic nature of chromosomes in Chionographis japonica Maxim. II. Morphological characteristics of the somatic chromosomes of four Japanese members. III. The mode of meiosis. Cytologia 42: 753–763; 44: 935–949; 45: 809–817.

    Google Scholar 

  • Utech RH. 1978a. Comparison of the vascular anatomy of Xerophyllum asphodehides (L.) Nutt. and X. tenax (Pursh) Nutt. (Liliaceae-Melanthioideae). Ann. Carnegie Mus. 47: 147–167.

    Google Scholar 

  • Utech FH. 1978b. Vascular floral anatomy of Helonias bullata L. (Liliaceae-Helonieae) with a comparison to the Asian Heloniopsis orientalis. Ann. Carnegie Mus. 47: 169–191.

    Google Scholar 

  • Utech FH and S Kawano. 1981. Vascular floral anatomy of the east Asian Heloniopsis orientalis (Thunb.) C. Tanaka (Liliaceae-Helonieae). Bot. Mag. Tokyo 94: 295–311.

    Article  Google Scholar 

  • Zomlefer WB. 1997. The genera of Melanthiaceae in the southeastern United States. Harvard Pap. Bot. 2: 133–177.

    Google Scholar 

  • Zomlefer WB and WS Judd. 2002. Resurrection of segregates of the polyphyletic genus Zigadenus s.l. (Liliales: Melanthiaceae) and resulting new combinations. Novon 12: 299–308.

    Article  Google Scholar 

  • Zomlefer WB, NH Williams, WM Whitten, and WS Judd. 2001. Generic circumscription and relationships in the tribe Melanthieae (Liliales, Melanthiaceae), with emphasis on Zigadenus: evidence from ITS and trnL-F sequence data. Am. J. Bot. 88: 1657–1669.

    Article  CAS  Google Scholar 

  • Zomlefer WB, WM Whitten, NH Williams, and WS Judd. 2003. An overview of Veratrum s.l. (Liliales, Melanthiaceae) and an infrageneric phylogeny based on ITS sequence data. Syst. Bot. 28: 250–269.

    Google Scholar 

  • Zomlefer WB, WM Whitten, NH Williams, and WS Judd. 2006. Infrageneric phylogeny of Schoenocaulon (Liliales: Melanthiaceae) with clarification of cryptic species based on ITS sequence data and geographical distribution. Am. J. Bot. 93: 1178–1192.

    Article  CAS  Google Scholar 

  • Berg RY. 1958. Seed dispersal, morphology, and phylogeny of Trillium. Skr. Nor. Videnstc-Akad. Oslo, n.s., 1: 1–36.

    Google Scholar 

  • Berg RY. 1962. Contribution to the comparative embryology of the Liliaceae: Scoliopus, Trillium, Paris, and Medeola. Skr. Nor. Videnslc-Akad. Oslo, n.s., 4: 1–64.

    Google Scholar 

  • Farmer SB and EE Schilling. 2002. Phylogenetic analyses of Trilliaceae based on morphological and molecular data. Syst. Bot. 27: 674–692.

    Google Scholar 

  • Fukuda I. 2001a. The origin and evolution in Trillium. 1. The origin of the Himalayan Trillium govanianum. Cytologia 66: 106–111.

    Google Scholar 

  • Fukuda I. 2001b. The origin and evolution in Trillium. 2. Chromosome variation of Trillium undulatum in North America. Cytologia 66: 319–327.

    Google Scholar 

  • Gates RR. 1917. A systematic study of the North American genus Trillium, its variability, and its relation to Paris and Medeola. Annals Missouri Bot. Gard. 4: 43–93.

    Article  Google Scholar 

  • Geitler L. 1938. Weitere cytogenetische Untersuchungen an natürlichen Populationen von Paris quadrifolia. Zeitschr. Indukt. Abst. Verergsl. 75: 161–190.

    Article  Google Scholar 

  • Heatley M. 1916. A study of the life history of Trillium cernuum L. Bot. Gaz. 1: 425–429.

    Article  Google Scholar 

  • Howe TD. 1940. Development of the embryo sac in Trillium grandiflorum. Am. J. Bot. Suppl. 27: 11.

    Google Scholar 

  • Jeffrey EC. 1939. The production of unfertilized seeds in Trillium. Science 90: 81–82.

    Article  PubMed  CAS  Google Scholar 

  • Kato H, S Kawano, R Terauchi, M Ohara, and FH Utech. 1995. Evolutionary biology of Trillium and related genera (Trilliaceae). I. Restriction site mapping and variation of chloroplast DNA and its systematic implications. Plant Spec. Biol. 10: 17–29.

    Article  Google Scholar 

  • Kato H, R Terauchi, FH Utech, and S Kawano. 1995. Molecular systematics of the Trilliaceae sensu lato as inferred from rbcL sequence data. Mol. Phylogenet. Evol. 4: 184–193.

    Article  PubMed  CAS  Google Scholar 

  • Kawano S and H Kato. 1995. Evolutionary biology of Trillium and related genera (Trilliaceae). II. Cladistic analyses on gross morphological characters, and phylogeny and evolution of the genus Trillium. Plant Spec. Biol. 10: 169–183.

    Article  Google Scholar 

  • Kazempour Osaloo S, FH Utech, M Ohara, and S Kawano. 1999. Molecular systematics of Trilliaceae I. Phylogenetic analysis of Trillium using matK gene sequences. J. Plant Res. 112: 35–49.

    Article  Google Scholar 

  • Kazempour Osaloo S and S Kawano. 1999. Molecular systemat-ics of Trilliaceae II. Phylogenetic analyses of Trillium and its allies using sequences of rbcL and matK genes of cpDNA and internal transcribed spacers of 18s–26s nrDNA. Plant Spec. Biol. 14: 75–94.

    Article  Google Scholar 

  • Kotseruba V V. 2001. Intraspecific polymorphism of karyotype in Daiswa hainanensis subsp. vietnamensis Takht. Cytologia 43(11): 1075–1079.

    CAS  Google Scholar 

  • Li H. 1984. The phylogeny of the genus Paris. Acta Bot. Yunn. 6: 351–362.

    Google Scholar 

  • Li H. 1986. A study on taxonomy of the genus Paris L. Bull. Bot. Res. Kunming 6: 109–114 (in Chinese).

    CAS  Google Scholar 

  • Li H. 1998. The genus Paris (Trilliaceae). Science Press, Beijing.

    Google Scholar 

  • Li H, Z Gu and H Na. 1988. Cytogeographic study of the genus Paris. Acta Phytotax. Sinica 26: 10–21.

    Google Scholar 

  • Naumova TN. 1990. Trilliaceae. In: TB Batygina and MS Yakovlev, eds. Comparative embryology of flowering plants: Monocotyledons, pp. 151–159. Nauka, Leningrad (in Russian).

    Google Scholar 

  • Ohara M. 1989. Life history evolution in the genus Trillium. Plant Spec. Biol. 4: 1–28.

    Article  Google Scholar 

  • Punina EO, Yu A Myakoshina, AM Efimov, and AV Rodionov. 2000. Chromosome maps of Trilliaceae plants: heterochro-matin nucleotide composition and mapping of 18S–26S rRNA genes in Paris quadrifolia L. Russ. J. Genet. 36: 546–549.

    CAS  Google Scholar 

  • Smith MC and R Ingram. 1986. Heterochromatin banding in the genus Paris. Genetica 71: 141–145.

    Article  Google Scholar 

  • Spangler RC. 1925. Female gametophyte of Trillium sessile. Bot. Gaz. 79: 217–221.

    Article  Google Scholar 

  • Swamy BGL. 1948–49. On the post-fertilization development of Trillium undulatum. La Cellule 52: 5–14.

    CAS  Google Scholar 

  • Takahashi M. 1982. Pollen morphology of North American species of Trillium. Am. J. Bot. 69: 1185–1195.

    Article  Google Scholar 

  • Takahashi M. 1984. Pollen morphology in Paris and its related genera. Bot. Mag. (Tokyo) 97: 233–245.

    Article  Google Scholar 

  • Takhtajan A. 1983. A revision of Daiswa (Trilliaceae). Brittonia 35: 255–270.

    Article  Google Scholar 

  • Tamura MN. 1998. Trilliaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 444–452. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Trifonova VI. 1985. Trilliaceae. In: A Takhtajan, ed. Comparative seed anatomy, vol. 1, pp. 130–132. Nauka, Leningrad (in Russian).

    Google Scholar 

  • Utech FH and S Kawamo. 1980. Vascular anatomy of the Japanese Paris tetraphylla A. Gray (Liliaceae-Parideae). J. Phytogeogr. Taxon. 28: 17–23.]

    Google Scholar 

  • Warmke HE. 1937. Cytology of the Pacific Coast Trillium. Am. J. Bot. 24: 376–383.

    Article  Google Scholar 

  • Wei ZX. 1995. Pollen morphology of Trillium. Acta Bot. Yunn. 17: 317–324.

    Google Scholar 

  • Zomlefer WB. 1996. The Trilliaceae in the southeastern United States. Harv. Pap. Bot. 9: 91–120.

    Google Scholar 

  • Baker JG. 1879. A synopsis of Colchicaceae and the aberrant tribes of Liliaceae. Bot. J. Linn. Soc. 17: 405–510.

    Article  Google Scholar 

  • Beal JM and M Ownbey. 1943. Cytological studies in relation to the classification of the genus Calochortus, part 3. Bot. Gaz. 104: 553–562.

    Article  Google Scholar 

  • Berg RY. 1959. Seed dispersal, morphology, and taxonomic position of Scoliopus, Liliaceae. Skr. Nor. Vidensk-Akad. Oslo 4: 1–56.

    Google Scholar 

  • Berg RY. 1960. Ovary, ovule, and endosperm of Calochortus amabilis. Nytt. Mag. Bot. 8: 189–206.

    Google Scholar 

  • Berg RY. 1962a. Morphology and taxonomic position of Medeola, Liliaceae. Skr. Nor. Vidensk.-Akad. Oslo, n.s., 3: 1–55.

    Google Scholar 

  • Berg RY. 1962b. Contribution to the comparative embryology of the Liliaceae: Scoliopus, Trillium, Paris, and Medeola, Skr. Nor, Vidensk-Akad. Oslo 4: 1–64.

    Google Scholar 

  • Björnstad IN. 1970. Comparative embryology of Asparagoideae-Polygonateae, Liliaceae. Nytt Mag. Bot. 17: 169–207.

    Google Scholar 

  • Buxbaum F. 1937. Die Entwicklungslinien der Lilioideae. Bot. Arch. 38: 213–293, 305–398.

    Google Scholar 

  • Buxbaum F. 1959. Beiträge zur Morphologic der Gattung Tricyrtis. Beitr. Biol. Pfl. 35: 55–75.

    Google Scholar 

  • Cave MS. 1941. Megasporogenesis and embryo sac development in Calochortus. Am. J. Bot. 28: 390–394.

    Article  Google Scholar 

  • Cheadle VI and H Kosakai. 1971. Vessels in Liliaceae. Phytomorphology 21: 320–333.

    Google Scholar 

  • Chupov VS. 1984a. The position of Liliaceae s. str. (subfamily Lilioideae of the family Liliaceae s. 1.) in the system: Serological study. Bot. Zhurn. 69: 762–771 (in Russian with English summary).

    Google Scholar 

  • Chupov VS. 1984b. The position of the family Liliaceae s. str. (subfamily Lilioideae of the family Liliaceae s. 1.) in the system: An analysis of characters. Bot. Zhurn. 69: 1451– 1461 (in Russian with English summary).

    Google Scholar 

  • Dahlgren R and A-M Lu. 1985. Campynemanthe (Campy-nemataceae): morphology, microsporo-genesis, early ovule ontogeny, and relationships. Nord. J. Bot. 5: 321–330.

    Google Scholar 

  • Eunus AM. 1951a. Contribution to the embryology of the Liliaceae: V. Life history of Amianthium muscaetoxicum Walt. Phytomorphology 1: 73–79.

    Google Scholar 

  • Eunus AM. 1951b. Development of the embryo sac and fertilization in Fritillaria pudica Spring. Pakistan J. Sci. Res. 3: 106–113.

    Google Scholar 

  • Fukuhara T and ZK Shinwari. 1994. Seed coat anatomy in Uvulariaceae (Liliales) of the Northern Hemisphere: Systematic implications. Acta Phytotax. Geobot. 45: 1–14.

    Google Scholar 

  • Goldblatt P. 1986. Systematics and relationships of the bigeneric Pacific family Campynemataceae (Liliales). Bull. Mus. Natl. Hist. Nat. Paris, Sér. 4, 8: 117–132.

    Google Scholar 

  • Goldblatt P, JE Henrich, and P Rudall. 1984. Occurrence of crystals in Iridaceae and allied families and their phylogenetic sig-nificance. Ann. Missouri Bot. Gard. 71: 1013–1020.

    Article  Google Scholar 

  • Haque A. 1951. The embryo sac of Erythronium americanum. Bot. Gaz. 112: 495–500.

    Article  Google Scholar 

  • He HP, FC Liu, L Hu, and HY Zhu. 1999. Alkaloids from the flow-ers of Colchicum autumnale. Acta Bot. Yunn. 21: 364–368.

    CAS  Google Scholar 

  • Hong W-P, J Greenham, SL Jury, and GA Williams. 1999. Leaf flavonoid patterns in the genus Tricyrtis (Tricyrtidaceae sensu stricto, Liliaceae sensu lato). Bot. J. Linn. Soc. 130: 261–266.

    Google Scholar 

  • Hruby Ch. 1938. Embryo sac development in Erythronium dens canis. Chronica Bot. 4: 20–21.

    Google Scholar 

  • Joshi AC. 1940. Development of the embryo sac of Gagea fas-cicularis Salisb. Bull. Torrey Bot. Club 67: 155–158.

    Article  Google Scholar 

  • Kosenko VN. 1988. Pollen morphology in Chiono-graphideae, Uvularieae, Tricyrtideae, Scoliopeae, An-guillarieae, Iphigenieae, Glorioseae, Colchiceae (Melanthiaceae). Bot. Zhurn. 73: 172–185 (in Russian with English summary).

    Google Scholar 

  • Kosenko VN. 1991. Palynomorphology of the family Liliaceae s. str. Bot. Zhurn. 76: 1696–1710 (in Russian with English summary).

    Google Scholar 

  • Kosenko VN. 1992. Pollen morphology and systematic problems of the Liliaceae family. Bot. Zhurn. 77(3): 1–15 (in Russian with English summary).

    Google Scholar 

  • Kubitzki K. 1998. Campynemataceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 173–175. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Lee NS and SH Yeau. 1990. A palynological study of Streptopus ovalis (Ohwi) Wang et Y.C. Tang and the relative species (tribe Poygonateae, Liliaceae). Korean J. Plant Taxon. 20: 81–94 (in Korean with English summary).

    Google Scholar 

  • Lowry PP, P Goldblatt, and H Tobe. 1987. Notes on the floral biology, cytology, and embryology of Campynemanthe (Liliales: Campynemataceae). Ann. Missouri Bot. Gard. 74: 573–576.

    Article  Google Scholar 

  • Maheshwari P. 1946. The Fritillaria type of embryo sac: A critical review. J. Indian Bot. Soc. (M.D.P. Lyengar Comm. Vol.): 101–119.

    Google Scholar 

  • Membrives N, J Martin, J Caujape Castells, and J Pedrola Monfort. 2002. Pollen morphology and biometry of the genus Androcymbium (Colchicaceae) in southern Africa: taxonomic and biogeographic considerations. Bothalia 32: 91–96.

    Google Scholar 

  • Membrives N, J Pedrola Monfort, and J Caujape Castells. 2003a. Leaf morphology and anatomy of genus Androcymbium (Colchicaceae) in southwest Africa. Collect. Bot. 26: 83–99.

    Article  Google Scholar 

  • Membrives N, J Pedrola Monfort, and J Caujape Castells. 2003b. Morphological seed studies of southwest African Androcymbium (Colchicaceae). Bot. Macaronesica 24: 87–106.

    Google Scholar 

  • Nawa N. 1928. Some cytological observations in Tricyrtis, Sagittaria and Lilium. Bot. Mag. (Tokyo) 42: 33–36.

    Google Scholar 

  • Ness BD. 1989. Seed morphology and taxonomic relationships in Calochortus (Liliaceae). Syst. Bot. 14: 495–505.

    Article  Google Scholar 

  • Nordenstam B. 1998. Colchicaceae. In: K Kubitzki, ed. The Families and genera of vascular plants vol. 3, pp. 175–185. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Oganezova GG. 1984. Morphologo-anatomical peculiarities of the fruit and seed in some representatives of the subfamily Wurmbaeoideae (Liliaceae) in connection with systematic and phylogeny. Bot. Zhurn. 69: 1317–1327 (in Russian with English summary).

    Google Scholar 

  • Oganezova GG. 2000. Anatomy and systematics of some Colchicum species from Armenia. Bot. Chronika 13: 217– 227 (in Russian).

    Google Scholar 

  • Oganezova GG. 2002. Anatomy of Caucasian species of the genus Merendera (Colchicaceae) in context of their systematics. Bot. Zhurn. 87(2): 19–33 (in Russian with English summary).

    Google Scholar 

  • Ogura H. 1964. On the embryo sac of two species of Tricyrtis. Sci. Rep. Tohoku Univ. Ser. IV (Biol.) 30: 219–222

    Google Scholar 

  • Oikawa K. 1937. A note on the development of the embryo sac in Cardiocrinum cordatum. Sci. Rep. Tohoku Imp. Univ., 4th ser., 11: 303–306.

    Google Scholar 

  • Oikawa K. 1940. The embryo sac of Erythronium japonicum. Bot. Mag. (Tokyo) 54: 366–369 (in Japanese).

    Google Scholar 

  • Ownbey M. 1940. A monograph of the genus Calochortus. Ann. Missouri Bot. Gard. 27: 371–560.

    Article  Google Scholar 

  • Ownbey M. 1969. Calochortus. Univ. Wash. Publ. 17(1): 765–779.

    Google Scholar 

  • Patterson TB and TJ Givnish. 2002. Phylogeny, concerted convergence, and phylogenetic niche conservatism in the core Liliales: Insights from rbcL and ndhF sequence data. Evolution 56: 233–252.

    PubMed  CAS  Google Scholar 

  • Petrova TF. 1977. Cytoembryology of the Liliaceae subfamily Lilioideae. Nauka, Moscow (in Russian).

    Google Scholar 

  • Romanov ID. 1936. Die Embryosackentwicklung in der Gattung Gagea Salisb. Planta 25: 438–459.

    Article  Google Scholar 

  • Romanov ID. 1939. Two new forms of embryo sac in the genus Tulipa. Doklady Acad. Sci. URSS 22: 139–141.

    Google Scholar 

  • Rudall PJ, KL Stobart, W-P Hong, JG Conran, CA Furness, GC Kite, and MW Chase. 2000. Consider the lilies: system-atics of Liliales. In: KL Wilson and DA Morrison, eds. Monocots: systematic and evolution, pp. 347–359. CSIRO, Collingwood.

    Google Scholar 

  • Sargant E. 1896. The formation of the sexual nuclei in Lilium martagon: I. Oogenesis. Ann. Bot. 10: 445–477.

    Google Scholar 

  • Schnarf K. 1949. Der Umfang der Lilioideae im nature-lichen System. Oesterr. Bot. Z. 95: 257–269.

    Article  Google Scholar 

  • Schulze W. 1975. Beiträge zur Taxonomie der Liliifloren: II. Colchicaceae. Wiss. Z. Friedrich-Schiller-Univ. Jena, Math-Naturwiss. Reihe, 24: 417–428.

    Google Scholar 

  • Shinwari ZK, R Terauchi, FH Utech, and S Kawano. 1994. Recognition of the New World Disporum section Prosartes as Prosartes (Liliaceae) based on the sequence data of the rbcL gene. Taxon 43: 353–366.

    Article  Google Scholar 

  • Shurukhina EA. 1994. Anatomical structure and ultra-structure of the seeds of Campynemataceae. Bot. Zhurn. 79(5): 58–62 (in Russian).

    Google Scholar 

  • Sterling C. 1972. Comparative morphology of the carpel in the Liliaceae: Neodraegeae. Bot. J. Linn. Soc. 65: 163–171.

    Article  Google Scholar 

  • Sterling C. 1973a. Comparative morphology of the carpel in the Liliaceae: Wurmbaeae. Bot. J. Linn. Soc. 66: 75–82.

    Article  Google Scholar 

  • Sterling C. 1973b. Comparative morphology of the carpel in the Liliaceae: Colchiceae (Colchicum). Bot. J. Linn. Soc. 66: 213–221.

    Article  Google Scholar 

  • Sterling C. 1973c. Comparative morphology of the carpel in the Liliaceae: Colchiceae (Androcymbium). Bot. J. Linn. Soc. 67: 149–156.

    Article  Google Scholar 

  • Sterling C. 1974a. Comparative morphology of the carpel in the Liliaceae: Baeometra, Burchardia, and Walleria. Bot. J. Linn. Soc. 68: 283–290.

    Article  Google Scholar 

  • Sterling C. 1974b. Comparative morphology of the carpel in the Liliaceae: Iphigenieae. Bot. J. Linn. Soc. 68: 283–290.

    Article  Google Scholar 

  • Sterling C. 1975. Comparative morphology of the carpel Liliaceae: Glorioseae. Bot. J. Linn. Soc. 70: 341–349.

    Article  Google Scholar 

  • Sterling C. 1977. Comparative morphology of the carpel in the Liliaceae: Uvularieae. Bot. J. Linn. Soc. 74: 345–354.

    Article  Google Scholar 

  • Sterling C. 1978. Comparative morphology of the carpels in the Liliaceae: Hewardieae, Petrosavieae, and Tricyrteae. Bot. J. Linn. Soc. 77: 95–106.

    Article  Google Scholar 

  • Stewart RN and R Bamford. 1942. The chromosomes and nucle-oli of Medeola virginiana. Am. J. Bot. 29: 301–303.

    Article  Google Scholar 

  • Takahashi H. 1980. A taxonomic study on the genus Tricyrtis. Sci. Rep. Fac. Educ., Gifu Univ. (Nat. Sci.) 6: 583–635.

    Google Scholar 

  • Takahashi H. 1984. The floral biology of Tricyrtis latifolia Maxim. (Liliaceae). Bot. Mag. (Tokyo) 97: 207–217.

    Article  Google Scholar 

  • Takahashi H. 1987. A comparative floral and pollination biology of Tricyrtis flava Maxim., T. nana Yatabe and T. ohsumiensis Masamune (Liliaceae). Bot. Mag (Tokyo) 100: 185–293.

    Article  Google Scholar 

  • Takahashi Hr. 1994. Floral biology of Tricyrtis macropoda Miq. (Liliaceae). Acta Phytotaxon. Geobot. 45: 33–40.

    Google Scholar 

  • Tamura MN. 1998a. Calochortaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 164–172. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Tamura MN. 1998b. Liliaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 343–353. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Tamura MN and EH Utech. 1992. Biosystematic studies in Disporum (Liliaceae-Polygonateae). IV. Karyotype analysis of some Asiatic and North American taxa with special reference to their systematic status. Plant Spec. Biol. 7: 103–120.

    Article  Google Scholar 

  • Utech FH. 1978a. Floral vascular anatomy of Medeola virgini-ana L. (Liliaceae-Parideae = Trilliaceae) and tribal note. Ann. Carnegie Mus. 47: 13–28.

    Google Scholar 

  • Utech FH. 1978b. Somatic karyotype analysis of Uvularia flori-dana Chapman (Liliaceae). Cytologia 43: 671–678.

    Google Scholar 

  • Utech FH. 1992. Biology of Scoliopus (Liliaceae): I. Phytogeography and systematics. Ann. Missouri Bot. Gard. 79: 126–142.

    Article  Google Scholar 

  • Vinnersten A and J Manning. 2006. A new classification of Colchicaceae. Taxon 56: 171–178.

    Google Scholar 

  • Vinnersten A and G Reeves. 2003. Phylogenetic relationships within Colchicaceae. Amer. J. Bot. 90: 1455–1462.

    Article  CAS  Google Scholar 

  • Zou X, DW Fountain, and ER Morgan. 2001. Anatomical and morphological studies of seed development in Sandersonia aurantiaca (Hook.). South Afr. J. Bot. 67: 183–192.

    Google Scholar 

  • Chakrapani P and B Raj. 1971. Pollen morphology studies in the Burmanniaceae. Grana Palynol. 11: 161–179.

    Google Scholar 

  • Colloza A. 1910. Contributo allo studio anatomico delle Burmanniaceae. Boll. Soc. Ital. 1910: 106–115.

    Google Scholar 

  • Caddick LR, PJ Rudall, P Wilkin, TAJ Hedderson, and MW Chase. 2002. Phylogenetics of Dioscoreales based on combined analyses of morphological and molecular data. Bot. J. Linn. Soc. 138: 123–144.

    Article  Google Scholar 

  • Cribb PJ. 1985. The saprophytic genus Corsia in the Solomon Islands. Kew Mag. 2: 320–323.

    Google Scholar 

  • Cribb PJ, P Wilkin, and M Clements. 1995. Corsiaceae: a new family for the Falkland Island. Kew Bull. 50: 171–172.

    Article  Google Scholar 

  • Ibisch P, C Neinhuis, and NP Rojas. 1996. On the biology, bio-geography, and taxonomy of Arachnitis Phil. nom. cons. (Corsiaceae) in respect to a new record from Bolivia. Willdenowia 26: 321–332.

    Google Scholar 

  • Jonker FP. 1938. A monograph of the Burmanniaceae. Meded. Bot. Mus. Herb. Rijks Univ. Utrecht 51: 1–279.

    Google Scholar 

  • Kores P, DA White, and LB Thien. 1978. Chromosomes of Corsia (Corsiaceae). Am. J. Bot. 65: 584–585.

    Article  Google Scholar 

  • Larsen K. 1987. Thismiaceae. In: T Smitinand and K Larsen, eds. Flora of Thailand, vol. 5, part 1, pp. 124–126. Chutima Press, Bangkok.

    Google Scholar 

  • Maas-van de Kamer H. 1998. Burmanniaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 154–164. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Maas PJM, H Maas-van de Kamer, J van Bentham, HCM Snelders, and T Rübsamen 1986. Burmanniaceae. Flora Neotrop. Monogr. 42: 1–189.

    Google Scholar 

  • Merckx V, P Schols, H Maas-van de Kamer, P Maas, S Huysmans, and E Smets. 2006. Phylogeny and evolution of Burmanniaceae (Dioscoreales) based on nuclear and mito-chondrial data. Am. J. Bot. 93: 1684–1698.

    Article  Google Scholar 

  • Minoletti ML. 1986. Arachnitis uniflora Phil. una curiosa mono-cotiledonea de la flora Chilena. Bol. Soc. Biol., Concepcion, Chile 57: 7–20.

    Google Scholar 

  • Neinhuis C and PL Ibisch. 1998. Corsiaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 198– 201. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Neyland R. 2002. A phylogeny inferred from large-subunit (26S) ribosomal DNA sequences suggests that Burmanniales are polyphyletic. Aust. Syst. Bot. 15: 19–28.

    Article  Google Scholar 

  • Neyland R and M Hennigan. 2003. A phylogeny inferred from large-subunit (26S) ribosome DNA sequences suggests that the Corsiaceae are polyphyletic. N. Z. J. Bot. 41: 1–11.

    Google Scholar 

  • Pai RM. 1966. Studies in the floral morphology and anatomy of the Burmanniaceae: I. Vascular anatomy of the flower of Burmannia pusilla (Wall. ex Miers) Thw. Proc. Indian Acad. Sci. 63B: 301–308.

    Google Scholar 

  • Rao VS. 1969. Certain salient features in the floral anatomy of Burmannia, Gymnosiphon, and Thismia. J. Indian Bot. Soc. 48(1–2): 22–29.

    Google Scholar 

  • Rasmussen FN. 1995. Relationships of Burmanniales and Orchidales. In: P Rudall, PJ Cribb, DF Cutler, and CJ Humphries, eds. Monocotyledons: systematics and evolution, pp. 227–241. Royal Botanic Gardens, Kew.

    Google Scholar 

  • Rübsamen T. 1983. Nectaries of the Burmanniaceae (Burmannieae). Acta Bot. Neerl. 32: 351.

    Google Scholar 

  • Rübsamen T. 1986. Morphologische, embryologische, und sys-tematische Untersuchungen an Burmanniaceae und Corsia-ceae (Mit Ausblick auf die Orchidaceae-Apostasioideae). Diss. Bot. 92: 1–310.

    Google Scholar 

  • Rudall P and S Morley. 1992. Embryo sac and early postfertili-sation development in Thismia (Burmanniaceae). Kew Bull. 47: 625–632.

    Article  Google Scholar 

  • Rudall PJ and A Eastman. 2002. The questionable affinities of Corsia (Corsiaceae): evidence from floral anatomy and pollen morphology. Bot. J. Linn. Soc. 138: 315–324.

    Article  Google Scholar 

  • Terekhin ES. 1985. Burmanniales. In: A Takhtajan, ed. Comparative seed anatomy, vol. 1, pp. 138–141. Nauka, Leningrad (in Russian).

    Google Scholar 

  • Wood CE, Jr. 1983. The genera of Burmanniaceae in the southeastern United States. J. Arnold Arbor. 64: 293–307.

    Google Scholar 

  • Zhang D-X. 2000. Addition to the Flora Reipublicae Popularis Sinicae: the family Corsiaceae. Acta Phytotax. Sinica 38: 578–581.

    Google Scholar 

  • Zhang DX. 2001. Phylogenetic reconstruction of Burmannia L. (Burmanniaceae): a preliminary study. Acta Phytotax. Sinica 39: 203–223.

    Google Scholar 

  • Zhang D-X, Saunders RMK, and CM Hu. 1999. Corsiopsis chinensis gen. et sp. nov. (Corsiaceae): first record of the family in Asia. Syst. Bot. 24: 311–314.

    Article  Google Scholar 

  • Aagesen L and AM Sanso. 1998. Phylogeny of the Alstroemeriaceae. In: Monocots II, p. 61 (abstract). Sydney.

    Google Scholar 

  • Aagesen L and AM Sanso. 2003. The phylogeny of the Alstromeriaceae, based on morphology, rps16 Intron, and rbcL sequence data. Syst. Bot. 28: 47–69.

    Google Scholar 

  • Aizen MA and A Basilio. 1995. Within and among flower sex-phase distribution in Alstroemeria aurea (Alstroemeriaceae). Canad. J. Bot. 73: 1984–1994.

    Google Scholar 

  • Aker S and W Healy. 1990. The phytogeography of the genus Alstroemeria. Herbertia 45: 76–87.

    Google Scholar 

  • Arroyo SC and BE Leuenberger. 1988. Leaf morphology and taxonomic history of Luzuriaga (Philesiaceae). Willdenowia 17: 159–172.

    Google Scholar 

  • Baker JG. 1888. Handbook of the Amaryllidaceae including the Alstroemerieae and Agaveae. George Bell, London.

    Google Scholar 

  • Bayer E. 1987. Die Gattung Alstroemeria in Chile. Mitt. Bot. Staatssamml. Münch. 24: 1–362.

    Google Scholar 

  • Bayer E. 1988. Beitrag zur Cytologie der Alstroemeriaceae. Mitt. Bot. Staatssamml. Münch. 27: 1–6.

    Google Scholar 

  • Bayer E. 1998. Alstroemeriaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 79–83. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Buxbaum F. 1951. Die Grundachse von Alstroemeria und Einheit ihres morphologischen Typus mit den echten Liliaceae. Phytomorphology 1: 170–184.

    Google Scholar 

  • Buxbaum F. 1954. Morphologic der Blüte und Frucht von Alstroemeria und der Anschluss der Alstroemerioideen bei den echten Liliaceen. Oesterr. Bot. Z. 101: 337–352.

    Article  Google Scholar 

  • Chupov VS. 1987. Taxonomic position of the genera Geitonoplesium and Simethis. Bot. Zhurn. 72: 904–908 (in Russian with English summary).

    Google Scholar 

  • Clifford HT and JG Conran. 1987. Drymophila. Flora of Australia 45: 156–158. Canberra.

    Google Scholar 

  • Conran JG. 1987. A phenetic study of the relationships of Drymophila R. Br. within the reticulate-veined Liliiflorae. Aust. J. Bot. 35: 283–300.

    Article  Google Scholar 

  • Conran JG. 1988. Embryology and possible relationships of Petermannia cirrhosa (Petermanniaceae). Nord. J. Bot. 8: 13–17.

    Article  Google Scholar 

  • Conran JG. 1989. Cladistic analyses of some net-veined Liliiflorae. Plant Syst. Evol. 168: 123–141.

    Article  Google Scholar 

  • Conran JG. 1998. Behniaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 146–138. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Conran JG. 1999. Anatomy and morphology of Behnia (Behniaceae) and its relationships within Lilianae: Asparagales. Bot. J. Linn. Soc. 131: 115–129.

    Article  Google Scholar 

  • Conran JG and HT Clifford. 1998a. Luzuriagaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 365–368. Springer, Berlin/Heidelberg/ New York.

    Google Scholar 

  • Conran JG and HT Clifford. 1998b. Petermanniaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 406–408. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Conran JG, PJ Rudall, and MW Chase. 1997. Two new monocotyledon families: Anemarrhenaceae and Behniaceae (Lilianae, Asparagales). Kew Bull. 52: 995–999.

    Article  Google Scholar 

  • Goldblatt P. 1995. The status of R. Dahlgren's orders Liliales and Melanthiales. In: PJ Rudall, PJ Cribb, D. Cutler, and CJ Humphries, eds. Monocotyledons: systematics and evolution, pp. 181–200. Royal Botanic Gardens, Kew.

    Google Scholar 

  • Hofreiter A and OB Lyshede. 2006. Fucntional leaf anatomy of Bomarea Mirb. (Alstroemeriaceae). Bot. J. Linn. Soc. 152: 73–90.

    Article  Google Scholar 

  • Hunziker AT. 1973. Notas sobre Alstroemeriaceae. Kurtziana 7: 133–135.

    Google Scholar 

  • Hunziker JH. 1991. Protandry in Alstroemeria psittacina (Alstroemeriaceae). Polish Bot. Studies 2: 195–198.

    Google Scholar 

  • Hunziker JH and CC Xifreda. 1990. Chromosome studies in Bomarea and Alstroemeria (Alstroemeriaceae). Darwiniana 30: 179–183.

    Google Scholar 

  • Kosenko VN. 1994. Pollen morphology of the family Alstroemeriaceae. Bot Zhurn. 79(8): 1–8 (in Russian with English summary).

    Google Scholar 

  • Lyshede OB. 2002. Comparative and functional leaf anatomy of selected Alstroemeriaceae of mainly Chilean origin. Bot. J. Linn. Soc. 140: 261–272.

    Article  Google Scholar 

  • Meerow AW. 2004. Alstroemeriaceae. In: N Smith, SA Mori, A Henderson, DW Stevenson, and SV Heald, eds. Flowering plants of the Neotropics, pp. 409–410. The New York Botanical Garden. Princeton University Press, Princeton.

    Google Scholar 

  • Nemirovich-Danchenko EN. 1985. Alstroemeriaceae. In: A Takhtajan, ed. Comparative seed anatomy, vol. 1, pp. 77– 78. Nauka, Leningrad (in Russian).

    Google Scholar 

  • Oganezova GG. 1990. Seed and fruit anatomy of some Amaryllidaceae in connection with their systematics and phylogeny. Bot. Zhurn. 75: 615–630 (in Russian with English summary).

    Google Scholar 

  • Reveal JL. 1997. Behniaceae (Magnoliophyta), a new family of Asteliales (Liliopsida). Phytologia 82: 273–274.

    Google Scholar 

  • Rodriguez R and C Marticorena. 1987. Las especies del genera Luzuriaga R. et P. Gayana Bot. 44: 3–15.

    Google Scholar 

  • Sanso AM. 1996. El género Alstroemeria (Alstroemeriaceae) en Argentina. Darwiniana 34: 349–382.

    Google Scholar 

  • Sanso AM. 2002. Chromosome studies in Andean taxa of Alstroemeria (Alstroemeriaceae). Bot. J. Linn. Soc. 138: 451–459.

    Article  Google Scholar 

  • Sanso AM and JH Hanziker. 1998. Karyological studies in Alstroemeria and Bomarea (Alstroemeriaceae). Hereditas 129: 67–74.

    Article  Google Scholar 

  • Sanso AM and CC Xifreda. 1999. The synonymy of Schickendantzia with Alstroemeria (Alstroemeriaceae). Syst. Geogr. Plants 68: 315–323.

    Article  Google Scholar 

  • Sanso AM and CC Xifreda. 2001 Generic delimitation between Alstroemeria and Bomarea (Alstroemeriaceae). Ann. Bot. 38: 1057–1069.

    Article  Google Scholar 

  • Schlittler J. 1949. Die systematische Stellung der Gattung Petermannia E V. Muell. und ihre phylogenetische Beziehung zu den Dioscoreaceae Lindl. Vierteljahrsschr. Naturf. Ges. Zürich 1: 1–28.

    Google Scholar 

  • Schlittler J. 1965 (1966). Sind die Luzuriagoideen wir-kliche Liliaceen oder haben die Ericales und Fern-stroemiales organo-phylogenetisch und stammesg-eschichtlich Beziehungen zur primitiven Liliefloren? Ber. Schweiz. Bot. Ges. 75: 96–109.

    Google Scholar 

  • Slob A, B Jekel, and E Schlatmann. 1975. On the occurrence of tuliposides in the Liliiflorae. Phytochemistry 14: 1997–2005.

    Article  CAS  Google Scholar 

  • Stenar AHS. 1952. Notes on the embryology and anatomy of Luzuriaga latifolia Poir. Acta Horti Berg. 16: 219–232.

    Google Scholar 

  • Tomlinson PB and ES Ayensu. 1969. Notes on the vegetative morphology and anatomy of the Petermanniaceae. Bot. J. Linn. Soc. 62: 17–26.

    Article  Google Scholar 

  • Vinnersten A and G Reeves. 2003. Phylogenetic relationships within Colchicaceae. Am. J. Bot. 90: 1455–1462.

    Article  CAS  Google Scholar 

  • Arber A. 1920. Tendrils of Smilax. Bot. Gaz. 60: 438–442.

    Article  Google Scholar 

  • Cameron KM and C-X Fu. 2006. A nuclear rDNA phylogeny of Smilax (Smilacaceae). In: JT Columbus, EA Friar, JM Porter, LM Prince, and MG Simpson, eds. Monocots: comparative biology and evolution (excluding Poales), pp. 598–605. Rancho Santa Ana Botanical Garden, Claremont.

    Google Scholar 

  • Cave MS. 1966. The female gametophytes of Lapageria rosea, and Philesia magellanica. Guyana Bot. 15: 25–31.

    Google Scholar 

  • Chen S-C, Y-X Qiu, A-L Wang, and C-X Fu. 2006a. A phyloge-netic analysis of the Smilacaceae based on morphological data. Acta phytotax. Sinica 14: 113–125.

    Article  Google Scholar 

  • Chen S-C, X-P Zhang, S-F Ni, C-X Fu, and KM Cameron. 2006b. The systematic value of pollen morphology in Smilacaceae. Plant Syst. Evol. 259: 19–37.

    Article  Google Scholar 

  • Conover M. 1983. The vegetative morphology of the reticulate veined Liliiflorae. Telopea 2: 401–412.

    Google Scholar 

  • Conover M. 1991. Epidermal patterns of the reticulate-veined Liliiflorae and their parallel-veined allies. Bot. J. Linn. Soc. 107: 295–312.

    Google Scholar 

  • Conran JG. 1989a. Cladistic analyses of some net-veined Liliiflorae. Plant Syst. Evol. 168: 123–141.

    Article  Google Scholar 

  • Conran JG. 1998b. Smilacaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 417–422. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Conran JG and HT Clifford. 1985. The taxonomic affinities of the genus Ripogonum. Nord. J. Bot. 5: 215–219.

    Google Scholar 

  • Conran JG and HT Clifford. 1998. Philesiaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 409–411. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Conran JG, PJ Rudall, and MW Chase. 1997. Two new monocotyledon families: Anemarrhenaceae and Behniaceae (Lilianae, Asparagales). Kew Bull. 52: 995–999.

    Article  Google Scholar 

  • Fu C. 1998. Studies on systematics and evolution of Smilax and Heterosmilax (Smilacaceae). In Monocots II, p. 67 (abstract). Sydney.

    Google Scholar 

  • Judd WS. 1998. The Smilacaceae in the southeastern United States. Harvard Pap. Bot. 3: 147–169.

    Google Scholar 

  • Komar GA. 1985. Smilacaceae. In: A Takhtajan, ed. Comparative seed anatomy, vol. 1, pp. 132–133. Nauka, Leningrad (in Russian).

    Google Scholar 

  • Koyama T. 1980. Materials toward a monograph of the genus Smilax. Quart. J. Taiwan Mus. 8: 1–62.

    Google Scholar 

  • Koyama T. 1984. A taxonomic revision of the genus Heterosmilax (Smilacaceae). Brittonia 36: 184–205.

    Article  Google Scholar 

  • Patterson TB and TJ Givnish. 2002. Phylogeny, concerted convergence, and phylogenetic niche conservatism in the core Liliales: Insights from rbcL and ndhF sequence data. Evolution 56: 233–252.

    PubMed  CAS  Google Scholar 

  • Schlittler J. 1951. Die Gattung Eusterphus R. Br. ex Sims und Geitonoplesium (R. Br.) A. Cunn.: Morphologisch-anatomische Studie mit Berücksichtigung der system-atischen, nomenklatorischen, und arealgeo-graphischen Verhältnisse. Ber. Schweiz. Bot. Ges. 151: 175–239.

    Google Scholar 

  • Schulze W. 1931. Beiträge zur Taxonomie der Liliifloren. VIII. Wiss. Z. Friedrich-Schiller-Univ. Jena 31: 285–289.

    Google Scholar 

  • Schulze W. 1982. Beiträge zur Taxonomie der Liliifloren. VII. Philesiaceae. Wiss. Z. Friedricg-Schiller-Univ. Jena 31: 277–283.

    Google Scholar 

  • Simpson PG and WR Philipson. 1969. Vascular anatomy in vegetative shots of Rhipogonum scandens Forst. (Smilacaceae). N. Z. J. Bot. 7: 3–29.

    Google Scholar 

  • Abe K. 1972. Contributions to the embryology of the family Orchidaceae: VII. A comparative study of the orchid embryo sac. Sci. Rep. Tohoku Imp. Univ., 4th ser. (Biol), 36: 179–201.

    Google Scholar 

  • Ackermann JD and NH Williams. 1980. Pollen morphology of the tribe Neottieae and its impact on the classification of the Orchidaceae. Grana 19: 7–18.

    Google Scholar 

  • Ames O. 1946. The evolution of the orchid flower. Am. Orchid. Soc. Bull. 14: 355–360.

    Google Scholar 

  • Ames O. 1948. Orchids in retrospect: a collection of essays on the Orchidaceae. Botanical Museum of Harvard University, Cambridge, MA.

    Google Scholar 

  • Arditti J. 1992. Fundamentals of orchid biology. Wiley, New York.

    Google Scholar 

  • Atwood JT, Jr. 1984. The relationships of the slipper orchids (subfamily Cypripedioideae, Orchidaceae). Selbyana 7: 129–247.

    Google Scholar 

  • Atwood JT, Jr. 1986. The size of the Orchidaceae and the systematic distribution of epiphytic orchids. Selbyana 9: 171–186.

    Google Scholar 

  • Averyanov LV. 1990. The systems of Orchides (Orchidaceae) of the flora of Vietnam. The subfamilies Apostasioideae, Cypripedioideae, Neottioideae, and Orchidoideae. Bot. Zhurn. 75(7): 1013–1028 (in Russian).

    Google Scholar 

  • Averyanov LV. 1991. Main trends of the morphological evolution of the Orchidaceae family. Bot. Zhurn. 76: 921–935 (in Russian with English summary).

    Google Scholar 

  • Averyanov LV, P Cribb, PK Loc, and NT Hiep. 2003. Slipper Orchids of Vietnam. Royal Botanic Gardens, Kew.

    Google Scholar 

  • Baker JG. 1878. Synopsis of Hypoxidaceae. Bot. J. Linn. Soc. 17: 93–126.

    Article  Google Scholar 

  • Barthlott W. 1976. Morphologic der Samen von Orchideen im Hinblick auf taxonomische und funktionelle Aspekte. In: K Senghas, ed. Proc. 8th World Orchid Conf., pp. 438–443. Frankfurt.

    Google Scholar 

  • Bayer C, O Appel, and PJ Rudall. 1998. Asteliaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 141–145. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Benzing DH and JT Atwood, Jr. 1984. Orchidaceae: ancestral habitats and current status in forest canopies. Syst. Bot. 9: 155–165.

    Article  Google Scholar 

  • Burns-Balogh P and P Bernhardt. 1985. Evolutionary trends in the androecium of the Orchidaceae. Plant Syst. Evol. 149: 119–134.

    Article  Google Scholar 

  • Burns-Balogh P and P Bernhardt. 1988. Floral evolution and phylogeny in the tribe Thelymitreae (Orchidaceae: Neottioideae). Plant Syst. Evol. 159: 19–47.

    Article  Google Scholar 

  • Burns-Balogh P and V Funk. 1986. A phylogenetic analysis of the Orchidaceae. Smithsonian Contr. Bot. 61: 1–79.

    Google Scholar 

  • Cameron KM. 2002. Intertribal relationships within Orchidaceae as inferred from analyses of five plastid genes. In Botany 2002: Botany in the Curriculum. Abstracts, p. 116. Madison, WI.

    Google Scholar 

  • Cameron KM. 2004. Utility of plastid psaB gene sequences for investigating intrafmilial relationships within Orchidaceae. Mole. Phylogenet. Evol. 31: 1157–1180.

    Article  CAS  Google Scholar 

  • Cameron KM and MW Chase. 1996. Systematic investigations of the vanilloid orchids: evidence from DNA sequences, anatomy, and morphology. Am. J. Bot. 83: 143–144.

    Google Scholar 

  • Cameron KM and MW Chase. 1998a. Systematic of Vanilloideae (Orchidaceae). In Monocots II, pp. 13–14 (abstract). Sydney.

    Google Scholar 

  • Cameron KM and MW Chase. 1998b. Seed morphology of vanilloid orchids (Vanilloideae: Orchidaceae). Lindleyana 13: 148–169.

    Google Scholar 

  • Cameron KM and MW Chase. 2000. Nuclear 18S rDNA sequences of Orchidaceae confirm the subfamilial status and circumscription of Vanilloideae. In: KL Wilson and DA Morrison, eds. Monocots: systematic and evolution, pp. 457–464. CSIRO, Collingwood.

    Google Scholar 

  • Cameron KM, D Jarrell, and MW Chase. 1994. Evidence from rbcL sequences and phylogenetic relationships of major lineages within Orchidaceae. Am. J. Bot. 81(6): 145 (abstract).

    Google Scholar 

  • Cameron KM, MW Chase, WM Whitten, PJ Kores, DC Jarrelll, VA Albert, T Yukawa, HG Hills, and DH Goldman. 1999. A phylogenetic analysis of the Orchidaceae: evidence from rbcL nucleotide sequences. Am. J. Bot. 86: 208–224.

    Article  Google Scholar 

  • Carlquist S and EL Schneider. 2006. Origins and nature of vessels in Monocotyledons: 8. Orchidaceae. Am. J. Bot. 93: 963–971.

    Article  Google Scholar 

  • Carlsward BS, WM Whitten, NH Williams, and B Bytebier. 2006. Molecular phylogenetics of Vandeae (Orchidaceae) and the evolution of leaflessness. Am. J. Bot. 93: 770–786.

    Article  CAS  Google Scholar 

  • Chase MW, JF Freudenstein, and KM Cameron. 2003. DNA data and Orchidaceae systematics: a new phylogenetic clas-sification. In: KW Dixon, SP Pell, RL Barrett, and PJ Cribb, eds. Orchid Conservation, pp. 69–89. Kota Kinabalu, Sabah.

    Google Scholar 

  • Clements MA, DL Jones, IK Scarma, ME Nightingale, MJ Garratt, KJ Fitzgerald, AM Mackenzie, and BPJ Molloy. 2002. Phylogenetics of Diuridae (Orchidaceae) based on the internal transcribed spacer (ITS) regions of nuclear ribo-somal DNA. Lindleyana 17: 135–171.

    Google Scholar 

  • Clifford HT and JG Conran 1998. Blandfordiaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 148–150. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Clifford HT and PS Lavarack. 1974. The role of vegetative and reproductive attributes in the classification of the Orchidaceae. Bot. J. Linn. Soc. 6: 97–110.

    Article  Google Scholar 

  • Cribb P and T Cox 1998. Phylogeny of the Cypripedioideae. In Monocots II, p. 17 (abstract). Sydney.

    Google Scholar 

  • Darwin C. 1862. On the various contrivances by which British and foreign orchids are fertilized. Murray, London.

    Google Scholar 

  • De Vos MP. 1948. The development of the ovule and seed in the Hypoxideae: 1. Ianthe Salisb. South Afr. J. Bot. 14: 159–169.

    Google Scholar 

  • De Vos MP. 1949. The development of the ovule and seed in the Hypoxideae: II. The genera Pauridia Harv. and Forbesia Ecldon. South Afr. J. Bot. 15: 13–22.

    Google Scholar 

  • Di Fulvio TE and MS Cave. 1964. Embryology of Blandfordia nobilis Smith (Liliaceae) with special reference to its taxo-nomic position. Phytomorphology 14: 487–499.

    Google Scholar 

  • Dodson CH. 1962. The importance of pollination in the evolution of the orchids of tropical America. Am. Orchid Soc. Bull. 31: 525–534, 641–649, 731–735.

    Google Scholar 

  • Dora G and JM Edwards. 1991. Taxonomic status of Lanaria lanata and isolation of a novel biflavone. J. Nat. Prod. 54: 796–801.

    Article  CAS  Google Scholar 

  • Douzery JP, AM Pridgeon, PJ Kores, H Kurzweil, P Linder, and MW Chase. 1999. Molecular phylogenetics of Diseae (Orchidaceae): a contribution from nuclear ribosomal ITS sequences. Am. J. Bot. 86: 887–899.

    Article  PubMed  CAS  Google Scholar 

  • Dressler RL. 1961. The structure of the orchid flower. Missouri Bot. Gard. Bull. 49: 60–69.

    Google Scholar 

  • Dressler RL. 1981. The orchids: natural history and classification. Harvard University Press, Cambridge, MA/London.

    Google Scholar 

  • Dressler RL. 1983. Classification of the Orchidaceae and their probable origin. Telopea 2: 413–424.

    Google Scholar 

  • Dressler RL. 1986. Recent advances in orchid phylogeny. Lindleyana 1: 5–20.

    Google Scholar 

  • Dressler RL. 1987. Cladistic analysis of the Orchidaceae: a commentary. Lindleyana 2: 66–71.

    Google Scholar 

  • Dressler RL. 1990a. The Neottieae in orchid classification. Lindleyana 5: 101–109.

    Google Scholar 

  • Dressler RL. 1990b. The Spiranthoideae: grade or subfamily? Lindleyana 5: 110–116

    Google Scholar 

  • Dressler RL. 1993. Phylogeny and classification of the orchid family. Dioscorides Press, Portland, OR.

    Google Scholar 

  • Dressler RL and MW Chase. 1995. Whence the orchids? In: PJ Rudall, PJ Cribb, DF Cutler, and CJ Humphries, eds. Monocotyledons: systematics and evolution, pp. 217–226. Royal Botanic Gardens, Kew.

    Google Scholar 

  • Dressler RL and CH Dodson. 1960. Classification and phylo-geny in the Orchidaceae. Ann. Missouri Bot. Gard. 47: 25–68.

    Article  Google Scholar 

  • Fay MF, Rudall PJ, Sullivan S, Stobart KL, de Bruijn AY, Reeves G, Qamaruz-Zaman F, Hong WP, Joseph J, Hahn WJ, Conran JG, and Chase MW. 2000. Phylogenetic studies of Asparagales based on four plastid DNA regions. In: KL Wilson, and DA Morrison, eds. Monocots: systematics and evolution, pp. 360–371. CSIRO, Collingwood.

    Google Scholar 

  • Freudenstein JV. 1991. A systematic study of endothecial thickenings in the Orchidaceae. Am. J. Bot. 78: 766–781.

    Article  Google Scholar 

  • Freudenstein JV and Chase MW. 2001. Analysis of mito-chondrial nad1b-c intron sequences in Orchidaceae: Utility and coding of length-change characters. Syst. Bot. 26: 643–657.

    Google Scholar 

  • Freudenstein JV and FN Rasmussen. 1997. Sectile pollinia and relationships in the Orchidaceae. Plant Syst. Evol. 205: 125–146.

    Article  Google Scholar 

  • Freudenstein JV and FN Rasmussen. 1999. What does morphology tell us about orchid relationships? — a cladistic analysis. Am. J. Bot. 86: 225–248.

    Article  Google Scholar 

  • Freudenstein JV, DM Senyo, and MW Chase. 2000. Mitochondrial DNA and relationships in the Orchidaceae. In: KL Wilson and DA Morrison, eds. Monocots: systematic and evolution, pp. 421–429. CSIRO, Collingwood.

    Google Scholar 

  • Freudenstein JV, EM Harris, and FN Rasmussen. 2002. The evolution of anther morphology in orchids: incumbent anthers, superposed pollinia, and the vandoid complex. Am. J. Bot. 89: 1747–1755.

    Article  Google Scholar 

  • Freudenstein JV, C van den Berg, DH Goldman, PJ Kores, M Molvray, and MW Chase. 2004. An expanded plastid DNA phylogeny of Orchidaceae and analysis of jackknife branch support strategy. Am. J. Bot. 91: 149–157.

    Article  CAS  Google Scholar 

  • Garay LA. 1960. On the origin of the Orchidaceae, part 1. Bot. Mus. Lean. 19: 57–96.

    Google Scholar 

  • Garay LA. 1972. On the origin of the Orchidaceae, part 2. J. Arnold Arbor. 53: 202–215.

    Google Scholar 

  • Geerinck D. 1969. Genera des Haemodoraceae et des Hypoxidaceae. Bull. Jard. Bot. Nat. Belg. 39: 47–82.

    Article  Google Scholar 

  • Goldblatt P. 1995. The status of R. Dahlgren's orders Liliales and Melanthiales. In: PJ Rudall, PJ Cribb, DF Cutler, and CJ Humphries, eds. Monocotyledons: sys-tematics and evolution, pp. 181–200. Royal Botanic Gardens, Kew.

    Google Scholar 

  • Govindappa DA. 1967. Contribution to the embryology of Hypoxis aurea Lour. J. Indian Bot. Soc. 46: 193–198.

    Google Scholar 

  • Govindappa DA and K Shamakumari. 1957. Development of embryo in Hypoxis aurea Lour. J. Indian Bot. Soc. 36(3): 324–327.

    Google Scholar 

  • Hillard OM and BL Burtt. 1978. Notes on some plants of Southern Africa, chiefly from Natal. Part 7 (Hypoxidaceae). Notes Roy. Bot. Gard. Edinb. 36: 43–76.

    Google Scholar 

  • Jain S, V Gupta, and MR Vijayaraghavan 1986. Structure and histochemistry of raphide idioblasts in Apostasia wallichii (R. Br.). Curr. Sci. 55: 932–934.

    Google Scholar 

  • Johansen B and S Frederiksen. 2002. Orchid flowers: development and evolution. In: Cronk QCB, RM Bateman, and JA Hawkins, eds. Developmental genetics and plant evolution, pp. 206–219. Taylor & Francis, London.

    Google Scholar 

  • Judd WS. 2000. The Hypoxidaceae in the Southeastern United States. Harvard Pap. Bot. 5: 79–98.

    Google Scholar 

  • Judd WS, WL Stern, and VI Cheadle. 1993. Phylogenetic position of Apostasia and Neuwiedia (Orchidaceae). Bot. J. Linn. Soc. 113: 87–94.

    Article  Google Scholar 

  • Kocyan A and PK Endress. 2001a. Floral structure and development and systematic aspects of some “lower” Asparagales. Plant Syst. Evol. 229: 187–216.

    Article  Google Scholar 

  • Kocyan A and PK Endress. 2001b. Floral structure and development of Apostasia and Neuwiedia (Apostasioideae) and their relationships to other Orchidaceae. Int. J. Plant Sci. 162: 847–867.

    Article  Google Scholar 

  • Kocyan A, Y-L Qiu, PK Endress, and E Conti. 2004. A phyloge-netic analysis of Apostasioideae (Orchidaceae) based on ITS, trnL-F and matK sequences. Plant Syst. Evol. 247: 203–213.

    Article  CAS  Google Scholar 

  • Kores PJ, KM Cameron, M Molvray, and MW Chase. 1997. The phylogenetic relationships of Orchidoideae and Spiranthoideae (Orchidaceae) as inferred from rbcL plastid sequences. Lindleyana 12: 1–11.

    Google Scholar 

  • Kores PJ, PH Weston, M Molvray, and MW Chase. 2000. Phylogenetic relationships within the Diurideae (Orchidaceae): inferences from plastid matK DNA sequences. In: KL Wilson and DA Morrison, eds. Monocots: systematic and evolution, pp. 449–456. CSIRO, Collingwood.

    Google Scholar 

  • Kores PJ, M Molvray, PH Weston, SD Hopper, AP Brown, KM Cameron, and MW Chase. 2001. A phylogenetic analysis of Diurideae (Orchidaceae) based on plastid DNA sequence data. Am. J. Bot. 88: 1903–1914.

    Article  CAS  Google Scholar 

  • Kosenko VN. 1994a. Morphology of pollen grains of the families Phormiaceae, Blandfordiaceae, and Doryanthaceae. Bot. Zhurn. 79: 1–12 (in Russian with English summary).

    Google Scholar 

  • Kosenko VN. 1994b. Pollen morphology of the families Phormiaceae, Blandfordiaceae, and Doryanthaceae. Bot. Zhurn. 79(7): 1–12 (in Russian with English summary).

    Google Scholar 

  • Kristiansen KA, FN Rasmussen, and HN Rasmussen. 2001. Seedlings of Neuwiedia (Orchidaceae subfamily Apostasioideae) have typical orchidaceous mycotrophic pro-tocorms. Am. J. Bot. 88: 956–959.

    Article  PubMed  Google Scholar 

  • Kumar M and KS Manilal. 1988. Floral anatomy of Apostasia odorata and the taxonomic status of apostasioids (Orchidaceae). Phytomorphology 38: 159–162.

    Google Scholar 

  • Kurzweil H. 1987a. Developmental studies in orchid flowers. I. Epidendroid and vandoid species. Nord. J. Bot. 7: 427–442.

    Article  Google Scholar 

  • Kurzweil H. 1987b. Developmental studies in orchid flowers. II. Orchidoid species. Nord. J. Bot. 7: 443–451.

    Article  Google Scholar 

  • Kurzweil H. 1988. Developmental studies in orchid flowers. III. Neottioid species. Nord. J. Bot. 8: 271–282.

    Article  Google Scholar 

  • Kurzweil H. 1993. Developmental studies in orchid flowers. IV. Cypripedioid species. Nord. J. Bot. 13: 423–430.

    Article  Google Scholar 

  • Kurzweil H. 1998. Floral ontogeny of orchids: a review. Beitr. Biol. Pflanz 71: 45–100.

    Google Scholar 

  • Kurzweil H. 2000. The value of early floral ontogeny in the sys-tematics of Orchidaceae. In: KL Wilson and DA Morrison, eds. Monocots: systematic and evolution, pp. 436–440. CSIRO, Collingwood.

    Google Scholar 

  • Kurzweil H and A Kocyan A. 2002. Ontogeny of orchid flowers. In: J Arditti and T Kull, eds. Orchid biology: reviews and perspectives. VIII, pp. 83–138. Kluwer, Dordrecht.

    Google Scholar 

  • Lindley J. 1830–1840. The genera and species of Orchidaceous plants. Ridgways, London.

    Google Scholar 

  • Lodkina MM. 1985. Orchidaceae. In: A Takhtajan, ed., Comparative seed anatomy, vol. 1, pp. 142–150. Nauka, Leningrad (in Russian).

    Google Scholar 

  • Molvray M and P Kores. 1995. Character analysis of the seed coat in the Spiranthoideae and Orchidoideae, with special reference to the Diurideae (Orchidaceae). Am. J. Bot. 82: 1443–1454.

    Article  Google Scholar 

  • Molvray M, P Kores, and MW Chase. 2000. Polyphyly of myco-heterotrophic orchids and functional influences on floral and molecular characters. In: KL Wilson and DA Morrison, eds. Monocots: systematic and evolution, pp. 441–448. CSIRO, Collingwood.

    Google Scholar 

  • Nelson E. 1965. Zur organophyletischen Natur des Orchideenlabellums. Bot. Jahrb. Syst. 84: 175–214.

    Google Scholar 

  • Nelson E. 1967. Das Orchideenlabellum ein Homologon des einfachen medianen Petalums der Apostasiaceen oder ein zusammengesetztes Organ? Bot. Jahrb. Syst. 87: 22–35.

    Google Scholar 

  • Nemirovich-Danchenko EN. 1985. Hypoxidaceae. In: A Takhtajan, ed. Comparative seed anatomy, vol. 1, 117–119. Nauka, Leningrad (in Russian).

    Google Scholar 

  • Newton GD and NH Williams. 1978. Pollen morphology of the Cypripedioideae and the Apostasioideae (Orchidaceae). Selbyana 2: 169–182.

    Google Scholar 

  • Neyland R and LE Urbatsch. 1996a. Evolution in the number and position of fertile anthers in Orchidaceae inferred from ndhF chloroplast gene sequences. Lindleyana 11: 47–53.

    Google Scholar 

  • Neyland R and LE Urbatsch. 1996b. Phylogeny of subfamily Epidendroideae (Orchidaceae) inferred from ndhF chloro-plast gene sequences. Am. J. Bot. 83: 1195–1206.

    Article  CAS  Google Scholar 

  • Nishimura G and M Tamura. 1993. Seed coat formation in Apostasia nipponica. J. Jpn. Bot. 68: 219–223.

    Google Scholar 

  • Nordal I. 1998. Hypoxidaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 286–295. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Oganezova GG. 1995. On the systematic position of the families Haemodoraceae, Hypoxidaceae and Taccaceae. Bot. Zhurn. 80: 12–25 (in Russian with English summary).

    Google Scholar 

  • Okada H. 1988. Karyomorphological observations of Apostasia nuda and Neuwiedia veratrifolia (Apostasioideae, Orchidaceae). J. Jpn. Bot. 63: 344–350.

    Google Scholar 

  • Oliviera VC and MG Sajo. 1999. Anatomia foliar de especies de Orchidaceae. Rev. Brasil. Bot. 22: 365–374.

    Google Scholar 

  • Poddubnaya-Arnoldi VA. 1967. Comparative embryology of the Orchidaceae. Phytomorphology 17: 312–320.

    Google Scholar 

  • Prakash N, and Ramsey M. 2000. Embryological development in Blandfordia and Neoastelia with comments on their systematic position. In: KL Wilson and DA Morrison, eds. Monocots: systematics and evolution, pp. 214–217. CSIRO, Collingwood.

    Google Scholar 

  • Pridgeon AM and MW Chase. 1995. Subterranean axes in tribe Diurideae (Orchidaceae): morphology, anatomy, and systematic significance. Am. J. Bot. 82: 1473–1495.

    Article  Google Scholar 

  • Pridgeon AM, WS Stern, and DH Benzing. 1983. Tilosomes in roots of Orchidaceae: morphology and systematic occurrence. Am. J. Bot. 70: 1365–1377.

    Article  Google Scholar 

  • Pridgeon AM, PJ Cribb, and MW Chase. 1999. Genera orchi-dacearum, vol. 1. General Introduction, Apostasioideae, Cypripedioideae. Oxford University Press, Oxford.

    Google Scholar 

  • Pridgeon AM, R Solano, and MW Chase. 2001a. Phylogenetic relationships in Pleurothallidinae (Orchidaceae): combined evidence from nuclear and plastid DNA sequences. Am. J. Bot. 88: 2286–2308.

    Article  CAS  Google Scholar 

  • Pridgeon AM PJ Cribb, and FN Rasmussen FN, eds. 2001b. Genera orchidacearum, vol. 2, Pt. 1. Orchidoideae. Oxford University Press, Oxford.

    Google Scholar 

  • Pridgeon AM, Cribb PJ, and FN Rasmussen, eds. 2003. Genera orchidacearum, vol. 2, Pt. 2. Orchidoideae, Vanilloideae. Oxford University Press, Oxford.

    Google Scholar 

  • Rao VS. 1969. The floral anatomy and relationships of the rare Apostasias. J. Indian Bot. Soc. 68: 374–385.

    Google Scholar 

  • Rao VS. 1974. The relationships of the Apostasiaceae on the basis of floral anatomy. Bot. J. Linn. Soc. 68: 319–327.

    Article  Google Scholar 

  • Rasmussen F. 1982. The gynostemium of the neottioid orchids. Opera Bot. 65: 7–96.

    Google Scholar 

  • Rasmussen F. 1986. Ontogeny and phylogeny in Orchidaceae. Lindleyana 1: 114–124.

    Google Scholar 

  • Rasmussen FN. 1995. Relationships of Burmanniales and Orchidales. In: P Rudall, J Cribb, DF Cutler, and CJ Humphries, eds. Monocotyledons: systematic and evolution, pp. 227–241. Royal Botanic Gardens. Kew.

    Google Scholar 

  • Rasmussen FN. 2000. Ins and outs of Orchid phylogeny. In: KL Wilson and DA Morrison, eds. Monocots: systematic and evolution, pp. 430–435. CSIRO, Collingwood.

    Google Scholar 

  • Roife RA. 1909, 1910. The evolution of the Orchidaceae. Orchid Rev. 17: 129–132, 193–196, 289–292, 353–356, 1909; 18: 33–36, 87–99, 129–132, 162–166, 289–294, 321–325, 1910.

    Google Scholar 

  • Rosso SW. 1966. The vegetative anatomy of the Cypripedioideae (Orchidaceae). Bot. J. Linn. Soc. 59: 309–341.

    Article  Google Scholar 

  • Rudall PJ. 1998. Lanariaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 340–342. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Rudall PJ, MW Chase, DF Cutler, J Rusby, and AY De Bruijn. 1998. Anatomical and molecular systematics of Asteliaceae and Hypoxidaceae. Bot. J. Linn. Soc. 127: 1–12.

    Article  Google Scholar 

  • Scharf W. 1892. Beiträge zur Anatomic der Hypoxideen und einiger verwandter Pflanzen: Lanaria plumosa Ait. Beih. Bot. Centralbl. 52: 242–243.

    Google Scholar 

  • Schill R. 1978. Palynologische Untersuchungen zur sys-tematischen Stellung der Apostasiaceae. Bot. Jahrb. Syst. 99: 353–352.

    Google Scholar 

  • Schlechter R. 1926. Die System der Orchidaceen. Notizbl. Bot. Gart. Berlin-Dahlem 9: 563–591.

    Article  Google Scholar 

  • Schlechter R. 1992. Die Orchideen, ed. 3, vol. 1A (FG Brieger, F Butzin, and K Senghas, eds). Paul Parey, Berlin.

    Google Scholar 

  • Schlechter R. 1996. Die Orchideen, ed. 3, vol. 1B (FG Brieger, F Butzin, and K Senghas, eds). Paul Parey, Berlin.

    Google Scholar 

  • Schlechter R. 2003. Die Orchideen, ed. 3, Literaturverzeichnis und Register zu Band I/A, B und C (K Senghas, ed.). Paul Parey, Berlin.

    Google Scholar 

  • Sharma AK. 1969. Evolution and taxonomy of monocotyledons. In: CD Darlington, ed. Chromosomes Today, 2: 241–249.

    Google Scholar 

  • Skottaberg C. 1960. Astelia on Mauritius. Sven. Bot. Tidskr. 54: 477–482.

    Google Scholar 

  • Skottsberg C. 1934a. Studies in the genus Astelia Banks et Solander. K. Vetenscapakad. Handl. III. 14: 1–106.

    Google Scholar 

  • Skottsberg C. 1934b. Astelia and Pipturus of Hawaii. Bernice P. Bishop. Mus. Bull. 117: 1–77.

    Google Scholar 

  • Sood SK and PR Mohana Rao. 1988. Studies in the embryology of the diandrous orchid Cypripedium cordigerum (Cypripedieae, Orchidaceae). Plant Syst. Evol. 160: 159–168.

    Article  Google Scholar 

  • Stern WL 1993. Comparative vegetative anatomy and systemat-ics of Spiranthoideae (Orchidaceae). Bot. J. Linn. Soc. 113: 161–197.

    Article  Google Scholar 

  • Stern WL and BS Carlsward. 2004. Vegetative constants in the anatomy of epiphytic orchids. Orchid Rev. 112: 119–122.

    Google Scholar 

  • Stern WL and BS Carlsward. 2006. Comparative vegetative anatomy and systematics of the Oncidiinae (Maxillarieae, Orchidaceae). Bot. J. Linn. Soc. 152: 91–107.

    Article  Google Scholar 

  • Stern WL and WS Judd. 2000. Comparative anatomy and sys-tematics of the orchid tribe Vanilleae excluding Vanilla. Bot. J. Linn. Soc. 134: 179–202.

    Article  Google Scholar 

  • Stern WL and WS Judd. 2001. Comparative anatomy and sys-tematics of Catasetinae (Orchidaceae). Bot. J. Linn. Soc. 136: 153–178.

    Article  Google Scholar 

  • Stern WL and WM Whitten. 1999. Comparative vegetative anatomy of Stanhopeinae (Orchidaceae). Bot. J. Linn. Soc. 129: 87–103.

    Article  Google Scholar 

  • Stern WL, VA Cheadle, and J Thorsch. 1993. Apostasiads, systematic anatomy, and the origins of Orchidaceae. Bot. J. Linn. Soc. 111: 411–455.

    Article  Google Scholar 

  • Stern WL, MW Morris, WS Judd, AM Pridgeon, and RL Dressler. 1993. Comparative vegetative anatomy and systematics of Spiranthoideae (Orchidaceae). Bot. J. Linn. Soc. 113: 161–197.

    Article  Google Scholar 

  • Stern WL, WS Judd, and BS Karlsward. 2004. Systematic and comparative anatomy of Maxillarieae (Orchidaceae), sans Oncidiinae. Bot. J. Linn. Soc. 144: 251–274.

    Article  Google Scholar 

  • Swamy BGL. 1948. Vascular anatomy of orchid flowers. Bot. Mus. Leafl. 13: 61–95.

    Google Scholar 

  • Szlachetko DL. 1995. Systema Orchidalium. Fragmenta Florist Geobot. 3 (Suppl.): 1–152.

    Google Scholar 

  • Szlachetko DL and NB Margonska HB. 2002. Gynostemia orchidalium II. Orchidaceae (Epidendroideae). Acta Bot. Fenn. 173: 1–275.

    Google Scholar 

  • Szlachetko DL and Rutkowski P. 2000. Gynostemia orchida-lium I. Apostasiaceae, Cypripediaceae, Orchidaceae (Thelymitroideae, Orchidoideae, Tropidioideae, Spiran-thoideae, Neottioideae, Vanilloideae). Acta Bot. Fenn. 169: 1–380.

    Google Scholar 

  • Terekhin ES and OP Kamelina. 1969. Endosperm of the Orchidaceae. Bot. Zhurn. 54: 657–666 (in Russian).

    Google Scholar 

  • Thompson MF. 1976, 1978, 1970. Studies in the Hypoxidaceae. I. Vegetative morphology and anatomy. II. Floral morphology and anatomy. III. The genus Pauridia. Bothalia 12: 111– 117, 429–435, 621–625.

    Google Scholar 

  • Tohda H. 1986. Seed morphology in Orchidaceae. III. Tribe Neottieae. Sci. Report Tohoku Univ. 4th ser, 39: 103–119.

    Google Scholar 

  • Van den Berg C, DH Gioldman, JV Freudenstein, AM Pridgeon, KM Cameron, and MW Chase. 2005. An overview of the phylogenetic relationships within Epidendroideae inferred from multiple DNA regions and recircumscription of Epidendreae and Arethuseae (Orchidaceae). Am. J. Bot. 92: 613–624.

    Article  Google Scholar 

  • Vermuelen P. 1955. The rostellum of the Orchideae. Am. Orchid Soc. Bull. 24: 239–245.

    Google Scholar 

  • Vermuelen P. 1959. The different structure of the rostellum in Ophrydeae and Neottieae. Acta Bot. Neerl. 8: 338–355.

    Google Scholar 

  • Vermuelen P. 1966. The system of the Orchidales. Acta Bot. Neerl. 15: 224–253.

    Google Scholar 

  • Vinogradova TN and EV Andronova. 2002. Development of orchid seeds and seedlings. In: J Arditti and T Kull, eds. Orchid biology: reviews and perspectives, vol. 8, pp. 167– 234. Kluwer, Dordrecht.

    Google Scholar 

  • Vogel EF De. 1969. Monograph of the tribe Apostasieae (Orchidaceae). Blumea 17: 313–350.

    Google Scholar 

  • Wheeler JM. 1966. Cytotaxonomy of the large Asteliads (Liliaceae) of the North Island of New Zealand. N. Z. J. Bot. 4: 95–113.

    Google Scholar 

  • Williams NH. 1979. Subsidiary cells in the Orchidaceae: Their general distribution with special reference to development in the Oncidieae. Bot. J. Linn. Soc. 78: 41–66.

    Article  Google Scholar 

  • Wilson KL and DA Morrison, eds. 2000. Monocots: systematics and evolution. CSIRO, Collingwood.

    Google Scholar 

  • Yam TW, EC Yeung, XL Ye, SY Zee, and J Arditti. 2002. Orchid embryos. In: J Arditti and T Kull, eds. Orchid biology: reviews and perspectives, vol. 8, pp. 287–385. Kluwer, Dordrecht.

    Google Scholar 

  • Arroyo SC. 1982. Anatomia vegetativa de Ixiolirion Fisch. ex Herb. (Liliales) y su significado taxonomia. Parodiana 1: 271–286.

    Google Scholar 

  • Arroyo S. 1986. Leaf anatomy in the Tecophilaeaceae. Bot. J. Linn. Soc. 93: 323–328.

    Article  Google Scholar 

  • Baker JG. 1878. Systema Iridearum. Bot. J. Linn. Soc. 16: 61–180.

    Google Scholar 

  • Brummitt RK, H Banks, MAT Johnson, KA Docherty, K Jones, MW Chase, and PJ Rudall. 1998. Taxonomy of Cyanastroideae (Tecophilaeaceae): a multidisciplinary approach. Kew Bull. 53: 769–803.

    Article  Google Scholar 

  • Carter S. 1962. Revision of Walleria and Cyanastrum (Tecophilaeaceae). Kew Bull. 16: 190–200.

    Google Scholar 

  • Cheadle V. 1969. Vessels in Amaryllidaceae and Tecophilaeaceae. Phytomorphology 19(1): 8–16.

    Google Scholar 

  • Cheadle VI. 1963. Vessels in Iridaceae. Phytomorphology 13: 245–248.

    Google Scholar 

  • Clausen RT. 1940. A review of Cyanastraceae. Gentes Herb. 4: 293–304.

    Google Scholar 

  • Clifford HT. 1998. Doryanthaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 336–338. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Dahlgren R and AE van Wyk. 1988. Structures and relationships of families endemic to or centered in southern Africa. Monograph Syst. Bot. Missouri Bot. Gard. 25: 1–94.

    Google Scholar 

  • De Vo s M. 1963. Studies on the embryology and relationships of South African genera of the Haemodoraceae: Lanaria Ait. South Afr. J. Bot. 29: 79–90.

    Google Scholar 

  • Donato R, C Leach, and G Conran. 2000. Relationships of Dietes (Iridaceae) inferred from ITS2 sequences. In: KL Wilson and DA Morrison, eds. Monocots: systematics and evolution, pp. 407–413. CSIRO, Collingwood.

    Google Scholar 

  • Goldblatt P. 1971. Cytological and morphological studies in the southern African Iridaceae. South Afr. J. Bot. 37: 317–460.

    Google Scholar 

  • Goldblatt P. 1979. Preliminary cytology of Australasian Iridaceae. Ann. Missouri Bot. Gard. 66: 851–855.

    Article  Google Scholar 

  • Goldblatt P. 1981. Systematics, phylogeny, and evolution in Dietes (Iridaceae). Ann. Missouri Bot. Gard. 68: 131–152.

    Google Scholar 

  • Goldblatt P. 1982. Chromosome cytology in relation to suprage-neric systematics of Neotropical Iridaceae. Syst. Bot. 7: 186–198.

    Article  Google Scholar 

  • Goldblatt P. 1990. Phylogeny and classification of Iridaceae. Ann. Missouri Bot. Gard. 77: 607–627.

    Article  Google Scholar 

  • Goldblatt P. 1993. The woody Iridaceae: Nivenia, Klattia, and Witsenia: Systematic biology and evolution. Timber Press, Portland, OR.

    Google Scholar 

  • Goldblatt P. 1998. Reduction of Bamardiella, Galaxia, Gynandriris, Hexaglottis, Homeria, and Roggeveldia in Moraea (Iridaceae: Irideae). Novon 8: 371–377.

    Article  Google Scholar 

  • Goldblatt P. 2002. Phylogeny and classification of the Iridaceae and the relationships of Iris. Ann. Bot. n.s. (Italy). 1(2): 13–28.

    Google Scholar 

  • Goldblatt P and JC Manning. 1989. Chromosome number in Walleria (Tecophilaeaceae). Ann. Missouri Bot. Gard. 76: 925–926.

    Article  Google Scholar 

  • Goldblatt P and JC Manning. 2006. Radiation of pollination systems in the Iridaceae of sub-Saharan Africa. Ann. Bot. 97: 317–344.

    Article  PubMed  Google Scholar 

  • Goldblatt P and P Rudall. 1993. Leaf anatomy and systematics of the Homeriinae (Iridaceae). Bot. J. Linn. Soc. 111: 379–397.

    Article  Google Scholar 

  • Goldblatt P and M Takei. 1997. Chromosome cytology of Iridaceae. Patterns of variation, determination of ancestral base numbers, and modes of karyotype change. Ann. Missouri Bot. Gard. 84: 285–304.

    Article  Google Scholar 

  • Goldblatt P, JE Henrich, and P Rudall. 1984. Occurrence of crystals in Iridaceae and allied families and their phyloge-netic significance. Ann. Missouri Bot. Gard. 71: 1013–1020.

    Article  Google Scholar 

  • Goldblatt P, P Rudall, VL Cheadle, LJ Dorr, and CA Williams. 1987. Affinities of the Madagascan endemic Geosiris, Iridaceae or Geosiridaceae. Adansonia 9: 239–248.

    Google Scholar 

  • Goldblatt P, P Rudall, and JE Henrich. 1990. The genera of the Sisyrhinchium alliance (Iridaceae-Iridoideae): Phylogeny and relationships. Syst. Bot. 15: 497–510.

    Article  Google Scholar 

  • Goldblatt P, JC Manning, and A Bari. 1991. Sulcus and opercu-lum structure in the pollen grains of Iridaceae subfamily Iridoideae. Ann. Missouri Bot. Gard. 78: 950–961.

    Article  Google Scholar 

  • Goldblatt P, JC Manning, and P Rudall. 1998. Iridaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 295–333. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Hartwell J, AV Cox, KM Cameron, ER Caddick, and MW Chase. 1994. Molecular systematics of the “lower” asparagoid lily families. Am. J. Bot. 81(6): 160 (abstract).

    Google Scholar 

  • Jonker EP. 1939. Les Geosiridacees: Une nouvelle famille de Madagascar. Rec. Trav. Bot. Neerl. 36: 473–479.

    Google Scholar 

  • Kenton A and CA Heywood. 1984. Cytological studies in South American Iridaceae. Plant Syst. Evol. 146: 87–104.

    Article  Google Scholar 

  • Kosenko VN. 1994. Pollen morphology of the families Phormiaceae, Blandfordiaceae, and Doryanthaceae. Bot. Zhurn. 79(7): 1–12 (in Russian with English summary).

    Google Scholar 

  • Kubitzki K. 1998. Ixioliriaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 334–335. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Lakshmanan KK and VJ Phillip. 1971. A contribution to the embryology of Iridaceae. Proc. Indian Acad. Sci. 73: 110–116.

    Google Scholar 

  • Larsen PO, ET Sorensen, E Wieczorkowska, and P Goldblatt. 1981. Meta-carboxy-substituted aromatic amino acids and t-glutamyi peptides: chemical characters for classification in the Iridaceae. Biochem. Syst. Ecol. 18: 575–579.

    Google Scholar 

  • Le Thomas A, M Suarez, and P Goldblatt. 2002. Pollen of Nivenioideae and its phylogenetic implications. Ann. Bot. n.s. (Italy). 1(2): 67–72.

    Google Scholar 

  • Lewis GJ. 1954. Some aspects of the morphology, phylogeny, and taxonomy of the South African Iridaceae. Ann. S. Afr. Mus. 40: 15–113.

    Google Scholar 

  • Manning JC and P Goldblatt. 1991. Systematic and phyloge-netic significance of the seed coat in the shrubby African Iridaceae, Nivenia, Klattia, and Witsenia. Bot. J. Linn. Soc. 107: 387–404.

    Article  Google Scholar 

  • Nemirovich-Danchenko EN. 1985. Tecophilaeaceae, Cyanastraceae. In: A Takhtajan, ed. Comparative seed anatomy, vol. 1, pp. 106–108. Nauka, Leningrad (in Russian).

    Google Scholar 

  • Newman F V. 1928, 1929. The life history of Doryanthes excelsa: I. Some ecological and vegetative features on spore production, Proc. Linn. Soc. N. S. W. 53: 499–538. II. The gametophytes, seed production, chromosome number, and general conclusions. Proc. Linn. Soc. N. S. W. 54: 411–435.

    Google Scholar 

  • Nietsch H. 1940. Zur systematischen Stellung von Cyanastrum. Oesterr. Bot. Z. 90: 31–52.

    Article  Google Scholar 

  • Oganezova GG. 1981. Anatomical and morphological study in Ixiolirion tataricum ssp. montanum. Bot. Zhurn. 66: 702– 713 (in Russian with English summary).

    Google Scholar 

  • Oganezova GG. 1997a. The seed structure of some Iridaceae in connection with their systematics, geography and phylog-eny. I. Subfamilies Nivenioideae and Irudoideae. Bot. Zhurn. 82(2): 14–29 (in Russian with English summary).

    Google Scholar 

  • Oganezova GG. 1997b. The seed structure of some Iridaceae in connection with their systematics, geography and phylog-eny. II. Subfamily Ixioideae. Bot. Zhurn. 82(3): 7–22 (in Russian with English summary).

    Google Scholar 

  • Ornduff R. 1979. Chromosome numbers in Cyanella (Tecophilaeaceae). Ann. Missouri Bot. Gard. 66: 581–583.

    Article  Google Scholar 

  • Reeves G, MW Chase, P Goldblatt, P Rudall, MF Fay, AV Cox, B Lejeune, and T Souza-Chies. 2001. Molecular systematics of Iridaceae: evidence from four plastid DNA regions. Am. J. Bot. 88: 2074–2087.

    Article  CAS  Google Scholar 

  • Reeves G, P Goldblatt, PJ Rudall, and MW Chase. 2002. Molecular systematics of Iridaceae: a combined analysis of four plastid DNA sequence matrices. Ann. Bot. n.s. (Italy) 1(2): 29–42.

    Google Scholar 

  • Rübsamen-Weustenfeld T, V Muldelka, and U Hamann. 1994. Zur Embryologie, Morphologic, und systematischen Stellung von Geosiris aphylla Baillon (monocotyledoneae-Geosiri-daceae /Iridaceae) mit einigen embryologischen Daten zur Samenanlage von Isophysis tasmanica (Hook.) T. Moore (Iridaceae). Bot. Jahrb. Syst. 115: 475–545.

    Google Scholar 

  • Rudall P. 1984. Taxonomic and evolutionary implications of rhizome structure and secondary thickening in Iridaceae. Bot. Gaz. 145: 524–534.

    Article  Google Scholar 

  • Rudall P. 1986. Taxonomic significance of leaf anatomy in Australasian Iridaceae. Nord. J. Bot. 6: 277–289.

    Article  Google Scholar 

  • Rudall P. 1991. Leaf anatomy of Tigridieae (Iridaceae). Plant Syst. Evol. 175: 1–10.

    Article  Google Scholar 

  • Rudall P. 1993. Leaf anatomy and systematics of Mariceae (Iridaceae). Kew Bull. 48: 151–160.

    Article  Google Scholar 

  • Rudall P. 1994. Anatomy and systematics of Iridaceae. Bot. J. Linn. Soc. 114: 1–21.

    Article  Google Scholar 

  • Rudall P. 1995. Iridaceae. In: DF Cutler and M Gregory, eds. Anatomy of the Monocotyledons, vol. 8. Clarendon, Oxford.

    Google Scholar 

  • Rudall P. 2003. Unique floral structures and iterative evolutionary themes in Asparagales: Insights from a morphological cladistic analysis. Bot. Rev. 68: 488–509.

    Article  Google Scholar 

  • Rudall P and P Burns. 1989. Leaf anatomy of the woody South African Iridaceae. Kew Bull. 44: 525–532.

    Article  Google Scholar 

  • Rudall P and P Goldblatt. 1991. Leaf anatomy and phylog-eny of Ixioideae (Iridaceae). Bot. J. Linn. Soc. 106: 329–345.

    Article  Google Scholar 

  • Rudall P and P Goldblatt. 1993. Leaf anatomy and systemat-ics of Homeriinae (Iridaceae). Bot. J. Linn. Soc. 111: 379–397.

    Article  Google Scholar 

  • Rudall PJ and P Goldblatt. 2002. Floral anatomy and systematic position of Diplarrhena (Iridaceae): a new tribe Diplarrheneae. Ann. Bot. n.s. (Italy) 1(2): 59–66.

    Google Scholar 

  • Rudall P and A Wheeler. 1988. Pollen morphology in Tigriidieae (Iridaceae). Kew Bull. 43: 693–701.

    Article  Google Scholar 

  • Schulze W. 1971. Beiträge zur Pollenmorphologie der Iridaceae und ihre Bedeutung für die Taxonomie. Feddes Repert. 82: 101–124.

    Google Scholar 

  • Schulze W. 1984. Beitrage zur Taxonomie der Liliifloren: 11. Tecophilaeaceae und Cyanastraceae. (Contributions to the taxonomy of the Liliiflorae: 11. Tecophylaeaceae and Cyanastraceae.) Wiss. Zeitschr. Friedrich-Schiller Univ. Jena, Mat. Naturwiss. Beitr. Phytotax., 32(6): 957–964.

    Google Scholar 

  • Shneyer VS. 1983. The relationship between Iridaceae s.l. as revealed by the serological analysis of seed proteins. Bot. Zhurn. 68: 49–54 (in Russian with English summary).

    Google Scholar 

  • Simpson MG. 1985. Pollen ultrastructure of the Tecophilaeaceae. Grana 24: 77–92.

    Article  Google Scholar 

  • Simpson MG and P Rudall. 1998. Tecophilaeaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 429–436. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Souza-Chies TT, G Bittar, S Nadot, L Carter, E Besin, and B Lejeune. 1997. Phylogenetic analysis of Iridaceae with parsimony and distance methods using the plastid gene rps4. Plant Syst. Evol. 204: 109–123.

    Article  Google Scholar 

  • Tillich H-J. 1995. Früchte, Samen und Keimpflanzen bei den Cyanastraceae Engler 1900 and einiger vermuteten Verwandten. Feddes Repert. 106: 483–493.

    Google Scholar 

  • Tillich H-J. 2003. Seedling morphology in Iridaceae: indications for relationships within the family and to related families. Flora 198: 220–242.

    Google Scholar 

  • Traub HP. 1943. The Ixiolirion tribe. Herbertia 9: 53–59.

    Google Scholar 

  • Wilson CA. 2003. Phylogenetic relationships in Iris series Californicae based on ITS sequences of nuclear ribosomal DNA. Syst. Bot. 28: 39–46.

    Google Scholar 

  • Williams CA, JB Harborne, and P Goldblatt. 1986. Correlations between phenolic patterns and tribal classification in the family Iridaceae. Phytochemistry 25: 2135–2154.

    Article  CAS  Google Scholar 

  • Zavada MS and G Scott. 1993. Pollen morphology of Cyanella species (Tecophilaeaceae). Grana 32: 189–192.

    Google Scholar 

  • Althoff DM, KA Segraves, J Leebens-Mack, and O Pellmyr. 2006. Patterns of speciation in the yucca moths: parallel species radiations within the Tegeticula yuccasella species complex. Syst. Biol. 55: 398–410.

    Article  PubMed  Google Scholar 

  • Alvarez A and E Kohler. 1987. Morfologia del polen de las Agavaceae y algunos generos afincs, Grana 26: 25–46.

    Google Scholar 

  • Arroyo SC and DF Cutler. 1984. Evolutionary and taxonomic aspects of the internal morphology in Amaryllidaceae from South America and Southern Africa. Kew Bull. 39: 467–498.

    Article  Google Scholar 

  • Artyushenko ZT. 1989. Aspects of research on Amaryllidaceae Jaume. Herbertia 45: 131–137.

    Google Scholar 

  • Bastide J and F Viladomat. 2002. Alkaloids of Narcissus. In: GR Hanks, ed. Narcissu and Daffodil, pp. 141–214. Taylor & Francis, London.

    Google Scholar 

  • Beaumont J, DF Cutler, T Raynolds, and JG Vaughan. 1985. The secretory tissue of aloes and their allies. Israel J. Bot. 34: 265–282.

    CAS  Google Scholar 

  • Berg RY. 1978. Development of ovule, embryo sac, and endosperm in Brodiaea (Liliales). Nord. J. Bot. 25: 1–7.

    Google Scholar 

  • Berg RY. 1998. Development of ovule, embryo sac, and endosperm in Dipterostemon and Dichelostemma (Alliaceae) relative to taxonomy. Am. J. Bot. 83: 790–801.

    Article  Google Scholar 

  • Berg RY. 2003. Development of ovule, embryo sac, and endosperm in Triteleia (Themidaceae) relative to taxonomy. Am. J. Bot. 90: 937–948.

    Article  Google Scholar 

  • Berg RY and JR Maze. 1966: Contribution to the embryology of Muilla, with a remark on the taxonomic position of the genus. Madroño 18: 143–151.

    Google Scholar 

  • Blunden G and K Jewers. 1973. The comparative leaf anatomy of Agave, Beschorneria, Doryanthes, and Furcraea species (Agavaceae: Agaveae). Bot. J. Linn. Soc. 66: 157–179.

    Article  Google Scholar 

  • Bogler DJ and BB Simpson. 1993. Molecular systematics of the Agavaceae: Evidence from sequencing the rDNA internal transcribed spacer region. Amer. J. Bot. 80(6): 133 (abstracts).

    Google Scholar 

  • Bogler DJ and BB Simpson. 1995. A chloroplast DNA study of the Agavaceae. Syst. Bot. 20: 191–205.

    Article  Google Scholar 

  • Bogler DJ and BB Simpson. 1996. Phylogeny of Agavaceae based on its rDNA sequence variation. Am. J. Bot. 83: 1225–1235.

    Article  CAS  Google Scholar 

  • Bogler DJ, JC Pires and J Francisco-Ortega. 2006. Phylogeny of Agavaceae based on ndhF, rbcL, and ITS rDNA: Implications of molecular data for classification. In: JT Columbus, EA Friar, JM Porter, LM Prince, and MG Simpson, eds. Monocots: comparative biology and evolution (excluding Poales), pp. 313–328. Rancho Santa Ana Botanical Garden, Claremont.

    Google Scholar 

  • Bouvier W. 1915. Beiträge zur vergleichenden Anatomie der Asphodeloideae (Tribus Asphodeleae und Hemerocallideae). Akad. Wiss. Wien Math.-Naturwiss. Kl. Denkschr. 91: 539–577.

    Google Scholar 

  • Buchner L. 1948. Vergleichende embryologische Studien an Scilloideae. Oesterr. Bot. Z. 95: 428–451.

    Article  Google Scholar 

  • Cave MS. 1948. Sporogenesis and embryo sac development of Hesperocallis and Leucocrinum in relation to their systematic position. Am. J. Bot. 35: 343–349.

    Article  Google Scholar 

  • Cave MS. 1955: Sporogenesis and the female gametophyte of Phormium tenax. Phytomorphology 5: 247–253.

    Google Scholar 

  • Cave MS. 1964. Cytological observations on some genera of the Agavaceae. Madroño 17: 163–170.

    Google Scholar 

  • Cave MS. 1970. Chromosomes of California Liliaceae. Univ. Calif. Publ. Bot. 57: 1–48.

    Google Scholar 

  • Cave MS. 1975. Embryological studies in Stypandra (Liliaceae). Phytomorphology 25: 95–99.

    Google Scholar 

  • Chase MW, PJ Rudall, and JG Conran. 1996. New circumscriptions and a new family of asparagoid lilies: Genera formerly included in Anthericaceae. Kew Bull. 51: 667–680.

    Article  Google Scholar 

  • Chase MW, PJ Rudall, MF Fay, and KL Stobart. 2000. Xeronemataceae, a new family of asparagoid lilies from New Caledonia and New Zealand. Kew Bull. 55: 865–870.

    Article  Google Scholar 

  • Chase MW, A de Bruijn, G Reeves, AV Cox, PJ Rudall, MAT Johnson, and LE Equiarte. 2000. Phylogenetics of Asphodelaceae (Asparagales): an analysis of plastid rbcL and trnL-F DNA sequences. Ann. Bot. (London) 86: 935–956.

    Article  CAS  Google Scholar 

  • Chakroun S and Ch Hebant. 1983. Developmental anatomy of Aphyllanthes monspeliensis, a herbaceous monocotyledon with secondary growth. Plant Syst. Evol. 141: 231–241.

    Article  Google Scholar 

  • Cheadle VI. 1969 (1970). Vessels in Amaryllidaceae and Tecophilaeaceae. Phytomorphology 19: 8–16.

    Google Scholar 

  • Chen ZK, FH Wang, and F Zhou. 1988a. On the origin, development and ultrastructure of the orbicules and pollenkit in the tapetum of Anemarrhena asphodeloides (Liliaceae). Grana 27: 273–282.

    Google Scholar 

  • Chen ZK, FH Wang, and F Zhou. 1988b. The ultrastructural aspects of tapetum and Ubisch bodies in the Anemarrhena asphodeloides. Acta Bot. Sinica 30: 1–15 (in Chinese).

    Google Scholar 

  • Chen ZK, F Zhou, FX Wang, and FH Wang. 1988c. Investigation on the development of male gametophyte in Anemarrhena asphodeloides. Acta Bot. Sinica 30: 569–573 (in Chinese).

    Google Scholar 

  • Chen ZK, FH Wang, and ZH Li. 1990. Investigation on embryology of Anemarrhena asphodeloides. Acta Phytotaxon. Sinica 28: 223–227 (in Chinese).

    Google Scholar 

  • Chung M-G and SB Jones, Jr. 1989. Pollen morphology of Hosta Tratt. (Funkiaceae) and related genera. Bull. Torrey Bot. Club 116: 31–44.

    Article  Google Scholar 

  • Chupov VS. 1987. Taxonomic position of the genera Geitonoplesium and Simethis. Bot. Zhurn. 72: 904–908. (in Russian with English summary).

    Google Scholar 

  • Chupov VS and NG Kutiavina. 1978. The comparative immuno-electrophoretic investigations of seed proteins of Liliaceae. Bot. Zhurn. 63: 473–493 (in Russian with English summary).

    Google Scholar 

  • Chupov VS and NG Kutiavina. 1981. Serological studies in the order Liliales: II. Bot. Zhurn. 66: 408–418 (in Russian with English summary).

    Google Scholar 

  • Clifford HT 1998. Xanthorroeaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 467–470. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Clifford HT and JG Conran. 1998. Johnsoniaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 336–340. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Clifford HT, RJF Henderson, and JG Conran 1998. Hemerocallidaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 245–252. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Conran JG. 1998a. Anthericaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 114–121. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Conran JG. 1998b. Aphyllanthaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 122–124. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Conran JG. 1998c. Boryaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 151–154. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Conran JG. 1998d. Herreriaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 253–255. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Conran JG. 1998e. Lomandraceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, 354–365. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Conran JG and PJ Rudall. 1998. Anemarrhenaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 111–114. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Conran JG and A Temby. 2000. Embryology and affinities of the Boryaceae (Asparagales). In: KL Wilson and DA Morrison, eds. Monocots: systematics and evolution, pp. 401–406. CSIRO, Collingwood.

    Google Scholar 

  • Conran JG, MW Chase, and PJ Rudall. 1997. Two new monocotyledon families: Anemarrhenaceae and Behniaceae (Lilianae: Asparagales) Kew Bull. 52: 995–999.

    Article  Google Scholar 

  • Fahn A. 1954. The anatomical structure of the Xanthorroeaceae Dumort. Bot. J. Linn. Soc. 55: 158–184.

    Article  Google Scholar 

  • Fahn A. 1961. The anatomical structure of the Xanthor-roeaceae Dumort. and its taxonomic position. In Recent advances in botany, pp. 155–160 Taylor & Francis, Toronto.

    Google Scholar 

  • Fay MF and MW Chase. 1996. Resurrection of Themidaceae for the Brodiaea alliance, and recircumscription of Alliaceae, Amaryllidaceae and Agapanthaceae. Taxon 45: 441–451.

    Article  Google Scholar 

  • Fay MF, J Hartwell, LR Caddick, A Cox, and MW Chase. 1994. A molecular evaluation of the monophyly of Alliaceae and Amaryllidaceae. Am. J. Bot. 81(6): 154 (abstracts).

    Google Scholar 

  • Fay MF, PJ Rudall, S Sullivan, KL Stobart, AY de Bruijn, G Reeves, F Qamaruz-Zaman, W-P Hong, J Joseph, WJ Hahn, JG Conran, and MW Chase. 2000. Phylogenetic studies of Asparagales based on four plastid DNA regions. In: KL Wilson and DA Morrison, eds. Monocots: systemat-ics and evolution, pp. 360–371. CSIRO, Collingwood.

    Google Scholar 

  • Fisher JB and PB Tomlinson. 1971. Morphological studies in Cordyline (Agavaceae): I. Introduction and general morphology. J. Arnold Arbor 52: 459–478.

    Google Scholar 

  • Flory WS. 1977. Overview of chromosomal evolution in the Amaryllidaceae. Nucleus 20: 70–88.

    Google Scholar 

  • Friesen N, RM Fritsch, and FR Blattner. 2006. Phylogeny and new infrageneric classification of Allium (Alliaceae) based on nuclear ribosomal DNA ITS sequences. Aliso 22: 372–395.

    Google Scholar 

  • Fritsch RM and M Keusgen. 2006. Occurrence and taxonomic significance of cysteine sulphoxides in the genus Allium L. (Alliaceae). Phytochemistry 67: 1127–1135.

    Article  PubMed  CAS  Google Scholar 

  • Good-Avila SV, V Souza, BS Gaut, and L Eguiarte. 2006. Timing and rate of speciation in Agave (Agavaceae). Proc. Natl. Acad. Sci. USA 103: 9124–9129.

    Article  PubMed  CAS  Google Scholar 

  • Granick EB. 1944. A karyosystematic study of the genus Agave. Am. J. Bot. 31: 283–343.

    Article  Google Scholar 

  • Guaglianone ER and S Arroyo-Leuenberger. 2002: The South American genus Oziroë (Hyacinthaceae-Oziroëoideae). Darwiniana 40: 61–76.

    Google Scholar 

  • Henderson RJF. 1991. Studies in Dianella Lam. ex Juss. (Phormiaceae): 2. Austrobaileya. 3(3): 473–480

    Google Scholar 

  • Henderson RFJ and HT Clifford. 1984. A recircumscription of the Phormiaceae Agardh. Taxon 33: 423–427.

    Article  Google Scholar 

  • Hoover RF. 1939. A definition of the genus Brodiaea. Bull. Torr. Bot. Club 66: 161–166.

    Article  Google Scholar 

  • Hoover RF. 1941. A systematic study of Triteleia. Am. Midland Naturalist 25: 73–100.

    Article  Google Scholar 

  • Huang S-M and C Sterling. 1970. Laticifers in bulb scales of Allium. Am. J. Bot. 57: 1000–1002.

    Article  Google Scholar 

  • Huynh KL. 1971. Etude de l'arrangement du pollen dans la tet-rade chez les angiospermes sur la base de donnees cytologiques: 3. Le pollen trilete du genre Dianella Lam. (Liliaceae). Beitr. Biol. Pfl. 47(2): 277–286.

    Google Scholar 

  • Ito M, A Kawamoto, Y Kita, T Yukawa, and S Kurita. 1999. Phylogeny of Amaryllidaceae based on matK sequence data. Jpn. J. Plant Res. 112: 207–216.

    Article  CAS  Google Scholar 

  • Jin X-B. 1985. The chromosomes of Hemerocallis (Liliaceae). Kew Bull. 41: 379–391.

    Google Scholar 

  • Keighery GJ. 1984. The Johnsonieae (Liliaceae): biology and classification. Flora 175: 103–108.

    Google Scholar 

  • Klercker JEF. 1883. Recherches sur la structure anatomique de l'Aphyllanthes monspeliensis Lin. Bib. K. Svensk. Vetensk. Akad. Handl. 8(6): 1–23.

    Google Scholar 

  • Kocyan A and PK Endress. 2001. Floral structure and development and systematic aspects of some ‘lower’ Asparagales. Plant Syst. Ecol. 229: 187–216.

    Article  Google Scholar 

  • Komar GA. 1976. The ultrastructure of seed appendages (elaio-somes) in Scilla sibirica, Scilla mischtschenkoana, and Chionodoxa gigantea (Liliaceae). Bot. Zhurn. 61: 332–341 (in Russian with English summary).

    Google Scholar 

  • Komar GA. 1985. Alliaceae. In: A Takhtajan, ed. Comparative seed anatomy, vol. 1, pp. 78–82. Nauka, Leningrad (in Russian).

    Google Scholar 

  • Kong H. 2001. Study on the seeds micro-morphological characteristics of Hemerocallis and its taxonomic significance. Acta Bot. Bor.-Occid. Sinica 21(2): 373–376.

    Google Scholar 

  • Kosenko VN. 1994. Pollen morphology of the families Phormiaceae, Blandfordiaceae, and Doryanthaceae. Bot. Zhurn. 79(7): 1–12 (in Russian with English summary).

    Google Scholar 

  • Kosenko VN and OY Sventorzhetskaya. 1999. Pollen morphology in the family Asphodelaceae (Asphodeleae, Kniphofieae). Grana. 38: 218–227.

    Article  Google Scholar 

  • Kubitzki K. 1998. Hostaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 256–260. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Kubitzki K. 1998. Agapanthaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 58–60. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Lebatha P, MH Buys, and B Stedje. 2006. Ledebouria, Resnova and Drimiopsis: a tale of three genera. Taxon 55: 643–652.

    Google Scholar 

  • Lledó MD, AP Davis, MB Crespo, MW Chase, and MF Fay. 2004. Phylogenetic analysis of Leucojum and Galanthus (Amaryllidaceae) based on plastid matK and nuclear ribo-somal spacer (ITS) DNA sequences and morphology. Plant Syst. Evol. 246: 223–243.

    Google Scholar 

  • McKelvey SD and K Sax. 1933. Taxonomic and cytological relationships of Yucca and Agave. J. Arnold Arbor. 14: 76–80.

    Google Scholar 

  • McPherson MA, MF Fay, MW Chase, and SW Graham. 2004. Parallel loss of a slowly evolving intron from two closely related families in Asparagales. Syst. Bot. 29: 296–307.

    Article  Google Scholar 

  • Maekawa F and K Kaneko. 1968. Evolution of karyotype in Hosta (Liliaceae). J. Jpn. Bot. 43: 132–140 (in Japanese with English summary).

    Google Scholar 

  • Manning JC, P Goldblatt, and MF Fay. 2004. A revised generic synopsis of Hyacintheaceae in sub-Saharan Africa, based on molecular evidence, including new combinations and the new tribe Pseudoprospereae. Edinb. J. Bot. 60: 533–568.

    Google Scholar 

  • Marais W and J Reilly. 1978. Chlorophytum and its related genera (Liliaceae). Kew Bull. 32: 653–663.

    Article  Google Scholar 

  • Meerow AW. 1984. Karyotype evolution in the Amaryllidaceae. Herbertia 40: 139–154.

    Google Scholar 

  • Meerow AW. 1985. The evolutionary significance of pancratoid floral morphology in the Amaryllidaceae. Am. J. Bot. 72(6): 962 (abstract).

    Google Scholar 

  • Meerow AW. 1995. Towards a phylogeny of Amaryllidaceae. In: PJ Rudall, PJ Cribb, DF Cutler and CJ Humphries, eds. Monocotyledons: systematics and evolution, pp. 169–179. Royal Botanic Gardens, Kew.

    Google Scholar 

  • Meerow AW and JR Clayton. 2004. Generic relationships among the baccate-fruited Amaryllidaceae (tribe Haemantheae) inferred from plastid and nuclear non-coding DNA sequences date. Plant Syst. Evol. 244: 141–155.

    Article  CAS  Google Scholar 

  • Meerow AW and B Dehgan. 1988. Pollen morphology of the Eucharideae (Amaryllidaceae). Am. J. Bot. 75: 1857–1870.

    Article  Google Scholar 

  • Meerow AW and DA Snijman. 1998. Amaryllidaceae. In: K. Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 83–110. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Meerow AW and DA Snijman. 2001. Phylogeny of Amaryllidaceae tribe Amaryllideae based on nrDNA sequences and morphology. Am. J. Bot. 88: 2321–2330.

    Article  CAS  Google Scholar 

  • Meerow AW, MF Fay, CL Guy, Q-B Li, FQ Zaman, and MW Chase. 1999. Systematics of Amarillidaceae based on cladistic analysis of plastid rbcL and trnL-F sequence data. Am. J. Bot. 86: 1325–1345.

    Article  PubMed  CAS  Google Scholar 

  • Meerow AW, Fay MF, Chase MW, Guy CL, Li QB. 2000. The new phylogeny of the Amaryllidaceae. Herbertia. 54: 180–203.

    Google Scholar 

  • Meerow AW, CL Guy, Q-B Li, and S-L Yang. 2000. Phylogeny of the American Amaryllidaceae based on nrDNA sequences. Syst. Bot. 25: 708–726.

    Article  Google Scholar 

  • Meerow AW, MF Fay, MW Chase, CL Guy, Q Li, D Snijman, and S-L Yang. 2000. Phylogeny of the Amarillidaceae: molecules and morphology. In: K Wilson and D Wallace, eds. Monocots: systematics and evolution, pp. 368–382. CSIRO, Collingwood.

    Google Scholar 

  • Meerow AW, CL Guy, Q-B Li, and JR Clayton. 2002. Phylogeny of the tribe Hymenocallideae (Amaryllidaceae) based on morphology and molecular characters. Ann. Missouri Bot. Gard. 89: 400–413.

    Article  Google Scholar 

  • Meerow AW, J Francisco-Ortega, DN Kuhn, and RJ Schnell. 2006. Phylogenetic relationships and biogeography within the Eurasian clade of Amaryllidaceae based on plastid ndhF and nrDNA ITS sequences: lineage sorting in a reticulate area? Syst. Bot. 31: 42–60.

    Google Scholar 

  • Müller-Doblies U and D Müller-Doblies. 1978. Zum Bauplan von Ungernia, der einzigen endemischen Amaryllidaceen-Gattung Zentralasiens. Bot. Jahrb. Syst. 99: 249–263.

    Google Scholar 

  • Müller-Doblies D and U Müller-Doblies. 1985. De Liliifloris notulae: 2. De taxonomia subtribus Strumariinae (Amaryllidaceae). Bot. Jahrb. Syst. 107: 17–47.

    Google Scholar 

  • Müller-Doblies D and U Müller-Doblies. 1996. Tribes and subtribes and some species combinations in Amaryllidaceae J. St-Hil. emend R. Dahlgren et al. 1985. Feddes Repert. 107: 1–9.

    Google Scholar 

  • Müller-Doblies U and D Müller-Doblies. 1997. A partial revision of the tribe Massonieae (Hyacinthaceae). Feddes Repert. 108: 49–96.

    Google Scholar 

  • Nandi S. 1974a. Chromosome characteristics and their correlation with the phenotypic and ecological variants in Chlorophytum, Iphiopogon and Dianella. Bull. Bot. Soc. Bengal. 28(1–2): 117–122.

    Google Scholar 

  • Nandi S. 1974b. Chromosome characteristics and their correlations with the phenotypic and ecological variants in Chlorophytum. Bull. Bot. Soc. Bengal 28: 117–122.

    Google Scholar 

  • Nemirovich-Danchenko EN. 1985. Agavaceae. In: A Takhtajan, ed. Comparative seed anatomy, vol. 1, pp. 88–92. Nauka, Leningrad (in Russian).

    Google Scholar 

  • Nordal I, TE Eriksen, and M Fosing. 1990. Studies in the generic delimitation of Anthericaceae. Mitt. Staatsinst. Allg. Boy. Hamb. 23b: 535–559.

    Google Scholar 

  • Oganezova GG. 1982. On the anatomical structure of fruit and seed of some Liliaceae in relation to systematics of the family: 2. Scilloideae. Bot. Zhurn. 67: 729–742 (in Russian with English summary).

    Google Scholar 

  • Oganezova GG. 1986. Morphological and anatomical characters of seed and fruit in some members of the subfamily Allioideae (Liliaceae) in relation to their systematics and phylogeny. Bot. Zhurn. 71: 300–310 (in Russian with English summary).

    Google Scholar 

  • Oganezova GG. 1987. Systematic position of some disputable genera for Asphodeloideae (Liliaceae) based on anatomical structure of their fruits and seeds. Bot. Zhurn. 72: 1009–1020 (in Russian with English summary).

    Google Scholar 

  • Oganezova GG. 1990. Seed and fruit anatomy of some Amaryl-lidaceae in connection with their systematics and phylog-eny. Bot. Zhurn. 75: 615–630 (in Russian with English summary).

    Google Scholar 

  • Oganezova GG. 2000. Systematic position of the Trilliaceae, Smilacaceae, Herreriaceae, Tecophilaeaceae, Dioscoreaceae families and the volume and phylogeny of the Asparagales (based on the seed structure).) Bot. Zhurn. 85(9): 9–25 (in Russian with English summary).

    Google Scholar 

  • Pellmyr O. 2003. Yuccas, yucca moths, and coevolution: a review. Ann. Missouri Bot. Gard. 90: 35–55.

    Article  Google Scholar 

  • Pellmyr O, JN Thompson, JM Brown, and RG Harrison. 1996. Evolution of pollination and mutualism in the yucca moth lineage. Am. Nat. 148: 827–847.

    Article  Google Scholar 

  • Pfosser M and F Speta. 1999. Phylogenetics of Hyacinthaceae based on plastid DNA sequences. Ann. Missouri Bot. Gard. 86: 625–875.

    Article  Google Scholar 

  • Pfosser M, W Wetschnig, S Ungar, and G Prenner. 2003. Phylogenetic relationships among genera of Massonieae (Hyacintheaceae) inferred from plastid DNA and seed morphology. J. Plant Res. 116: 115–132.

    PubMed  CAS  Google Scholar 

  • Pires JC and KJ Sytsma. 2002. A phylogenetic evaluation of a biosystematic framework: Brodiaea and related petaloid monocots (Themidaceae). Am. J. Bot. 89: 1342–1359.

    Article  Google Scholar 

  • Pires JC, MF Fay, WS Davis, L Hufford, J Rova, MW Chase, and KJ Sytsma. 2001. Molecular and phylogenetic analyses of Themidaceae (Asparagales). Kew Bull. 56: 601–626.

    Article  Google Scholar 

  • Pires JC, MF Fay, WS Davis, L Hufford, J Rova, MW Chase, and KJ Sytsma. 2001. Molecular and morphological phylo-genetic analyses of Themidaceae (Asparagales). Kew Bull. 56: 601–626.

    Article  Google Scholar 

  • Pires JC, IJ Maureira, JP Rebman, GA Salazar, LI Cabrera, MF Fay, and MW Chase. 2004. Molecular data confirm the phylogenetic placement of the enigmatic Hesperocallis (Hesperocallidaceae) with Agave. Madroño 51: 307–311.

    Google Scholar 

  • Rahn K. 1998a. Alliaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 70–78. Springer, Berlin/ Heidelberg/New York.

    Google Scholar 

  • Rahn K. 1998b. Themidaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 436–440. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Raju MUS. 1957. Some aspects of the embryology of Dianella nemorosa. J. Indian Bot. Soc. 36: 223–226.

    Google Scholar 

  • Reynolds T, ed. 2004. Aloes, the Genus Aloe. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Rudall P. 1994. The ovule and embryo sac in Xanthorraeaceae sensu lato. Flora 189: 335–351.

    Google Scholar 

  • Rudall PJ. 1999. Flower anatomy and systematics of Comospermum (Asparagales). Syst. Geogr. Plants 68: 195–202.

    Article  Google Scholar 

  • Rudall PJ. 2003. Unique floral structures and iterative evolutionary themes in Asparagales: Insights from a morphological cladistic analysis. Bot. Rev. 68: 488–509.

    Article  Google Scholar 

  • Rudall PJ, MW Chase, and JG Conran. 1996. New circumscriptions and a new family of asparagoid lilies: genera formerly included in Anthericaceae. Kew Bull. 51: 667–680.

    Article  Google Scholar 

  • Rudall PJ, MW Chase, and JG Conran. 1997. Boryaceae. Kew Bull. 52: 416.

    Article  Google Scholar 

  • Rudall PJ, EM Engleman, L Hanson, and MW Chase. 1998. Embryology, cytology and systematics of Hemiphylacus, Asparagus and Anemarrhena (Asparagales). Plant Syst. Evol. 211: 181–199.

    Article  Google Scholar 

  • Sató D. 1935. Analysis of the karyotypes in Yucca, Agave, and related genera with special reference to the phylogenetic sig-nificance. Jpn. J. Genet. 11: 272–278.

    Article  Google Scholar 

  • Sató D. 1938. Karyotype alteration and phylogeny: IV. Karyo-types in Amarylidaceae with special reference to the SAT-chromosome. Cytologia 9: 203–242.

    Google Scholar 

  • Schaffer WM and MV Schaffer. 1977. The reproductive biology of the Agavaceae: I. Pollen and nectar production in four Arizona agaves Southwestern Naturalist 22: 157–167.

    Article  Google Scholar 

  • Schlimbach H. 1924. Beiträge zur Kenntnis der Samen-aniagen und Samen der Amaryllidaceen mit Berück-sichtigung des Wassergehaltes der Samen. Flora 117: 41–54.

    Google Scholar 

  • Schlittler J. 1945. Untersuchungen über den Bau der Blütenstände in Bereich des Anthericum-typus (Asphodelinae-Anthericinae-Dianellinae). Mitt. Bot. Mus. Univ. Zürich. 174: 200–239.

    Google Scholar 

  • Schnarf K und R Wunderlich. 1939. Zur vergleichender Embryo-logie der Liliaceae-Asphodeloideae. Flora 33: 297–327.

    Google Scholar 

  • Schulze W. 1975. Beiträge zur Taxonomie der Liliifloren. I. Asphodelaceae. Wiss. Z. Friedrich-Schiller Univ. Jena 24, 4: 403–415.

    Google Scholar 

  • Schulze W. 1982. Beiträge zur Taxonomie der Liliifloren: IX. Anthericaceae. Wiss. Z. Friedrich-Schiller Univ. Jena, Math.-Naturwiss. Reihe, 31: 291–307.

    Google Scholar 

  • Schmid WG. 1991. The genus Hosta. Timber Press, Portland, OR.

    Google Scholar 

  • Smith GF and EMA Steyn. 2004. Taxonomy of Aloaceae. In: T Reynolds, ed. Aloes, the Genus Aloe, pp. 15–36. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Smith GF and A-E Van Wyk. 1991. Generic relationships in the Alooideae (Asphodelaceae). Taxon 40: 557–581.

    Google Scholar 

  • Smith GF and A-E van Wyk. 1998. Asphodelaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 130–140. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Schnarf K und R Wunderlich. 1939. Zur vergleichenden Embryo-logie der Liliaceae-Asphodeloideae. Flora 133: 297–327.

    Google Scholar 

  • Schuize W. 1983. Beiträge zur Taxonomie der Liliifloren: 14. Der Umfang der Amaryllidaceae. Wiss. Z. Friedrich-Schiller-Univ. Jena, Math.-Naturwiss. Reihe, 32: 985–1003.

    Google Scholar 

  • Shah GL and BV Gopal. 1970. Structure and development of stomata on the vegetative and floral organs of some Amaryllidaceae. Ann. Bot. 34: 737–749.

    Google Scholar 

  • Singh V. 1972. Floral morphology of the Amaryllidaceae: I. Subfamily Amaryllidoideae. Canad. J. Bot. 50: 1555–1565.

    Article  Google Scholar 

  • Snijman DA. 2000. Growth periodicity, flowering and phylogeny of the African Amaryllideae (Amaryllidaceae). In: JR Timberlake and S Kativu, eds. African plants: biodiversity, taxonomy and uses: proceedings of the 1997 AETFAT congress, Harare, Zimbabwe, pp. 389–404. Royal Botanic Gardens, Kew.

    Google Scholar 

  • Snijman DA and HP Linder. 1996. Phylogenetic relationships, seed characters, and dispersal system evolution in Amaryl li-deae (Amaryllidaceae). Ann. Missouri Bot. Gard. 83: 362–386.

    Article  Google Scholar 

  • Sobotik M and F Speta. 1997. Beitrag zur Wurzelanatomie der Hyacinthaceae. Stapfia 50: 339–357.

    Google Scholar 

  • Speta F. 1998. Hyacinthaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 261–285. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Stedje B. 2000. The evolutionary relationships of the genera Drimia, Thuranthos, Bowiea and Schizobasis discussed in the light of morphology and chloroplast DNA sequence data. In: KL Wilson and DA Morrison, eds. Monocots: systema-tics and evolution, pp. 414–417. CSIRO, Collingwood.

    Google Scholar 

  • Stedje B. 2001a. The generic delimitation within Hyacinthaceae, a comment on works by F. Speta. Bothalia 31: 192–195.

    Google Scholar 

  • Steje B. 2001b. Generic delimitation of Hyacinthaceae, with special emphasis on sub-Saharan genera. Syst. Geogr. Plants 71: 449–454.

    Article  Google Scholar 

  • Stenar H. 1933. Zur Embryologie der Agapanthus-Gruppe. Bot. Not. 1933: 520–530.

    Google Scholar 

  • Stenar H. 1951. Zur Embryologie von Haemanthus Katherinae Bak., Erorterungen über das helobiale Endosperm in den Amaryllidaceae und Liliaceae. Acta Horti Berg. 16: 57–72.

    Google Scholar 

  • Sterling C and S-M Huang. 1972. Notes on the laticifers of Allium, Caloscordum, Nothoscordum, Tristagma, and Tulbaghia. Plant Life 28: 43–46.

    Google Scholar 

  • Stevens PF. 1978. Generic limits in the Xeroteae (Liliaceae sensu lato). J. Arnold Arbor. 59: 129–155.

    Google Scholar 

  • Stevenson DW and J Grimes. 1997. Herreriaceae do not have cladodes. Am. J. Bot. 84(6): 236 (abstract).

    Google Scholar 

  • Sýkorová E, J Fajkus, M Mezníková, KY Lim, K Neplechová, FR Blattner, MW Chase, and AR Leitch. 2006. Minisatellite telomeres occur in the family Alliaceae but are lost in Allium. Am. J. Bot. 93: 814–823.

    Article  Google Scholar 

  • Tomita K. 1931. Über die Entwicklung des nackten Embryos von Crinum latifolium L. Sci. Rep. Tohoku Imp. Univ., 4th ser. (Biol.), 6: 163–169.

    Google Scholar 

  • Tomlinson PB. 1965. Notes on the anatomy of Aphyllanthes (Liliaceae) and comparison with Eriocaulaceae. Bot. J. Linn. Soc. 59: 163–173.

    Article  Google Scholar 

  • Tomlinson RB and JB Fisher. 1971. Morphological studies in Cordyline (Agavaceae): I. Introduction and general morphology. J. Arnold Arbor. 52(3): 459–478

    Google Scholar 

  • Traub HP. 1957. Classification of the Amaryllidaceae: Subfamilies, tribes, and genera. Plant Life 13: 76–83.

    Google Scholar 

  • Traub HP. 1963. The genera of Amaryllidaceae. La Jolla, Calif. The American Plant Life Soc, pp 15–43.

    Google Scholar 

  • Traub HP. 1972. The order Alliales. Plant Life 28: 129–138.

    Google Scholar 

  • Treutlein J, GF Smith, B-E van Wyk, and M Wink. 2003. Phylo-genetic relationships in Asphodelaceae (subfamily Alooideae) inferred from chloroplast DNA sequences (rbcL, matK) and from genomic finger-printing (ISSR). Taxon 52: 193–207.

    Article  Google Scholar 

  • Vaikos NP and RM Pai. 1982. The floral anatomy of Kniphofia uvaria Hook. (Liliaceae: Kniphofieae). Proc. Indian Acad. Sci. 91: 351–356.

    Google Scholar 

  • Vaikos NP and RM Pai. 1986. The floral anatomy of Bowiea volubilis Harv. J. Indian Bot. Soc. 65: 516–518.

    Google Scholar 

  • Vaikos NP, SK Markandeya, and RM Pai. 1978. The floral anatomy of the Liliaceae: The tribe Aloineae. Indian J. Bot. 1: 61–63.

    Google Scholar 

  • Vaikos NP, SK Markandeya, and RM Pai. 1981. The floral anatomy of the Liliaceae: The tribe Hemerocallideae. J. Indian Bot. Soc. 60: 222–231.

    Google Scholar 

  • Van Damme EJM, IJ Goldstein, and WJ Peumans. 1991. A comparative study of mannose-binding lectins from the Amaryllidaceae and Alliaceae.Phytochemistry 30: 509–514.

    Article  Google Scholar 

  • Van Wyk B-E, GF Smith, AM Viljoen, J Treutlein, and M Wink. 2005. Secondary metabolites in relation to molecular phy-logenies in Aloe and related genera (family Asphodelaceae). In Abstracts of XVII International Botanical Congress, p. 36. Vienna.

    Google Scholar 

  • Verhoek S. 1998. Agavaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 60–70. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Weichhardt-Kulessa K, T Börner, J. Schmitz, U Müller-Doblies, and D Müller-Doblies. 2000. Controversial taxonomy of Strumarinae (Amaryllidaceae) investigated by nuclear rDNA (ITS) sequences. Plant Syst. Evol. 223: 1–13.

    Article  CAS  Google Scholar 

  • Wetschnig W, M Pfosser, and G Prenner. 2002. Zur Samenmorphologie der Massonieae Baker 1871 (Hyacintha-ceae) im Liche phylogenetisch interpretierter molekularer Befunde. Stapfia 80: 349–379.

    Google Scholar 

  • Whitaker TW. 1934. Chromosome constitution in certain monocotyledons. J. Arnold Arbor. 15: 135–143.

    Google Scholar 

  • Wunderlich R. 1950. Die Agavaceen Hutchinson's im Lichte ihrer Embryologie, ihres Gynözeum-, Staubblatt- und Blattbaues. Oesterr. Bot. Z. 97: 437–502.

    Article  Google Scholar 

  • Xiong Z-T and S-C Chen. 1998. Numerical cytotaxonomic studies of Hemerocallis (Liliaceae) from China. Acta Phytotax. Sinica 36: 206–215.

    Google Scholar 

  • Xiong Z-T, S Chen, D Hong, and Y Luo. 1998. Pollen morphology and its evolutionary significance in Hemerocallis (Liliaceae). Nord. J. Bot. 18: 183–189.

    Article  Google Scholar 

  • Zomlefer WB. 1998. The genera of Hemerocallidaceae in the southeastern United States. Harvard Pap. Bot. 3: 113–145.

    Google Scholar 

  • Arber A. 1924a. Danaë, Ruscus, and Semele: a morphological study. Ann. Bot. 38: 229–260.

    Google Scholar 

  • Arber A. 1924b. Myrisphyllum and Asparagus. Ann. Bot. 38: 635–659.

    Google Scholar 

  • Bjornstad I. 1970. Comparative embryology Aspara-goideae-Polygonatae. Nytt. Mag. Bot. 17: 169–207.

    Google Scholar 

  • Baijnath H and P Perry. 1980. Preliminary observations of leaf surface structures in Eriospermum Jacq. Proc. Electr. Microsc. Soc. S. Afr. 10: 39–40.

    Google Scholar 

  • Baker JG. 1875. Revision of the genera and species of Asparagaceae. J. Linn. Soc. Bot. 14: 508–632.

    Google Scholar 

  • Baker JG. 1877. Revision of the genera and species Anthericeae and Eriospermeae. Bot. J. Linn. Soc. 15: 253–363.

    Google Scholar 

  • Björnstad I. 1970. Comparative embryology of Asparagoideae-Polygonateae, Liliaceae. Nytt. Mag. Bot. 17: 160–207.

    Google Scholar 

  • Bogler D. 1998. Nolinaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 392–397. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Bogler DJ and BB Simpson. 1995. A chloroplast DNA study of the Agavaceae. Syst. Bot. 20: 191–205.

    Article  Google Scholar 

  • Bogler DJ and BB Simpson. 1996. Phylogeny of Agavaceae based on ITS rDNA sequence variation. Am. J. Bot. 83: 1225–1235.

    Article  CAS  Google Scholar 

  • Bos JJ. 1998. Dracaenaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 238–240. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Bugnon F. 1960. Contributions a 1'etude de quelques problemes d'anatomie vegetale: V. Vascularisation de 1'eperon foliar chez l'Asparagus sprengeri Regel. Bull. Soc. Bourg. 20: 65–71.

    Google Scholar 

  • Conran JG. 1987. A phenetic study of the relationships of the genus Drymophila R. Br. within the reticulate-veined Liliiflorae. Aust. J. Bot. 35: 283–300.

    Article  Google Scholar 

  • Conran JG. 1989. Cladistic analysis of some net-veined Liliiflorae. Plant Syst. Evol. 168: 123–141.

    Article  Google Scholar 

  • Conran JG and MN Tamura. 1998. Convallariaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 186–198. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Cooney-Sovetts C and R Sattler. 1986. Phylloclade development in the Asparagaceae: an example of homeosis. Bot. J. Linn. Soc. 94: 327–371.

    Article  Google Scholar 

  • Cutler DF. 1992. Vegetative anatomy of Ophiopogoneae (Convallariaceae). Bot. J. Linn. Soc. 110: 385–419.

    Article  Google Scholar 

  • Dai LK and SY Liang. 1991. Epidermal features of leaves and their taxonomic significance in subfamily Ophiopogonoideae (Liliaceae). Acta Phytotax. Sinica 29: 335–346.

    Google Scholar 

  • Dickson A. 1886. On the occurrence of foliage leaves in Ruscus (Semele) androgynus with some structural and morphological observations. Trans. Proc. Bot. Soc. Edinb. 16: 130–149.

    Google Scholar 

  • Duthie AV. 1940. Contribution to our knowledge of the genus Eriospermum. Ann. Univ. Stellenbosch, Reeks A, Wiss.-Natuurk. 18: 1–64.

    Google Scholar 

  • Eguiarte LE et al. 1994. The systematic status of the Agavaceae and Nolinaceae and related Asparagales in the monocotyledons: an analysis based on the rbcL gene sequence. Bol. Soc. Bot. Mex. 54: 35–56.

    Google Scholar 

  • Gu Z, Q Yang, and K Kondo. 1990. A karyomorphological study on Disporopsis Hance in China. La Kromosomo 57: 1916–1925.

    Google Scholar 

  • Hernandez L. 1995. Taxonomic study of the Mexican genus Hemiphylacus (Hyacinthaceae). Syst. Bot. 20: 546–554.

    Article  Google Scholar 

  • Hirsch A. 1977. A developmental study of the phylloclades of Ruscus aculeatus L. Bot. J. Linn. Soc. 74: 355–365.

    Article  Google Scholar 

  • Hong D-Y and X-Y Zhu. 1990. Report on karyotypes of 6 species in 4 genera of Poligonateae from China. Acta Phytotax. Sinica 28: 185–198 (in Chinese with English summary).

    Google Scholar 

  • Hong D-Y, LM Ma, and T Chen. 1987. A discussion on the karyotype and evolution of the tribe Convallarieae s. 1. (Liliaceae). In: DY Hong, ed. Plant chromosome research. Nishiki Print Co., Hiroshima.

    Google Scholar 

  • Jang CG and M Pfosser. 2002. Phylogenetics of Ruscaceae sensu lato based on plastid rbcL and trnL-F DNA sequences. Stapfia. 80: 333–348.

    Google Scholar 

  • Joyeux L. 1928. Valeur morphologique du cladode chez les Ruscees. Mem. Acad. Royale Belgique, Bruxelles 9: 1–94.

    Google Scholar 

  • Judd WS. 2003. The genera of Ruscaceae in the Southeastern United States. Harvard Pap. Bot. 7: 93–149.

    Google Scholar 

  • Ko SC, YO Kim, and YS Kirn. 1985. A cytotaxonomical study of the tribe Ophiopogoneae in Korea. Korean J. Plant Taxon. 15: 111–125.

    Google Scholar 

  • Kubitzki K and PJ Rudall. 1998. Asparagaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 125–129. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Lazarte JE and BF Falser. 1979. Morphology, vascular anatomy, and embryology of pistillate and staminate flowers of Asparagus officinalis. Am. J. Bot. 66: 753–764.

    Article  Google Scholar 

  • Lu A-M. 1985. Embryology and probable relationships of Eriospermum Jacq. (Eriospermaceae). Nord. J. Bot. 5: 229–240.

    Google Scholar 

  • Lü H-L, S-A Wu, J Yang, and G-Y Rao. 2000. Systematic study on the tribe Polygonateae (Liliaceae s.l.) with the evidence from leaf abaxial epidermis and seed coat. Acta Phytotax. Sinica 38: 30–42 (in Chinese with English summary).

    Google Scholar 

  • Ma L-M and D-Y Hong. 1990. Pollen morphology and epidermal characters of leaves in Convallarieae (s.l.). Acta phyto-tax. Sinica 28: 228–236.

    Google Scholar 

  • McPherson MA, MF Fay, MW Chase, and SW Graham. 2004. Parallel loss of a slowly evolving intron from two closely related families in Asparagales. Syst. Bot. 29: 296–307.

    Article  Google Scholar 

  • Nakai T. 1936. Subdivision of Convallariaceae Link. Jpn. J. Bot. 12: 145–150.

    Google Scholar 

  • Oganezova GH. 2000. Fruit and seed structure of some Asparagaceae s.l. in connection with the volume and phylog-eny of the family. Bot. Zhurn. 85(8): 14–31. (in Russian with English summary).

    Google Scholar 

  • Perry PL. 1994. A revision of the genus Eriospermum (Eriospermaceae). Contrib. Bolus Herb. 17: 1–320.

    Google Scholar 

  • Perry PL and PJ Rudall. 1998. Eriospermaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 241–244. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Pires JC, IJ Maureira, TJ Givnish, KJ Sytsma, O Seberg, G Petersen, JI Davis, DW Stevenson, PJ Rudall, MF Fay, and MW Chase. 2004. Phylogeny, genome size, and chromosome evolution in Asparagaceae. In: JT Columbus, EA Friar, CW Hamilton, JM Porter, LM Prince, and MG Simpson, eds. Monocots: Comparative biology and evolution, vol. 1, pp. 287–304. Rancho Santa Ana Botanical Garden, Claremont.

    Google Scholar 

  • Rao G-Y and K-Y Pan. 1994. Pollen morphology of the Polygonateae and its systematic significance. Cathaya 6: 75–91.

    Google Scholar 

  • Rao RP and A Kaur. 1979. Embryology and systematic position of Ophiopogon intermedius. Proc. Indian Natl. Sci. Acad. 45: 175–187.

    Google Scholar 

  • Rudall PJ and DF Cutler. 1995. Asparagales, a reappraisal. In: P Rudall, PJ Cribb, DF Cutler and CJ Humphries, eds. Monocotyledons: systematics and evolution, pp. 157–168. Royal Botanic Gardens, Kew.

    Google Scholar 

  • Rudall PJ and G Campbell. 1998. Flower and pollen structure of Ruscaceae in relation to Aspidistreae and other Convallariaceae. Flora 194: 201–214.

    Google Scholar 

  • Rudall PJ, CA Furness, MW Chase, and FF Michael. 1997. Microsporogenesis and pollen sulcus type in Asparagales (Lilianae). Canad. J. Bot. 75: 408–430.

    Google Scholar 

  • Rudall PJ, EM Engleman, L Hanson, and MW Chase. 1998. Embryology, cytology and systematics of Hemiphylacus, Asparagus and Anemarrhena (Asparagales). Plant Syst. Evol. 211: 181–199.

    Article  Google Scholar 

  • Rudall PJ, JG Gonran, and MW Chase. 2000. Systematics of Ruscaceae/Convallariaceae: a combined morphological and molecular investigation. Bot. J. Linn. Soc. 134: 73–92.

    Google Scholar 

  • Sarkar AK, N Datta, and U Chatterjee. 1981 (1982). Cytology of Peliosanthes Andr. (Liliaceae) as an aid to taxonomy. Caryologia 34: 467–472.

    Google Scholar 

  • Schlitder J. 1953. Blütenartikulation und Phyllokladien der Liliaceae organophylogenetisch betrachtet, part 1 and 2. Feddes Repert. 55: 154–258.

    Google Scholar 

  • Schlitter J. 1960. Die Asparageenphyllokladien erweisen sich auch ontogenetisch als Blätter. Bot. Jahrb. Syst. 79: 428–446.

    Google Scholar 

  • Schulze W. 1982. Beiträge zur Taxonomie der Liliifloren X. Asparagaceae. Wiss. Z. Friedrich Schiller Univ. Jena 31: 309–330.

    Google Scholar 

  • Sharma AK and M Chaudhuri. 1964. Cytological studies as an aid in assessing the status of Sansevieria, Ophiopogon, and Curculigo. Nucleus 7: 43–58.

    Google Scholar 

  • Sharma AK and PC Datta. 1960. Chromosome studies in species of Dracaena with special reference to their means of specia-tion. J. Genet. 57: 43–76.

    Article  Google Scholar 

  • Sharma AK and I Ghosh. 1968. Cytotaxonomy of Dracaena. J. Biol. Sci. 11: 45–55.

    Google Scholar 

  • Shinwari ZK, H Kato, R Terauchi, and S Kawano. 1994. Phylogenetic relationships among genera in the Liliaceae-Asparagoideae-Polygonatae s. 1. inferred from rbcL gene sequence data. Plant Syst. Evol. 192: 263–277.

    Article  CAS  Google Scholar 

  • Stützel T, U Reck, and D Müller-Doblies. 1991. Morphologische Studien zur Systematik der Convallariaceae. In: G Wagenitz, ed. 10th Symposium Morphologie, Anatomie und Systematik, p. 74. Göttingen.

    Google Scholar 

  • Tamura MN. 1993. Biosystematic studies on the genus Polygonatum (Liliaceae) III. Morphology of staminal filaments and karyology of eleven Eurasian species. Bot. Jahrb. Syst. 115: 1–26.

    Google Scholar 

  • Tamura MN. 1995. A karyological review of the orders Asparagales and Liliales (Monocotyledoneae). Feddes Repert. 106: 83–111.

    Google Scholar 

  • Tamura MN, M Ogisu, and J-M Xu. 1997a. Heteropolygonatum, a new genus of the tribe Polygonatae (Convallariaceae). Kew Bull. 52: 949–956.

    Article  Google Scholar 

  • Tamura MN, AE Schwarzbach, S Kruse, et al. 1997b. Biosystematic studies on the genus Polygonatum (Convallariaceae) I V. Molecular phylogenetic analysis based on restriction site mapping of the chloroplast gene trnK. Feddes Repert. 108: 159–168.

    Article  Google Scholar 

  • Utech FH. 1979. Floral vascular anatomy of the Himalayan Theropogon pallidus Maxim. (Liliaceae-Convallarieae). Ann. Carnegie Mus. 48(3): 25–41.

    Google Scholar 

  • Utech FH and S Kawano. 1976. Floral vascular anatomy of Convallaria majalis L. and C.keiskei Miq. (Liliaceae – Convallariinae). Bot. Mag. (Tokyo) 89: 173–182.

    Article  Google Scholar 

  • Vaikos NP, SK Markandeya, and RM Pai. 1989. Floral anatomy of the Liliaceae: tribe Convallarieae. Proc. Indian Acad. Sci. Plant Sci. 99: 91–95.

    Google Scholar 

  • Velenovsky J. 1903. Zur Deutung der Phyllokladien der Asparageen. Beih. Bot. Centralbl. 15: 257–268.

    Google Scholar 

  • Wu S-A, H-L LU, J Yang, G-Y Rao, R-L You, S Ge, and Y Zhong. 2000. Molecular systematic studies on the tribe Polygonateae (s.l.) in China based on RFLPs data of PCR-amplified chloroplast DNA fragments. Acta Phytotax. Sinica 38: 97–110 (in Chinese with English summary).

    Google Scholar 

  • Yamashita J and MN Tamura. 2000. Molecular phylogeny of the Convallariaceae (Asparagales). In: KL Wilson and DA Morrison, eds. Monocots: systematics and evolution, pp. 387–400. CSIRO, Collingwood.

    Google Scholar 

  • Yamashita J and MN Tamura. 2004. Phylogenetic analysis and chromosome evolution in Convallarieae (Ruscaceae sensu lato), with some taxonomic treatments. J. Plant Res. 117: 363–370.

    Article  PubMed  Google Scholar 

  • Yang D-Q and K-F Zhu. 1990. Studies on karyotypes of 5 species of Rohdea and Tupistra. Acta Phytotax. Sinica 28: 199– 206 (in Chinese with English summary).

    Google Scholar 

  • Yang Y, H Li, X Liu, and K Katsuhiko. 1990. Karyotype study on the genus Ophiopogon in Yunnan. Acta Bot. Yunn. Suppl. 3: 94–102.

    Google Scholar 

  • Yeo PF. 1968. A contribution to the taxonomy of the genus Ruscus. Notes Roy. Bot. Gard. Edinb. 28: 237–264.

    Google Scholar 

  • Yeo PF. 1998. Ruscaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 412–416. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Zimmermann MH and PB Tomlinson. 1969. The vascular system in the axis of Dracaena fragrans (Agavaceae): 1. Distribution and development of primary strands. J. Arnold Arbor. 50: 370–383.

    Google Scholar 

  • Zimmermann MH and PB Tomlinson. 1970. The vascular system in the axis of Dracaena fragrans (Agavaceae): 2. Origin and distribution of secondary tissues. J. Arnold Arbor. 51: 478–491.

    Google Scholar 

  • Callmander MW, P Chassot, Küpfer, and PP Lowry. 2003. Recognition of Martelliodendron, a new genus of Pandanaceae, and its biogeographic implications. Taxon 52: 747–762.

    Article  Google Scholar 

  • Cox PA. 1981. Bisexuality in the Pandanaceae: new findings in the genus Freycinetia. Biotropica 13: 195–198.

    Article  Google Scholar 

  • Cox PA. 1990. Pollination and the evolution of breeding systems in Pandanaceae. Ann. Missouri Bot. Gard. 77: 816–840.

    Article  Google Scholar 

  • Cox PA, K-L Huynh, and BC Stone. 1995. Evolution and sys-tematics of Pandanaceae. In: PJ Rudall, PJ Cribb, DF Cutler, and CJ Humphries, eds. Monocotyledons: systematics and evolution, vol. 2, pp. 663–684. Royal Botanic Gardens, Kew.

    Google Scholar 

  • Fagerlind F. 1940. Stempelbau und Embryosackentwicklung bei einigen Pandanazeen. Ann. Jard. Bot. Buitenzorg 49: 55–78 + Taf. 7–13.

    Google Scholar 

  • Furness CA and PJ Rudall. 2006. Comparative structure and development of pollen and tapetum in Pandanales. Int. J. Plant Sci. 167: 331–348.

    Article  Google Scholar 

  • Huynh K-L. 1974. La morphologic microscopique et la tax-onomie du genre Pandanus. Bot. Jahrb. Syst. 94: 190–256.

    Google Scholar 

  • Huynh K-L. 1991. The flower structure in the genus Freycinetia, Pandanaceae (part 1) – Potential bisexuality in the genus Freycinetia. Bot. Jahrb. Syst. 112: 295–328.

    Google Scholar 

  • Huynh K-L. 1992. The flower structure in the genus Freycinetia, Pandanaceae (part 2) — Early differentiation of the sex organs, especially of the staminodes, and further notes on the anthers. Bot. Jahrb. Syst. 114: 417–441.

    Google Scholar 

  • Huynh K-L. 2001. Contribution to the flower structure of Sararanga (Pandanaceae). Bot. J. Linn. Soc. 136: 239–245.

    Article  Google Scholar 

  • Huynh K-L and PA Cox. 1992. Flower structure and potential bisexuality in Freycinetia reineckei (Pandanaceae), a species of the Samoa Islands. Bot. J. Linn. Soc. 110: 235–265.

    Article  Google Scholar 

  • Jarzen DM. 1983. The fossil pollen record of the Pandanaceae. Gard. Bull. 36: 163–175.

    Google Scholar 

  • Nambudiri EM and WD Tidwell. 1978. On probable affinities of Viracarpon Sahni from the Deccan Intertrappean flora of India. Paleontographica 166: 30–43.

    Google Scholar 

  • North CA and AJ Willis. 1971. Contributions to the anatomy of Sararanga (Pandanaceae). Bot. J. Linn. Soc. 64: 411–421.

    Article  Google Scholar 

  • Pijl L van der. 1956. Remarks on pollination by bats in Freycinetia, Duabanga, and Haplophragma, and on chi-ropterophily in general. Acta Bot. Neerl. 5: 135–144.

    Google Scholar 

  • Poppendieck H-H. 1987. Monoecy and sex changes in Freycinetia (Pandanaceae). Ann. Missouri Bot. Gard. 74: 314–320.

    Article  Google Scholar 

  • Stone BC. 1968a. Morphological studies in Pandanaceae: I. Staminodia and pistillodia of Pandanus and their hypothetical significance. Phytomorphology 18: 498–509.

    Google Scholar 

  • Stone BC. 1968b. Materials for a monograph of Freyci-netia Gaud.: IV. Subdivision of the genus, with fifteen new sections. Blumea 16: 361–372.

    Google Scholar 

  • Stone BC. 1970. Materials for a monograph of Freycinetia Gaud. (Pandanaceae): V. Singapore, Malaya, and Thailand. Gardens' Bulletin. Straits Settlements 25: 189–207.

    Google Scholar 

  • Stone BC. 1972a. Materials for a monograph of Freyci-netia Gaud. (Pandanaceae): X V. The Sumatran species. Federat. Mus. J., n.s. 15: 203–207.

    Google Scholar 

  • Stone BC. 1972b. A reconsideration of the evolutionary status of the family Pandanaceae and its significance in monocotyledon phylogeny. Quart. Rev. Biol. 47: 34–45.

    Article  Google Scholar 

  • Stone BC. 1990. New evidence for the reconciliation of floral organization in Pandanaceae with normal angiosperm patterns. In: P Baas, K Kalkman, and R Geesink, eds. The plant diversity of Malesia, pp. 33–35. Kluwer, Dordrecht.

    Google Scholar 

  • Stone BC, K-L Huynh, and H-H Poppendieck. 1998. Pandanaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 397–404. Springer, Berlin/ Heidelberg/New York.

    Google Scholar 

  • Tomlinson PB. 1965. A study of the stomatal structure in Pandanaceae. Pac. Sci. 19: 38–54.

    Google Scholar 

  • Vaughan RE and PO Wiehe. 1953. The genus Pandanus in the Mascarene Islands. Bot. J. Linn. Soc. 55: 1–32.

    Article  Google Scholar 

  • Zimmermann MH, PB Tomlinson, and J LeClaire. 1974. Vascular construction and development in the stems of certain Pandanaceae. Bot. J. Linn. Soc. 68: 21–41.

    Article  Google Scholar 

  • Dahlgren RMT. 1982. Cyclanthaceae. Monocot Newslett. 2: 7–32.

    Google Scholar 

  • Eriksson R. 1989. Chorigyne, a new genus of the Cyclanthaceae from Central America. Nord. J. Bot. 9: 31–45.

    Article  Google Scholar 

  • Eriksson R. 1993. Systematics of the Cyclanthaceae, especially Sphaeradenia and Chorigyne. Goteborg.

    Google Scholar 

  • Eriksson R. 1994. Phylogeny of the Cyclanthaceae. Plant Syst. Evol. 190: 31–47.

    Article  Google Scholar 

  • Furness CA and PJ Rudall. 2006. Comparative structure and development of pollen and tapetum in Pandanales. Int. J. Plant Sci. 167: 331–348.

    Article  Google Scholar 

  • French CH, K Klancy, and PB Tomlinson. 1983. Vascular patterns in stems of the Cyclanthaceae. Am. J. Bot. 70: 1386–1400.

    Article  Google Scholar 

  • Gottsberger G. 1991. Pollination of some species if the Carludovicoideae, and remarks on the origin and evolution of the Cyclanthaceae. Bot. Jahrb. Syst. 113: 221–235.

    Google Scholar 

  • Hammel BE and GJ Wilder. 1989. Dianthoveus: A new genus of Cyclanthaceae. Ann. Missouri Bot. Gard. 76: 112–123.

    Article  Google Scholar 

  • Harling G. 1946. Studien über den Blütenbau und die Embryologie der Familie Cyclanthaceae. Svensk Bot. Tidskr. 40: 257–272.

    Google Scholar 

  • Harling G. 1958. Monograph of the Cyclanthaceae. Acta Horti Berg. 18: 1–428.

    Google Scholar 

  • Harling G, GL Wilder, and R Eriksson. 1998. Cyclanthaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 202–215. Springer, Berlin/Heidelberg/ New York.

    Google Scholar 

  • Surange KR. 1949. A contribution to the morphology and anatomy of the Cyclanthaceae. Trans. Natl. Inst. Sci. India, Calcutta 3(4): 159–209.

    Google Scholar 

  • Tomlinson PB and GJ Wilder. 1984. Systematic anatomy of Cyclanthaceae (Monocotyledoneae) – an overview. Bot. Gaz. 145: 535–549.

    Article  Google Scholar 

  • Wilder GJ. 1976. Structure and development of leaves of Carludovica palmata (Cyclanthaceae) with reference to other Cyclanthaceae and Palmae. Am. J. Bot. 63: 1237–1256.

    Article  Google Scholar 

  • Wilder GJ. 1981a. Structure and development of Cyclanthus bipartitus Poit. (Cyclanthaceae) with reference to other Cyclanthaceae. II. Adult leaf. Bot. Gaz. 142: 96–114.

    Article  Google Scholar 

  • Wilder GJ. 1981b. Morphology of adult leaves in the Cyclanthaceae (Monocotyledoneae). Bot. Gaz. 142: 564–588.

    Article  Google Scholar 

  • Wilder GJ. 1984. Anatomy of noncostal portions of lamina in the Cyclanthaceae (Monocotyledoneae), part 5. Bot. Mus. Leafl. 30: 103–133.

    Google Scholar 

  • Wilder GJ. 1985. Anatomy of noncostal portions of lamina in the Cyclanthaceae (Monocotyledoneae), parts 1–4. Bot. Gaz. 146: 82–105, 213–231, 375–394, 545–563.

    Article  Google Scholar 

  • Wilder GJ. 1986. Anatomy of first-order roots in the Cyclanthaceae (Monocotyledoneae), parts 1 and 2. Canad. J. Bot. 64: 2622–2644, 2848–2864.

    Google Scholar 

  • Wilder GJ. 1987. Contributions to taxonomy and morphology of Schultesiophytum chorianthum Harl. and Dicranopygium mirabile Harl. (Cyclanthaceae). Opera Bot. 92: 277–291.

    Google Scholar 

  • Wilder GJ. 1988. Inflorescence position as a taxonomic character in the Cyclanthaceae. Bot. Gaz. 149: 110–115.

    Article  Google Scholar 

  • Wilder GJ. 1989. Morphology of Dianthoveus cremnophilus (Cyclanthaceae). Canad. J. Bot. 67: 2450–2464.

    Google Scholar 

  • Wilder GJ. 1992a. Comparative morphology and anatomy of absorbing roots and anchoring roots in three species of Cyclanthaceae (Monocotyledoneae). Canad. J. Bot. 70: 38–48.

    Article  Google Scholar 

  • Wilder GJ. 1992b. Orthodistichous and dorsiventral symmetry on adult shoots of Cyclanthus bipartitus (Cyclanthaceae, Monocotyledoneae). Canad. J. Bot. 70: 1388–1400.

    Google Scholar 

  • Wilder GJ and DH Harris. 1981. Laticifers in Cyclanthus bipar-titus Poit. (Cyclanthaceae). Bot. Gaz. 143: 84–93.

    Article  Google Scholar 

  • interpretation for the unusual reproductive axes of Lacan-donia schismatica (Triuridaceae). Am. J. Bot. 93: 15–35.

    Article  Google Scholar 

  • Cheek M. 2003. Kupeaeae, a new tribe of Triuridaceae from Africa. Kew Bull. 58: 939–949.

    Article  Google Scholar 

  • Cheek M, Williams SA, and Etuge M. 2003. Kupea martinetugei, a new genus and species of Triuridaceae from western Cameroon. Kew Bull. 58: 225–228.

    Article  Google Scholar 

  • Davidse G and SE Martinez. 1990. The chromosome number of Lacandonia schismatica (Lacandoniaceae). Syst. Bot. 15: 635–637.

    Article  Google Scholar 

  • Green PS and O Solbrig. 1966. Sciaphila dolichostyla (Triuridaceae). J. Arnold Arbor. 47: 266–269.

    Google Scholar 

  • Furness CA and PJ Rudall. 2006. Comparative structure and development of pollen and tapetum in Pandanales. Int. J. Plant Sci. 167: 331–348.

    Article  Google Scholar 

  • Furness CA, PJ Rudall, and A Eastman. 2002. Contribution of pollen and tapetal characters to the systematics of Triuridaceae. Plant Syst. Evol. 235: 209–218.

    Article  Google Scholar 

  • Gandolfo MA, KC Nixon, and WL Crepet. 2002. Triuridaceae fossil flowers from the Upper Cretaceous of New Jersey. Am. J. Bot. 89: 1940–1957.

    Article  Google Scholar 

  • Igersheim A, M Buzgo, and PK Endress. 2001. Gynoecium diversity and systematics in basal monocots. Bot. J. Linn. Soc. 136: 1–65.

    Article  Google Scholar 

  • Imhof S. 1998. Subterranean structures and mycotrophy of the achlorophyllous Triuris hyaline Miers (Triuridaceae). Canad. J. Bot. 76: 2011–2019.

    Article  Google Scholar 

  • Imhof S. 2003. A dorsiventral mycorrhizal root in the achloro-phyllous Sciaphila polygyna (Triuridaceae). Mycorrhiza 13: 327–332.

    Article  Google Scholar 

  • Imhof S. 2004. Morphology and development of the subterranean organs of the achlorophyllous Sciaphila polygyna (Triuridaceae). Bot. J. Linn. Soc. 146: 295–301.

    Article  Google Scholar 

  • Maas PJM and T Rubsamen. 1986. Triuridaceae. Flora Neotropica 40: 1–55. New York.

    Google Scholar 

  • Maas van de Kramer H. 1995. Triudiflorae – Gardener's delight? In: PJ Rudall, PJ Cribb, DF Cutler, and CJ Humphries, eds. Monocotyledons: systematics and evolution, pp. 287–301. Royal Botanic Gardens, Kew.

    Google Scholar 

  • Maas van de Kamer H and PJM Maas. 1994. Triuridopsis, a new monotypic genus in Triuridaceae. Plant Syst. Evol. 192: 257–262.

    Article  Google Scholar 

  • Maas van der Kamer H and T Rübsamen-Weustenfeld. 1998. Triuridaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 452–458. Springer, Berlin/ Heidelberg/New York.

    Google Scholar 

  • Marquez-Guzman J, S Vazquez-Santana, ME Engleman, A Martinez-Mena, and E Martinez. 1993. Pollen development and fertilization in Lacandonia schismatica (Lacandonia-ceae) [Triuridaceae]. Ann. Missouri Bot. Gard. 80: 891–897.

    Article  Google Scholar 

  • Martinez E and CH Ramos. 1989. Lacandoniaceae (Triuridales): Una nueva familia de Mexico. Ann. Missouri Bot. Gard. 76: 128–135.

    Article  Google Scholar 

  • Meerendonk JPM van der. 1984. Triuridaceae. In: CGGJ van Steenis, ed. Flora Malesiana, ser. 1, 10: 109–121. Dodrecht.

    Google Scholar 

  • Rübsamen-Weustenfeld T. 1991. Morphologische, embryologis-che, und systematische Untersuchungen an Triuridaceae. Bibl. Bot. 149: 1–113.

    Google Scholar 

  • Rudall P. 2003. Monocot pseudanthis revisited: floral structure of the mycoheterotrophic family Triuridaceae. Int. J. Plant Sci. 164: S307–S320.

    Article  Google Scholar 

  • Sahashi N, T Ohmoto, K Uehara, M Ikuse, and C Chuma. 1991. Pollen morphology of Andruris japonica (Triuridaceae). Grana 30: 597–600.

    Google Scholar 

  • Tomlinson PB. 1982. Helobieae (Alismatidae). In: CR Metcalfe, ed. Anatomy of the monocotyledons, 7: 1–522. Clarendon, Oxford.

    Google Scholar 

  • Vergara-Silva F, S Espinosa-Matías, BA Ambrose, S Vázquez-Santana, A Martínez-Mena, J Márquez-Guzmán, E Martínez, EM Meyerowitz, and ER Alvarez-Buylla. 2003. Inside-out flowers characteristic of Lacandonia schismat-ica evolved at least before its divergence from a closely related taxon, Triuris brevistyla. Int. J. Plant Sci. 164: 345–357.

    Article  Google Scholar 

  • Ayensu ES. 1968. The anatomy of Barbaceniopsis: a new genus recently described in the Velloziaceae. Am. J. Bot. 55: 399–405.

    Article  Google Scholar 

  • Ayensu ES. 1969. Leaf-anatomy and systematics of Old World Velloziaceae. Kew Bull. 23: 315–335.

    Article  Google Scholar 

  • Ayensu ED. 1972. Studies on pollen morphology in the Velloziaceae. Proc. Biol. Soc. Washington 85(40): 469–480.

    Google Scholar 

  • Ayensu ES. 1973a. Biological and morphological aspects of Velloziaceae. Biotropica 5: 135–149.

    Article  Google Scholar 

  • Ayensu ES. 1973b. Phytogeography and evolution of the Vello-ziaceae. In: BJ Meggers, ES Ayensu, and WD Duckworth, eds. Tropical forest ecosystems in Africa and South America: a comparative review, pp. 105–119. Smithsonian Institution Press, Washington, DC.

    Google Scholar 

  • Ayensu ES. 1974. Leaf anatomy and systematics of New World Velloziaceae. Smithsonian Contr. Bot. 15: 1–125.

    Google Scholar 

  • Ayensu ES and JJ Skvarla. 1974. Fine structure of Velloziaceae pollen. Bull. Torrey Bot. Club 101: 250–266.

    Article  Google Scholar 

  • Baochun G. 1987. The sociological characteristics and pollen morphology of Acanthochlamys. Acta Bot. Yunn. 9: 401–405 (in Chinese with English summary).

    Google Scholar 

  • Behnke H-D, J Treutlein, M Wink, K Kramer, C Schneider, and PC Kao. 2000. Systematics and evolution of Velloziaceae, with special reference to sieve-element plastids and rbcL sequence data. Bot. J. Linn. Soc. 134: 93–129.

    Google Scholar 

  • Chen SC. 1981. Acanthochlamydoideae — a new subfamily of Amaryllidaceae. Acta Phytotaxon. Sinica 19: 323–329 (in Chinese with English summary).

    Google Scholar 

  • Coetzee H. 1974. Anatomy of the leaves of the Velloziaceae in South Africa and South West Africa and a key based on leaf anatomy. Dinteria 10: 19–33.

    Google Scholar 

  • Coetzee H, HP Schijff van der, and E Steyn. 1973. External morphology of the species of the South African Velloziaceae including a key based on external morphological characteristics. Dinteria 9: 3–21.

    Google Scholar 

  • Dutt BSM. 1970. Velloziaceae. In Symposium on comparative embryology of angiosperms. Bull. Indian Nad. Sci. Acad. 41: 373–374.

    Google Scholar 

  • Furness CA and PJ Rudall. 2006. Comparative structure and development of pollen and tapetum in Pandanales. Int. J. Plant Sci. 167: 331–348.

    Article  Google Scholar 

  • Gaff DE. 1971. Desiccation-tolerant flowering plants of southern Africa. Science 174: 1033–1034.

    Article  PubMed  CAS  Google Scholar 

  • Gao B-C and P Li. 1993. Studies on the morphology and embryology of Acanthochlamys bracteata I. Morphological and anatomical studies on vegetative organs. J. Sichuan Ubiv. (Science ed.). 30: 534–537 (in Chinese with English summary).

    Google Scholar 

  • Gao B and P Li. 1995. Studies on the morphology and embryology of Acanthochlamys bracteata: morphological and anatomic studies on vegetative organs. J. Sichuan Univ. Nat. Sci. Ed. 32 (special issue Feb.): 37–44 (in Chinese).

    Google Scholar 

  • Greves S. 1921. A revision of the Old World species of Vellozia. J. Bot. 59: 273–284.

    Google Scholar 

  • Goldblatt P and ME Poston. 1988. Observations on the chromosome cytology of Velloziaceae. Ann. Missouri Bot. Gard. 75: 192–195.

    Article  Google Scholar 

  • Ibisch PL, C Nowicki, R Vásquez, and K Koch. 2001. Taxonomy and biology of Andean Velloziaceae: Vellozia andina sp.nov. and notes on Barbaceniopsis (including Barbaceniopsis cas-tillonii comb. nov.). Syst. Bot. 26: 5–16.

    Google Scholar 

  • Kao PC. 1989. Acanthochlamydaceae — a new monocotyledon family. In: PC Kao and Z-M Tan, eds. Flora Sichuanica, 9: 483–507.

    Google Scholar 

  • Kao PC and P Li. 1995. Studies on the morphology and embryology of Acanthochlamys bracteata: morphological and anatomic studies on vegetative organs. J. Sichuan Univ. 32: 37–44.

    Google Scholar 

  • Kao PC and K Kubitzki 1998. Acanthochlamydaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 55–58. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Kubitzki K. 1998. Velloziaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 459–467. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Li P and B-C Gao. 1993. Studies on morphology of Acanthochlamys bracteata. III. The investigation on double fertilization, embryogenesis and endosperm development of Acanthochlamys bracteata. J. Sichuan Univ. (Science ed.). 30: 260–263 (in Chinese with English summary).

    Google Scholar 

  • Li P, P-C Gao, F Chen, and HX Luo. 1992. Studies on morphology and embryology of Acanthochlamys bracteata. II. The anther and ovule development. Bull. Bot. Res. 12: 389–395 (in Chinese with English summary).

    Google Scholar 

  • Melo NF, M Guerra, AM Benko-Iseppon, and ML Menezes. 1997. Cytogenetics and cytotaxonomy of Velloziaceae. Plant Syst. Evol. 204: 257–273.

    Article  Google Scholar 

  • Mello-Silva R de. 1991. The infra-familial taxonomic circumscription of the Velloziaceae: a historical and critical analysis. Taxon 40: 45–51.

    Article  Google Scholar 

  • Mello-Silva R de. 2000. Partial cladistic analysis of Vellozia and characters for the phylogeny of Velloziaceae. In: KL Wilson and DA Morrison, eds. Monocots: systematic and evolution, pp. 505–522. CSIRO, Collingwood.

    Google Scholar 

  • Mello-Silva R de. 2005. Morphological analysis, phylogenies and classification in Velloziaceae. Bot. J. Linn. Soc. 148: 157–173.

    Article  Google Scholar 

  • Menezes NL de. 1970. Aspectos anatomicos e a taxonomia da familia Velloziaceae. Ph.D. dissertation, University of Sao Paulo.

    Google Scholar 

  • Menezes NL de. 1973. Natureza dos apendices petaloides em Barbacenioideae (Velloziaceae). Boletim de Zoologia e Biologia Marinha, n.s., 30: 713–755.

    Google Scholar 

  • Menezes NL de. 1975. Presenca de traqueides de transfusao e bainha mestomatica em Barbacenioideae (Velloziaceae). Bol. Univ. São Paulo, Bot. 3: 29–60.

    Google Scholar 

  • Menezes NL de. 1976. Megasporogenese, megagametogenese, e embriogenese em Velloziaceae. Bol. Univ. São Paulo, Bot. 4: 41–60.

    Google Scholar 

  • Menezes NL de. 1980. Evolution in Velloziaceae, with special reference to androecial characters. In: CD Brickell, DE Cutler, and M Gregory, eds. Petaloid Monocotyledons: horticultural and botanical research, pp. 117–139. Academic, London.

    Google Scholar 

  • Menezes NL de. 1988. Evolution of the anther in the family Velloziaceae. Bol. Univ. São Paulo, Bot. 10: 33–41.

    Google Scholar 

  • Menezes NL de and J Semir 1990. New considerations regarding the corona in the Velloziaceae. Ann. Missouri Bot. Gard. 77: 539–544.

    Article  Google Scholar 

  • Menezes NL de, R de Mello-Silva, and SJ Mayo. 1993. A cladis-tic analysis of the Velloziaceae. Kew Bull. 49: 71–92.

    Article  Google Scholar 

  • Nemirovich-Danchenko EN. 1985. Velloziaceae. In: A Takhtajan, ed. Comparative seed anatomy, vol. 1, pp. 119–121. Nauka, Leningrad (in Russian).

    Google Scholar 

  • Noher de Halac RI. 1969. Nuevos datos sobre la morfologia floral de Barbaceniopsis bolivensis, con especial referenda a la sexualidad. Kurtziana 5: 293–296.

    Google Scholar 

  • Perrier H. 1946. Au sujet de la systematique des Vellosiacees et du genre Xerophyta Juss. Notul. Syst. (Paris) 12: 146–148.

    Google Scholar 

  • Salatino A. 1999. Main results from trnL-F sequencing of Velloziaceae and allied taxa. Anais Acad. Brasil. Ciên. 71: 203–206.

    Google Scholar 

  • Salatino A, MLF Salatino, R Mello-Silva, and I Duerholt-Oliveira. 1991. An appraisal of the plasticity of alkanes profiles of some species of Velloziaceae. Biochem. Syst. Ecol. 19: 241–248.

    Article  CAS  Google Scholar 

  • Salatino MLF, A Salatino, NL Menezes, and R de Mello-Silva 1989. Alkanes of foliar epicuticular waxes of Velloziaceae. Phytochemistry 28: 1105–1114.

    Article  CAS  Google Scholar 

  • Salatino MLF, A Salatino, R de Mello-Silva, M-A van Sluys, DE Giannasi, and RA Price. 2001. Phylogenetic inference in Velloziaceae using chloroplast TrnL-F Sequence. Syst. Bot. 26: 92–103.

    Google Scholar 

  • Sazima M. 1979. Biologia floral de especies de Vellozia-ceaena Serra do Cipo, Minas Gerais. Ph.D. dissertation, University of São Paulo.

    Google Scholar 

  • Smith LB. 1962. A synopsis of the American Velloziaceae. Contributions from the United States National Herbarium 35: 215–292.

    Google Scholar 

  • Smith LB and ES Ayensu. 1974. Classification of Old World Velloziaceae. Kew Bull. 29: 181–205.

    Article  Google Scholar 

  • Smith LB and ES Ayensu. 1976. A revision of American Velloziaceae. Smithsonian Contr. Bot. 30: 1–172.

    Google Scholar 

  • Warming E. 1893. Note sur la biologic et 1'anatomie de la feuille des Vellosiacees. Oversight over del kongelige Danske Videnskabernes Selskabs. Forhandlingen: 57–100.

    Google Scholar 

  • Williams CA, JB Harborne, J Greenham, and J Eagles. 1994. Differences in flavonoid patterns between genera within the Velloziaceae. Phytochemistry 36: 931–940.

    Article  CAS  Google Scholar 

  • Williams CA, JB Harborne, and NL Menezes. 1991. The utility of leaf flavonoids as taxomonic markers in the subfamily and generic classification of the Velloziaceae. Biochem. Syst. Ecol. 19: 483–495.

    Article  CAS  Google Scholar 

  • Ayensu ES. 1968. Comparative vegetative anatomy of the Stemonaceae (Roxburghiaceae). Bot. Gaz. 129: 160–165.

    Article  Google Scholar 

  • Bouman F and N Devente. 1992. A comparison of the structure of ovules and seeds in Stemona (Stemonaceae) and Pentastemona (Pentastemonaceae). Blumea 36: 501–514.

    Google Scholar 

  • Conover M. 1991. Epidermal patterns in the reticulate-veined Liliiflorae and their parallel-veined allies. Bot. J. Linn. Soc. 107: 295–312.

    Google Scholar 

  • Duyfjes BEE. 1991. Stemonaceae and Pentastemonaceae; with miscellaneous notes on members of both families. Blumea 36: 239–252.

    Google Scholar 

  • Duyfjes BEE. 1992. Formal description of the family Pentastemonaceae with some additional notes on Pen-tastemonaceae and Stemonaceae. Blumea 36: 551–552.

    Google Scholar 

  • Fedotova TA. 1985. Stemonaceae. In: A Takhtajan, ed. Comparative seed anatomy, vol. 1, pp. 128–130. Nauka, Leningrad (in Russian).

    Google Scholar 

  • Furness CA and PJ Rudall. 2006. Comparative structure and development of pollen and tapetum in Pandanales. Int. J. Plant Sci. 167: 331–348.

    Article  Google Scholar 

  • Ham RWJM van der. 1991. Pollen morphology of the Stemonaceae. Blumea 36: 127–159.

    Google Scholar 

  • Heel RWJM van der. 1992. Floral morphology of Stemonaceae and Pentastemonaceae. Blumea 36: 481–499.

    Google Scholar 

  • Holm Th. 1905. Croomia pauciflora, an anatomical study. Am. J. Sci. 20: 50–54.

    Google Scholar 

  • Kubitzki K. 1998a. Pentastemonaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 404–406. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Kubitzki K. 1998b. Stemonaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 422–425. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Lachner-Sandoval V. 1892. Beitrag zur Kentnis der Gat-tung Roxburghia. Bot. Centralbl. 50: 65–70, 97–104, 129–135.

    Google Scholar 

  • Meijer W and J Bogner. 1983. Pentastemona (Stemonaceae): The elusive plant. Nature Malaysiana 8(1): 26–27.

    Google Scholar 

  • Oginuma K, K Horiuchi, and T Fukuhara. 2001. Karyomor-phology of two genera in Stemonaceae. Acta Phytotax. Geobot. 52: 57–63.

    Google Scholar 

  • Rogers GK. 1982. The Stemonaceae in the southeastern United States. J. Arnold Arbor. 63: 327–336.

    Google Scholar 

  • Rudall PJ, J Cunniff, P Wilkin, and LR Caddick. 2005. Evolution of dimery, pentamery and the monocarpellary condition in the monocot family Stemonaceae (Pandanales). Taxon 54: 701–711.

    Article  Google Scholar 

  • Steenis CGGJ van. 1982. Pentastemona, a new 5-merous genus of monocotyledons from North Sumatra (Stemonaceae). Blumea 28: 151–163.

    Google Scholar 

  • Swamy BGL. 1964. Observation on the floral morphology and embryology of Stemona tuberosa Lour. Phytomorphology 14: 458–468.

    Google Scholar 

  • Tomlinson PB and ES Ayensu. 1968. Morphology and anatomy of Croomia pauciflora (Stemonaceae). J. Arnold Arbor. 49: 260–277.

    Google Scholar 

  • Wright CH. 1896. On the genus Stemona Lour. Bot. J. Linn. Soc. 32: 490–496.

    Google Scholar 

  • Al-Shehbaz IA and BG Schubert. 1989. The Dioscoreaceae in the southeastern United States. J. Arnold Arbor. 70: 57–95.

    Google Scholar 

  • Ayensu ES. 1966. Taxonomic status of Trichopus: anatomical evidence. Bot. J. Linn. Soc. 59: 425–430.

    Article  Google Scholar 

  • Ayensu ES. 1969. Aspects of the complex nodal anatomy of the Discoreaceae. J. Arnold Arbor. 50: 124–137.

    Google Scholar 

  • Ayensu ES. 1970. Analysis of the complex vascularity in stems of Dioscorea composita. J. Arnold Arbor. 51: 228–240.

    Google Scholar 

  • Ayensu ES. 1972. Dioscoreales. In: CR Metcalfe, ed. Anatomy of the monocotyledons, vol. 6. Clarendon, Oxford.

    Google Scholar 

  • Behnke H-D. 1965. Über das Phloem der Dioscoreaceen unter besonderer Berucksichtigung ihrer Phloembecken, parts 1 and 2. Z. Pflanzenphysiol. 53: 149–155, 214–244.

    Google Scholar 

  • Behnke H-D. 1984. Plant trichomes — structure und ultrastruc-tures: general terminology, taxonomic applications, and aspect of trichome-bacteria interaction in leaf tips of Dioscorea. In: E Rodrigues, PL Healy and I Mehta, eds. Biology and chemistry of plant trichomes, pp. 1–21. Plenum, New York.

    Google Scholar 

  • Bharathan G, L Raz, and P Wilkin. 2001. The true yams, Dioscorea (Dioscoreaceae): Phylogenetic analysis of chloro-plast nucleotide sequences. In Botany 2001: Plants and People. Abstracts, p. 154. Albuquerque.

    Google Scholar 

  • Bouman F. 1995. Seed structure and systematics in Dioscoreales. In: PJ Rudall, PJ Cribb, DF Cutler, and DF Humphries, eds. Monocotyledons: systematics and evolution, vol. 1, pp. 139– 156. Royal Botanic Gardens, Kew.

    Google Scholar 

  • Burkill I. H. 1960. The organography and the evolution of Dioscoreaceae. Bot. J. Linn. Soc. 56: 319–412.

    Article  Google Scholar 

  • Caddick LR and P Wilkin. 1998. A revision of the genus Stenomeris (Dioscoreaceae). Kew Bull. 53: 703–712.

    Article  Google Scholar 

  • Caddick LR, CA Furness, KL Stobart, and PA Rudall. 1998. Microsporogenesis and pollen morphology in Dioscoreales and allied taxa. Grana 37: 321.

    Google Scholar 

  • Caddick LR, PJ Rudall, and P Wilkin. 2000a. Floral morphology and development in Dioscoreales. Feddes Repert. 111: 189–230.

    Google Scholar 

  • Caddick LR, PJ Rudall, P Wilkin, and MW Chase. 2000b. Yams and their allies: systematics of Dioscoreales. In: KL Wilson and DA Morrison, eds. Monocots: systematic and evolution, pp. 475–487. CSIRO, Collingwood.

    Google Scholar 

  • Caddick LR, PJ Rudall, P Wilkin, TA Hedderson, and MW Chase. 2002a. Phylogenetics of dioscoreales based on combined analyses of morphological and molecular data. Bot. J. Linn. Soc. 138: 123–144.

    Article  Google Scholar 

  • Caddick LR, P Wilkin, PJ Rudall, TAJ Hedderson, and MW Chase. 2002b. Yams reclassified: a recircumscription of Dioscoreaceae and Dioscoreales. Taxon 51: 103–114.

    Article  Google Scholar 

  • Caddick LR, P Wilkin, PJ Rudall, TAJ Hedderson, and MW Chase. 2002c. Yams reclassified: a recircumscription of Dioscoreaceae and Dioscoreales. Taxon 51: 102–114.

    Article  Google Scholar 

  • Cheadle VI and H Kosakai. 1976. Vessels in Dioscoreales. Phyta 1: 41–53.

    Google Scholar 

  • Drenth E. 1972. A revision of the family Taccaceae. Blumea 20: 367–406.

    Google Scholar 

  • Drenth E. 1976. Taccaceae. In: CGGJ van Steenis, ed. Flora Malesiana, ser. 1, 7(4): 806–819. Leyden.

    Google Scholar 

  • Huber H. 1998a. Dioscoreaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 216–235. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Huber H. 1998b. Trichopodaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 441–444. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Kale NN and RM Pai. 1979. The floral anatomy of Trichopus zeylanicus Gaertn. Proc. Indian Acad. Sci. B Plant Sci. 88: 63–67.

    Google Scholar 

  • Kubitzki K. 1998. Taccaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 425–428. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Ling P-P. 1981. Stomatal studies in Chinese Taccaceae with a discussion of its taxonomical significance. Bull. Nanjing Bot. Gard., Mem. Sun. Yat. Sen. 1981: 20–24.

    Google Scholar 

  • Nagaraja Rao C. 1955. Embryology of Trichopus zeylanicus Gaertn. J. Indian Bot. Soc. 34: 213–221.

    Google Scholar 

  • Oganezova GG. 1995. On the systematical position of the families Haemodoraceae, Hypoxidaceae and Taccaceae (data on the seed structure). Bot. Zhurn. 80(7): 12–25 (in Russian with English summary).

    Google Scholar 

  • Perrier de la Bathie H. 1924. Un nouveau genre de Dioscoreacées. 71: 25–28.

    Google Scholar 

  • Petrova LP and LK Safina. 1985. Dioscoreaceae. In: A Takhtajan, ed. Comparative seed anatomy, vol. 1, pp. 133–135. Nauka, Leningrad (in Russian).

    Google Scholar 

  • Prieto CA, JL Fernandez Alonso, and RL Liesner. 2000, Notas sobre la familia Taccaceae (Liliidae) y su presencia en Colombia. Caldasia 22(2): 265–270.

    Google Scholar 

  • Rao NA. 1953. Embryology of Dioscorea oppositifolia L. Phytomorphology 3: 121–126.

    Google Scholar 

  • Rao NA. 1955. Embryology of Trichopus zeylanicus Gaertn. J. Indian Bot. Soc. 34: 213–221.

    Google Scholar 

  • Rao VS. 1969. The vascular anatomy of Tacca pinnatifida. J. Univ. Bombay 38: 18–24.

    Google Scholar 

  • Schols P, CA Furness, P Wilkin, S Huysmans, and E Smets. 2001. Morphology of pollen and orbicules in some Dioscorea species and its systematic implications. Bot. J. Linn. Soc. 136: 295–311.

    Article  Google Scholar 

  • Schols P, CA Furness, P Wilkin, E Smets, V Cielen, and S Huysmans. 2003. Pollen morphology of Dioscorea (Dioscoreaceae) and its relation to systematics. Bot. J. Linn. Soc. 143: 375–390.

    Article  Google Scholar 

  • Schols P, CA Furness, V Merckx, P Wilkin, and E Smets. 2005a. Comparative pollen development in Dioscoreales. Int. J. Plant Sci. 166: 909–924.

    Article  Google Scholar 

  • Schols P, P Wilkin, CA Furness, S Huysmans, and E Smets. 2005b. Pollen evolution in yams (Dioscorea: Dioscoreaceae). Syst. Bot. 30: 750–758.

    Article  Google Scholar 

  • Sivarajan V V, P Pushpangadan, and PK Ratheesh Kumar. 1990. A revision of Trichopus (Trichopodiaceae). Kew Bull. 45: 353–360.

    Article  Google Scholar 

  • Watson E V. 1936. A study of the anatomy of Trichopus zey-lanicus Gaertn. Notes Roy. Bot. Gard. Edinb. 19: 135–156.

    Google Scholar 

  • Wilkin P, P Schols, MW Chase, K Chayamarit, CA Furness, S Huysmans, F Rakotonasolo, E Smets, and C Thapyai. 2005. A plastid gene phylogeny of the yam genus, Dioscorea: roots, fruits and Madagascar. Syst. Bot. 30: 736–749.

    Article  Google Scholar 

  • Xifreda CC. 2000. Evaluation of pollen and vegetative characters in the systematics of South American species of Dioscorea (Dioscoreaceae). In: KL Wilson and DA Morrison, eds. Monocots: systematic and evolution, pp. 488–496. CSIRO, Collingwood.

    Google Scholar 

  • Arber A. 1922. On the development and morphology of the leaves of palms. Proc. Roy. Soc. London, Ser. B., Biol. Sci. 93: 249–261.

    Article  Google Scholar 

  • Asmussen CB. 1999. Towards a chloroplast DNA phylogeny of the Geonomeae (Palmae). In: A Henderson and F Borchsenius, eds. Evolution and classification of palms. Mem. New York Bot. Gard. 83: 121–129.

    Google Scholar 

  • Asmussen CB and MW Chase. 2001. Coding and non-coding plastid DNA in palm systematics. Am. J. Bot. 88: 1103–1117.

    Article  PubMed  CAS  Google Scholar 

  • Asmussen CB, WJ Baker, and J Dransfield. 2000. Phylogeny of the palm family (Arecaceae) based on rps16 intron and trnL-trnF plastid DNA sequences. In: KL Wilson and DA Morrison, eds. Monocots: systematic and evolution, pp. 525–535. CSIRO, Collingwood, VI.

    Google Scholar 

  • Asmussen CB, J Dransfield, V Deickmann, AS Barfod, J-C Pintaud, and WJ Baker. 2006. A new subfamily classifi-cation of the palm family (Arecaceae): evidence from plastid DNA phylogeny. Bot. J. Linn. Soc. 151: 15–38.

    Article  Google Scholar 

  • Barfod A. 1991. A monographic study of the subfamily Phytelephantoideae (Arecaceae). Opera Bot. 105: 5–73.

    Google Scholar 

  • Baker WJ and J Dransfield. 2000. Towards a biogeographic explanation of the Calamoid palms. In: KL Wilson and DA Morrison, eds. Monocots: systematic and evolution, pp. 545–553. CSIRO, Collingwood, VI.

    Google Scholar 

  • Baker WJ and AHB Loo. 2004. A synopsis of the genus Hydriastele(Arecaceae). Kew Bull. 59: 61–68.

    Article  Google Scholar 

  • Baker WJ, J Dransfield, MM Harley, and A Bruneau. 1999a. Morphology and cladistic analysis of subfamily Calamoideae (Palmae). In: A Henderson and F Borchsenius, eds. Evolution and classification of palms. Mem. New York Bot. Gard. 83: 307–324.

    Google Scholar 

  • Baker WJ, CB Asmussen, SC Barrow, J Dransfield, and TA Hedderson. 1999b. A phylogenetic study of the palm family (Palmae) based on chloroplast DNA sequences from the trnL —trnF region. Plant Syst Evol. 219: 111–126.

    Article  CAS  Google Scholar 

  • Baker WJ, J Dransfield, and TA Henderson. 2000a. Phylogeny, character evolution, and a new classification of the Calamoid Palms. Syst. Bot. 25: 297–322.

    Article  Google Scholar 

  • Baker WJ, TA Hedderson, and J Dransfield. 2000b. Molecular phylogenetics of subfamily Calamoideae (Palmae) based on mrDNA ITS and cpDNA rps16 intron sequence data. Molec. Phylogen. Evol. 14: 195–217.

    Article  CAS  Google Scholar 

  • Baker WJ, TA Hedderson, and J Dransfield. 2000c. Molecular phylogenetics of Calamus(Palmae) and related rattan genera based on 5S nrDNA spacer sequence data. Molec. Phylogen. Evol. 14: 218–231.

    Article  CAS  Google Scholar 

  • Barfod AS. 1991. A monographic study of the subfamily Phytelephantoideae (Arecaceae). Opera Bot. 105: 1–73.

    Google Scholar 

  • Bayton RP. 2005. BorassusL. and the Borassoid palms: system-atics and evolution. Ph.D. thesis, University of Reading.

    Google Scholar 

  • Belin-Depoux M and M Hering de Queiroz. 1972. Remarques sur le developpement des feuilles des palmiers: Rapprochement avec d'autres Monocotyledons. Phytomor-phology 21: 337–353.

    Google Scholar 

  • Blombery A and T Rodd. 1982. Palms. Angus & Robertson, Sydney.

    Google Scholar 

  • Bosch E. 1947. Blutenmorphologische und zytologische Unter-suchungen an Palmen. Ber. Schweiz. Bot. Ges. 57: 37–100.

    Google Scholar 

  • Corner EJH. 1966. The natural history of plants. Weidenfeld & Nicolson, Berkeley.

    Google Scholar 

  • Dransfield J and NW Uhl. 1998. Palmae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 4, pp. 306–389. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Dransfield J, IK Ferguson, and NW Uhl. 1990.The Coryphoid palms: Patterns of variation and evolution. Ann. Missouri Bot. Gard. 77: 802–815.

    Article  Google Scholar 

  • Dransfield J, NW Uhl, CB Asmussen, WJ Baker, MM Harley, and CE Lewis. 2005. A new phylogenetic classification of the palm family, Arecaceae. Kew Bull. 60: 559–569.

    Google Scholar 

  • Eames AJ. 1953. Neglected morphology of the palm leaf. Phytomorphology 3: 172–189.

    Google Scholar 

  • Ferguson IK. 1986. Observations on the variation in pollen morphology of Palmae and its significance. Canad. J. Bot. 64: 3079–3090.

    Google Scholar 

  • Ferguson IK and MM Harley. 1993. The significance of new and recent work on pollen morphology in the Palmae. Kew Bull. 48: 205–243.

    Article  Google Scholar 

  • Fisher JB and J Dransfield. 1977. Comparative morphology and development of inflorescence adnation in rattan palms. Bot. J. Linn. Soc. 75: 119–140.

    Article  Google Scholar 

  • Fisher JB and HE Moore, Jr. 1977. Multiple inflorescences in palms (Arecaceae): their development and significance. Bot. Jahrb. Syst. 98: 573–611.

    Google Scholar 

  • Gunn B. 2004. The phylogeny of the Cocoeae(Arecaceae) with emphasis on Cocos nucifera. Ann. Missouri Bot. Gard. 91: 505–522.

    Google Scholar 

  • Haccius B and VJ Philip. 1979. Embryo development in Cocos nuciferaL.: a critical contribution to a general understanding of palm embryogenesis. Plant Syst. Evol. 132: 91–106.

    Article  Google Scholar 

  • Hahn WJ. 2002a. A molecular phylogenetic study of the Palmae (Arecaceae)based on atpB, rbcL, and 18S nrDNA sequences. Syst. Biol. 51: 92–112.

    Article  Google Scholar 

  • Hahn WJ. 2002b. A phylogenetic analysis of the Arecoid Line of palms based on plastid DNA sequence data. Molec. Phytogen. Evol. 23: 189–204.

    Article  CAS  Google Scholar 

  • Harborne JB and CA Williams. 1991. Distribution and evolution of flavonoids in the Palmae and related monocotyledonous families. Bot. Jahrb. Syst. 113: 237–254.

    Google Scholar 

  • Harley MM. 1990. Occurrence of simple, tectate, monosulcate, or trichotomosulcate pollen grains within the Palmae. Rev. Palaeobot. Palynol. 64: 137–147.

    Article  Google Scholar 

  • Harley MM. 1999a. The fossil record and palm pollen apertures. In XVI International Botanical Congress: Abstracts, p. 282. St. Louis.

    Google Scholar 

  • Harley MM. 1999b. Palm pollen: overview and examples of taxonomic value at species level. In: A Henderson and F Borschenius, eds. Evolution, variation, and classification of Palms, Mem. New York Bot. Gard. 83: 95–120.

    Google Scholar 

  • Harley MM, MH Kurmann, and IK Ferguson. 1991. Systematic implications of comparative morphology in selected Tertiary and extant pollen from the Palmae and the Sapotaceae. In: S Blackmore and SH Barnes, eds. Pollen and spores: patterns of diversification, vol. 44, pp. 335–238. Clarendon Press, Oxford.

    Google Scholar 

  • Harley MM and WJ Baker. 2001. Pollen aperture morphology in Arecaceae: application within phylogenetic analysis, and a summary of the fossil record of palm-like pollen. Grana. 40: 45–77.

    Article  Google Scholar 

  • Harley MM and J Dransfield. 2003. Triporate pollen in the Arecaceae. Grana 42: 3–19.

    Article  Google Scholar 

  • Henderson A. 1986. A review of pollination studies in the palms. Bot. Rev. 52: 221–259.

    Article  Google Scholar 

  • Henderson A. 2006. Traditional morphometrics in plant sytematics and its role in palm systematics. Bot. J. Linn. Soc. 151: 103–111.

    Article  Google Scholar 

  • Henderson A and F Borschenius, eds. 1999. Evolution, variation, and classification of Palms. Mem. New York Bot. Gard. 83: 1–324.

    Google Scholar 

  • Henderson FM. 2006. Morphology and anatomy of palm seedlings. Bot. Rev. 72: 273–329.

    Article  Google Scholar 

  • Imchanitzkaja NN. 1985. Palms. Nauka, Leningrad (in Russian).

    Google Scholar 

  • Johnson MAT. 1989. An unusually high chromosome number in Voaniola gerardii(Palmae: Arecoideae: Cocoeae: Butiinae). Kew Bull. 44: 207–210.

    Article  Google Scholar 

  • Klotz LH. 1978a. Form of the perforation plates in the wide vessels of metaxylem in palms. J. Arnold Arbor. 59: 105–128.

    Google Scholar 

  • Klotz LH. 1978b. The number of wide vessels in petiolar vascular bundles of palms: an anatomical feature of systematic significance. Principes 22: 64–69.

    Google Scholar 

  • Klotz LH. 1978c. Observations on diameters of vessels in palms. Principes 22: 99–106.

    Google Scholar 

  • Langlois AC. 1976. Supplement to palms of the world. Gainesville.

    Google Scholar 

  • Lewis CE and JJ Doyle. 2001. Phylogenetic utility of the nuclear gene malate synthase in the palm family (Arecaceae). Molec. Phylogen. Evol. 19: 409–420.

    Article  CAS  Google Scholar 

  • Lewis CE and JJ Doyle. 2002. A phylogenetic analysis of tribe Areceae (Arecaceae) using two low-copy nuclear genes. Plant Syst. Evol. 236: 1–17

    Article  CAS  Google Scholar 

  • Mason CT. 1999. Arecaceae palm family. J. Ariz. Nev. Acad. Sci. 32: 22–23.

    Google Scholar 

  • Moore HE, Jr. 1973. The major groups of palms and their distribution. Gentes Herb. 11: 27–141.

    Google Scholar 

  • Moore HE, Jr and NW Uhl. 1973. Palms and the origin and evolution of monocotyledons. Quart. Rev. Biol. 48: 414–436.

    Article  Google Scholar 

  • Moore HE, Jr and NW Uhl. 1982. Major trends of evolution in palms. Bot. Rev. 48: 1–69.

    Article  Google Scholar 

  • Norup MV, J Dransfield, MW Chase, AS Barfod, ES Fernando, and WJ Baker. 2006. Homoplasious character combinations and generic delimitation: a case study from the Indo-Pacific arecoid palms (Arecaceae: Areceae). Am. J. Bot. 93: 1065–1080.

    Article  CAS  Google Scholar 

  • Periasamy K. 1962. Morphological and ontogenetic studies in palms: I. Development of the plicate condition in the palm leaf. Phytomorphology 12: 54–64.

    Google Scholar 

  • Periasamy K. 1977. Morphological and ontogenetic studies in palms: VI. On the ontogeny of plication in the palm leaf. Proc. Indian Acad. Sci. 85B: 269–273.

    Google Scholar 

  • Read RW and LJ Hickey 1972. A revised classification of fossil palm and palmlike leaves. Taxon 21: 129–137.

    Article  Google Scholar 

  • Roncal JJ, J Francisco-Ortega, CB Asmussen, and CE Lewis. 2005. Molecular phylogenetic of tribe Geonomeae (Arecaceae) using nuclear DNA sequence of phosphoribu-lokinase and RNA polymerase II. Syst. Bot. 30: 275–283.

    Article  Google Scholar 

  • Röser M. 1994. Pathways of karyological differentiation in palms (Arecaceae). Plant Syst. Evol. 189: 83–122.

    Article  Google Scholar 

  • Röser M. 2000. DNA amounts and qualitative properties of nuclear genomes in palms (Arecaceae). In: KL Wilson and DA Morrison, eds. Monocots: systematic and evolution, pp. 538–544. CSIRO Collingwood.

    Google Scholar 

  • Sannier J, S Nadot, A Forchioni, M Harley, and B Albert. 2006. Variations in the microsporogenesis of monoculcate palm pollen. Bot. J. Linn. Soc. 151: 93–102.

    Article  Google Scholar 

  • Sato D. 1949. Karyotype alterations and phylogeny: VI. Karyotype analysis in Palmae. Cytologia 14 (3–4): 174–186.

    Google Scholar 

  • Sowunmi MA. 1972. Pollen morphology of the Palmae and its bearing on taxonomy. Rev. Palaeobot. Palynol. 13: 1–80.

    Article  Google Scholar 

  • Stauffer FW and PK Endress. 2003. Comparative morphology of female flowers and systematics in Geonomeae (Arecaceae). Plant Syst. Evol. 242: 171–203.

    Article  Google Scholar 

  • Thanikaimoni G. 1970a. Les palmiers: palynologie et system-atique. Trav. Sect. Sci. Tech. Inst. Fr. Pondichery, 2: 1–286.

    Google Scholar 

  • Thanikaimoni G. 1970b. Pollen morphology, classification, and phylogeny of Palmae. Adansonia, ser. 2, 10: 347–365.

    Google Scholar 

  • Tomlinson PB. 1960–1962. Essays on the morphology of palms. Principes 4: 55–61, 140–143, 1960; 5: 8–12, 46–53, 83–89, 117–124, 1961; 6: 44–52, 122–124, 1962.

    Google Scholar 

  • Tomlinson PB. 1961. Palmae. In: CR Metcalfe, ed. Anatomy of the monocotyledons, vol. 2. Clarendon Press, Oxford.

    Google Scholar 

  • Tomlinson PB. 1962. The leaf base in palms, its morphology and mechanical biology. J. Arnold Arbor. 43: 23–50.

    Google Scholar 

  • Tomlinson PB. 1979. Systematics and ecology of the Palmae. Ann. Rev. Ecol. Syst. 10: 85–107.

    Article  Google Scholar 

  • Tomlinson PB. 2006a. The uniqueness of palms. Bot. J. Linn. Soc. 151: 5–14.

    Article  Google Scholar 

  • Tomlinson PB. 2006b. Stem anatomy or climbing palms in relation to long-distance water transport. In: JT Columbus, EA Friar, JM Porter, LM Prince, Mc Simpson, eds. Monocot: comparative biology and evolution. Excluding Poales, pp. 265–277 Rancho Santa Ana Bot. Garden. Rancho Santa Ana Botanic Garden, Claremont, CA.

    Google Scholar 

  • Tomlinson PB and JR Vincent. 1984. Anatomy of the palm Rhapis excelsa. X. Differentiation of stem conducting tissues. J. Arnold Arbor. 65: 191–214.

    Google Scholar 

  • Uhl NW. 1972. Inflorescence and flower structure in Nypa fruti-cans(Palmae). Am. J. Bot. 59: 729–743.

    Article  Google Scholar 

  • Uhl NW and J Dransfield. 1987. Genera palmarum: a classification of palms based on the work of Moore, H.E. Jr and Bailey, L.H. Hortorium and the International Palm Society, Allen Press, Kansas.

    Google Scholar 

  • Uhl NW and HE Moore, Jr. 1971. The palm gynoecium. Am. J. Bot. 58: 945–992.

    Article  Google Scholar 

  • Uhl NW and HE Moore, Jr. 1977. Centrifugalstamen initiation in phytelephantoid palms. Am. J. Bot. 64: 1152–1161.

    Article  Google Scholar 

  • Uhl NW, J Dransfield, JI Davis, MA Luckow, KS Hansen, and JJ Doyle. 1995. Phylogenetic relationships among palms: cladistic analyses of morphological and chloroplast DNA restriction site variation. In: PJ Rudall, PJ Cribb, DF Cutler, and CJ Humphries, eds. Monocotyledons: systematics and evolution 2: 623–661. Kew.

    Google Scholar 

  • Williams CA and JB Harborne. 1973. Negatively charged fla-vones and tricin as chemosystematic markers in the Palmae. Phytochemistry 12: 2417–2430.

    Article  CAS  Google Scholar 

  • Zimmermann MH and JS Sperry. 1983. Anatomy of the palm Rhapis exelsa. IX. Xylem structure of the leaf insertion. J. Arnold Arbor. 64: 599–609.

    Google Scholar 

  • Zimmermann MH and PB Tomlinson. 1974. Vascular patterns in palm stems: variations of the Rhapis principle. J. Arnold Arbor. 55: 402–424.

    Google Scholar 

  • Zona S. 1997. The genera of Palmae (Arecaceae) in the southeastern United States. Harvard Pap. Bot. 11: 71–107.

    Google Scholar 

  • Zona S. 2004. Raphides in palm embryos and their systematic significance. Ann. Bot. N.S. 93: 415–421.

    Article  Google Scholar 

  • Clark WD, BS Gaut, MR Duvall, and MT Clegg. 1993. Phylogenetic relationships of the Bromeliflorae-Commeliniflorae-Zingiberiflorae complex of monocots based on rbcL sequence comparisons. Ann. Missouri Bot. Gard. 80: 987–998.

    Article  Google Scholar 

  • Givnish TJ, TM Evans, JC Pires, and KJ Sytsma. 1999. Polyphyly and convergent morphological evolution in Commelinales and Commelinidae: Evidence from rbcL sequence data. Molec. Phylogen. Evol. 12: 360–385.

    Article  CAS  Google Scholar 

  • Graham SW, RG Olmstead, and SCH Barett. 2002. Rooting phy-logenetic trees with distant outgroups: a case study from the commelinoid monocots. Molec. Biol. Evol. 19: 1769–1781.

    PubMed  CAS  Google Scholar 

  • Barfuss M, MR Samuel, and W Till. 2004. Molecular phylogeny in subfamily Tillandsioideae (Bromeliaceae) based on six cpDNA markers: An update. J. Brom. Soc. 54: 9–17.

    Google Scholar 

  • Barfuss MHJ, MR Samuel, W Till, and TF Stuessy. 2005. Phylogenetic relationships in subfamily Tillandioideae (Bromeliaceae) based on DNA sequence data from seven plastid regions. Am. J. Bot. 92: 337–351.

    Article  CAS  Google Scholar 

  • Benzing DH. 1976. Bromeliad trichomes: Structure, function, and ecological significance. Selbyana 1: 330–348.

    Google Scholar 

  • Benzing DH. 1980. The biology of the Bromeliads. Mad-River Press, Eureka, CA.

    Google Scholar 

  • Benzing DH, ed. 2000. Bromeliaceae: Profile of an adaptive radiation. Cambridge University Press, Cambridge.

    Google Scholar 

  • Benzing DH, K Henderson, B Kessel, and J Sulak. 1976. The absorptive capacities of bromeliad trichomes. Am. J. Bot. 63: 1009–1014.

    Article  Google Scholar 

  • Benzing DH, J Seemann, and A Renfrew. 1978. The foliar epidermis in Tillandsioideae (Bromeliaceae) and its role in habitat selection. Am. J. Bot. 65: 359–365.

    Article  Google Scholar 

  • Benzing DH, T Givnish, and D Bermudes. 1985. Absorptive trichomes in Brochhinia reducta (Bromeliaceae) and their evolutionary and systematic significance. Syst. Bot. 10: 81–91.

    Article  Google Scholar 

  • Bohme S. 1988. Bromelienstudien: III. Vergleichende Unter-suchungen zu Bau, Lage, und systematischer Verwertbarkeit der Septalnektarien von Bromeliaceen. Trop. Subtrop. Pflanzenwelt 62: 1–154.

    Google Scholar 

  • Brown GK and AJ Gilmartin. 1984. Stigma structure and variation in Bromeliaceae: Neglected taxonomic characters. Brittonia 36: 364–374.

    Article  Google Scholar 

  • Brown GK and AJ Gilmartin. 1988. Comparative ontogeny of bromeliaceous stigma. In: P Leins, SC Tucker, and PK Endress, eds. Aspects of floral development, pp. 191–204.

    Google Scholar 

  • Brown GK and AJ Gilmartin. 1989a. Stigma types in Bromeliaceae: A systematic survey. Syst. Bot. 14: 110–132.

    Article  Google Scholar 

  • Brown GK and AJ Gilmartin. 1989b. Chromosome numbers in Bromeliaceae. Am. J. Bot. 76: 657–665.

    Article  Google Scholar 

  • Brown GK and RG Terry. 1992. Petal appendages in Bromelliaceae. Am. J. Bot. 79: 1051–1071.

    Article  Google Scholar 

  • Budnowski A. 1922. The septal glands of the Bromeliaceae. Bot. Arch. 1: 47–80.

    Google Scholar 

  • Cheadle VI. 1955. Conducting elements in the xylem of the Bromeliaceae. Bull. Bromeliad Soc. 5: 3–7.

    Google Scholar 

  • Crayn DM, RG Terry, JAC Smith and K Winter. 2000. Molecular systematic investigations in Pitcairnioideae (Bromeliaceae) as a basis for understanding the evolution of crassulacean acid metabolism (CAM). In: KL Wilson and DA Morrison, eds. Monocots: systematic and evolution, pp. 569–579. CSIRO, Collingwood.

    Google Scholar 

  • Crayn DM, K Winter, and JAC Smith. 2004. Multiple origins of crassulacean acid metabolism and the epiphytic habit in the neotropical family Bromeliaceae. Proc. National Acad. Sci. USA 101: 3703–3708.

    Article  CAS  Google Scholar 

  • Ehler N and R Schill. 1973. Die Pollenmorphologie der Bromeliaceae. Pollen Spores 15: 13–49.

    Google Scholar 

  • Erdtman G and J Praglowski. 1974. A note on pollen morphology. In: LB Smith and RJ Downs. Bromeliaceae. Flora Neotropica 14: 28–33.

    Google Scholar 

  • Gilmartin AJ and GK Brown. 1987. Bromeliales, related mono-cots, and resolution of relationships among Bromeliaceae subfamilies. Syst. Bot. 12: 493–500.

    Article  Google Scholar 

  • Gilmartin AJ, GK Brown, GS Varadarajan, and M Neighbours. 1989. Status of Glomeropitcairnia within evolutionary history of Bromeliaceae. Syst. Bot. 14: 339–348.

    Article  Google Scholar 

  • Gitai J, R Horres, and AM Benko-Iseppon. 2005. Chromosomal features and evolution of Bromeliaceae. Plant Syst. Evol. 253: 65–80.

    Article  Google Scholar 

  • Givnish TJ, KC Millan, and KJ Systma. 2003. Origin adaptative radiation, and biogeographic diversification of Bromeliaceae inferred from dnhF sequences. In: Monocots III Abstracts, p. 32. Claremont.

    Google Scholar 

  • Givnish TJ, KJ Systsma, and JF Smith. 1990. A reexamination of phylogenetic relationships among bromeliad subfamilies using cpDNA restriction site variation. Suppl. Am. J. Bot. 77(6): 133 (Abstract).

    Google Scholar 

  • Givnish TJ, JC Pires, SW Graham, MA McPherson, LM Prince, TB Patterson. 2006. Phylogeny, biogeography, and ecological evolution in Bromeliaceae: insights from ndhF sequences. In: JT Columbus, EA Friar, CW Hamilton, JM Porter, LM Prince, and MG Simpson, eds. Monocots: comparative biology and evolution, vol. 2. Rancho Santa Ana Botanical Garden, Claremont.

    Google Scholar 

  • Gross E. 1988. Bromelienstudien IV. Zur Morphologie der Bromeliaceen-Samen unter Berücksichtung systematisch-taxonomischer Aspekte. Trop. Subtrop. Pflanzenwelt 64: 1–215.

    Google Scholar 

  • Halbritter H. 1992. Morphologic und systematische Bedeutung des Pollens der Bromeliaceae. Grana 31: 197–212.

    Google Scholar 

  • Horres R, G Zizka, G Kahl and K Weising. 2000. Molecular systematics of Bromeliaceae: evidence from trnL (UAA) intron sequences of the chloroplast genome. Plant Biol. 2: 306–315.

    Article  CAS  Google Scholar 

  • Marchant CJ. 1967. Chromosome evolution in the Bromeliaceae. Kew Bull. 21: 161–168.

    Article  Google Scholar 

  • Nemirovich-Danchenko EN. 1983. Structure of the seed coat in the representatives of the Bromeliaceae. Bot. Zhurn. 68(8): 1094–1101 (in Russian with English summary).

    Google Scholar 

  • Ortlieb U and S Winkler. 1977. Ökologische Differen-zierungsmuster in der Evolution der Bromeliaceen. Bot. Jahrb. Syst. 97: 586–602.

    Google Scholar 

  • Owen TP and WW Thomson. 1991. Structure and function of a specialized cell wall in the trichomes of the carnivorous bro-meliad Brocchinia reducta. Canad. J. Bot. 69: 1700– 1706.

    Article  Google Scholar 

  • Owen TP, DH Benzing, and WW Thomson. 1988. Apoplastic and ultrastructural characterizations of the trichomes from the carnivorous bromeliad Brocchinia reducta. Canad. J. Bot. 66: 941–948.

    Google Scholar 

  • Ranker TA, DE Soltis, PS Soltis, and AJ Gilmartin. 1990. Subfamilial phylogenetic relationships of the Bromeliaceae, evidence from chloroplast DNA restriction site variation. Syst. Bot. 15: 425–434.

    Article  Google Scholar 

  • Rauh W. 1981. Bromelien. 2nd ed. Verlag Eugen Ulmer, Stuttgart.

    Google Scholar 

  • Reinert F, CAM Russo and LO Salles. 2003. The evolution of CAM in the subfamily Pitcairnioideae (Bromeliaceae). Bot. J. Linn. Soc. 80: 261–268.

    Article  Google Scholar 

  • Sajo MG, CJ Prychid, and PJ Rudall. 2004a. Structure and development of the ovule in Bromeliaceae. Kew Bull. 59: 261–267.

    Article  Google Scholar 

  • Sajo MG, PJ Rudall, and CJ Prychid. 2004b. Floral anatomy of Bromeliaceae, with particular reference to the evolution of epigyny and septal nectaries in commelinid monocots. Plant Syst. Evol. 247: 215–231.

    Article  Google Scholar 

  • Sajo MG, CA Furness, CJ Prychid, and PJ Rudall. 2005. Microsporogenesis and anther development in Bromeliaceae. Grana 44: 65–74.

    Article  Google Scholar 

  • Schulte K, R Horres, and J Zizka. 2005. Molecular phylogeny of Bromelioideae and its implications on biogeography and the evolution of CAM in the family. Sencken. Biol. 85: 113–125.

    Google Scholar 

  • Sharma AK and I Ghosh. 1971. Cytotaxonomy of the family Bromeliaceae. Cytologia 36: 237–247.

    Google Scholar 

  • Simpson MG. 1988. A critique of “Bromeliales, related mono-cots, and resolution of relationships among Bromeliaceae subfamilies”. Syst. Bot. 13: 610–614.

    Google Scholar 

  • Smith JAC. 1989. Epiphytic bromeliads. In: U Lüttge, ed. Vascular plants as epiphytes, evolution and ecophysiology, pp. 108–138. Springer, Berlin.

    Google Scholar 

  • Smith LB. 1934. Geographical evidence on the lines of evolution in the Bromeliaceae. Bot. Jahrb. Syst. 66: 446–468.

    Google Scholar 

  • Smith LB. 1955. The Bromeliaceae of Brazil. Smithson. Misce. Collect. 126: 1–290.

    Google Scholar 

  • Smith LB. 1988. New key to the genera of Bromeliaceae. Beitr. Biol. Pflanzen 63: 403–411.

    Google Scholar 

  • Smith LB and RJ Downs. 1974, 1977, 1979. Bromeliaceae: 1. Pitcairnioideae. 2. Tillandsioideae. 3. Bromelioideae. Flora Neotropica 14, 1974; Monogr. 14, part 2, 1977; Monogr. 14, part 3, 1979.

    Google Scholar 

  • Smith LB and W Till. 1998. Bromeliaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 4, pp. 74–99. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Smith LB and CE Wood. 1975. The genera of Bromeliaceae in the southeastern United States. J. Arnold Arbor. 56: 375–397.

    Google Scholar 

  • Terry RG, GK Brown, and RG Olmstead. 1997a. Examination of subfamilial phylogeny in Bromeliaceae using comparative sequencing of the plastid locus ndhF. Am. J. Bot. 84: 664–670.

    Article  CAS  Google Scholar 

  • Terry RG, GK Brown, and RG Olmstead. 1997b. Phylogenetic relationships in subfamily Tillandsioideae (Bromeliaceae) using ndhF sequences. Syst. Bot. 22: 333–345.

    Article  Google Scholar 

  • Tomlinson G. 1969. Bromeliaceae. In: CR Metcalfe, ed. Anatomy of the monocotyledons, vol. 3, pp. 193–294. Clarendon Press, Oxford.

    Google Scholar 

  • Varadarajan GS and AJ Gilmartin. 1987. Foliar scales in the subfamily Pitcairnioideae (Bromeliaceae). Syst. Bot. 12: 452–571.

    Google Scholar 

  • Varadarajan GS and AJ Gilmartin. 1988a. Phylogenetic relationships of groups of genera within the subfamily Pitcairnioideae (Bromeliaceae). Syst. Bot. 13: 283–293.

    Article  Google Scholar 

  • Varadarajan GS and AJ Gilmartin. 1988b. Taxonomic realignments within the subfamily Pitcairnioideae (Bromeliaceae). Syst. Bot. 13: 294–299.

    Article  Google Scholar 

  • Varadarajan GS and AJ Gilmartin. 1988c. Seed morphology of the subfamily Pitcairnioideae and its systematic interpretation. Am. J. Bot. 75: 808–818.

    Article  Google Scholar 

  • Andersson L. 1981. The neotropical genera of Marantaceae: circumscription and relationships. Nord. J. Bot. 1: 218–245.

    Article  Google Scholar 

  • Andersson L. 1998. Heliconiaceae, Marantaceae, Musaceae, Strelitziaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 4, pp. 226–230, 278–293, 296–300, 451–455. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Andersson L and MW Chase. 2001. Phylogeny and classification of Marantaceae. Bot. J. Linn. Soc. 135: 275–287.

    Article  Google Scholar 

  • Beltran IC and K Kiew. 1984. Cytotaxonomic studies in the Zingiberaceae. Notes Roy. Bot. Gard. Edinb. 41: 541–559.

    Google Scholar 

  • Box MS and PJ Rudall. 2006. Floral structure and ontogeny in Globba(Zingiberaceae). Plant Syst. Evol. 258: 107–122.

    Article  Google Scholar 

  • Burn BL and RM Smith. 1972. Tentative keys to the subfamilies, tribes, and genera of Zingiberaceae. Notes Roy Bot. Gard. Edinb. 31: 171–176.

    Google Scholar 

  • Burtt BL. 1972. General introduction to papers on Zingiberaceae. Notes Roy. Bot. Gard. Edinb. 31: 155–165.

    Google Scholar 

  • Burtt BL and RM Smith. 1972. Key species in the taxonomic history of Zingiberaceae. Notes Roy. Bot. Gard. Edinb. 31: 177–227.

    Google Scholar 

  • Carlquist S and EL Schneider. 1998. Origins and nature of vessels in monocotyledons. 3. Lowiaceae, with comments on rhizome anatomy. Blumea 43: 219–224.

    Google Scholar 

  • Cheesman EE. 1947. Classification of the bananas. Kew Bull. 2: 97–117.

    Article  Google Scholar 

  • Chen Z-Y. 1989. Evolutionary patterns in cytology and pollen structure of Asian Zingiberaceae. In: LB Holm-Nielsen, IC Nielsen, and H Balslev, eds. Tropical forests, pp. 185–191. Academic Press, London.

    Google Scholar 

  • Fahn A. 1953. The origin of the banana inflorescence. Kew Bull. 1953: 299–306.

    Article  Google Scholar 

  • Fahn A and P Benouaiche. 1979. Ultrastructure, development, and secretion in the nectary of banana flowers. Ann. Bot. 44: 85–93.

    Google Scholar 

  • Fisher JB. 1978. Leaf-opposed buds in Musa: their development and a comparison with allied Monocotyledons. Am. J. Bot. 65: 784–791.

    Article  Google Scholar 

  • Friedrich WL and F Strauch. 1975. Der Arillus der Gattung Musa. Bot. Not. 128: 339–349.

    Google Scholar 

  • Graven P, CGT Koster, JJ Boon, and F Bouman. 1996. Structure and macromolecular composition of the seed coat of the Musaceae. Ann. Bot. (UK). 7(2): 105–122.

    Article  Google Scholar 

  • Graven P, CG De Koster, JJ Boon, and F Bouman. 1997. Functional aspects of mature seed coat of the Cannaceae. Plant Syst. Evol. 205: 223–240.

    Article  Google Scholar 

  • Gris A. 1860. Note sur 1'origine et le mode de formation des canaux perispermiques dans la graine des Marantees. Ann. Sci. Nat. Bot, ser. 4, 13: 97–102.

    Google Scholar 

  • Grootjen CJ. 1983. Development of ovule and seed in Marantaceae. Acta Bot. Neerl. 32: 69–86.

    Google Scholar 

  • Grootjen CJ and E Bouman. 1981. Development of ovule and seed in Costus cuspidatus(N. E. Br.) Maas (Zingiberaceae), with special reference to the formation of the operculum. Bot. J. Linn. Soc. 83: 27–39.

    Article  Google Scholar 

  • Grootjen CJ and F Bouman. 1988. Seed structure in Cannaceae: taxonomic and ecological implications. Ann. Bot. 61: 363–371.

    Google Scholar 

  • Hesse M and M Waha. 1983. The fine structure of the pollen wall in Strelitzia reginae(Musaceae). Plant Syst. Evol. 141: 285–298.

    Article  Google Scholar 

  • Holttum RE. 1950. The Zingiberaceae of the Malay Peninsula. Gard. Bull. Straits Settlem. 13: 1–249.

    Google Scholar 

  • Holttum RE. 1951. The Marantaceae of Malaya. Gard Bull. Singapore 13: 254–296.

    Google Scholar 

  • Holttum RE. 1970. The genus Orchidantha(Lowiaceae). Gard. Bull. Singapore 25: 239–246.

    Google Scholar 

  • Holttum RE. 1974. A commentary on comparative mor phology in Zingiberaceae. Gard. Bull. Singapore 27: 155–165.

    Google Scholar 

  • Humphrey JE. 1896. The development of the seed in the Scitamineae. Ann. Bot. 10: 1–40.

    Google Scholar 

  • Jain RK. 1963. Studies of Musaceae: I. Musa cardiospermasp. nov., a fossil banana fruit from the Deccan Intertrappean series, India. Paleobotanist 12: 45–58.

    Google Scholar 

  • Jaramillo MA and WJ Kress. 1997. Phytlogenetic relationships of the genera of the family Costaceae. Bull. HeliconiaSoc. Int. 9: 5–8.

    Google Scholar 

  • Johansen LB. 2005. Phylogeny of Orchidantha(Lowiaceae) and the Zingiberales based on six DNA regions. Syst. Bot. 30: 106–117.

    Article  Google Scholar 

  • Kamelina OP. 1990. The development of male and female embryonic structures in the Marantaceae family. Bot. Zhurn. 75: 480–483 (in Russian with English summary).

    Google Scholar 

  • Kamelina OP and PH Raven 1997. Embryological features of the Lowiaceae family. Bot. Zhurn. 82: 1–6 (in Russian with English summary).

    Google Scholar 

  • Kennedy H. 1978. Systematics and pollination of the “closed flowered” species of Calathea(Marantaceae). Univ. Calif. Publ. Bot. 71: 1–90.

    Google Scholar 

  • Kirchoff BK. 1983. Floral organogenesis in five genera of the Marantaceae and in Canna(Cannaceae). Am. J. Bot. 70: 508–523.

    Article  Google Scholar 

  • Kirchoff BK. 1988a. Floral ontogeny and evolution in the ginger group of the Zingiberales. In: P Leins, SC Tucker, and PK Endress, eds. Aspects of floral development, pp. 45–56. J. Cramer, Berlin.

    Google Scholar 

  • Kirchoff BK. 1988b. Inflorescence and flower development in Costus scaber(Costaceae). Canad. J. Bot. 66: 339–345.

    Article  Google Scholar 

  • Kirchoff BK. 1991. Homeosis in the flowers of the Zingiberales. Am. J. Bot. 78(6): 833–837.

    Article  Google Scholar 

  • Kirchoff BK. 1992. Ovary structure and anatomy in the Heliconiaceae and Musaceae (Zingiberales). Canad. J. Bot. 70: 2490–2508.

    Article  Google Scholar 

  • Kirchoff BK. 1997. Inflorescence and flower development in the Hedychieae (Zingiberaceae): Hedychium. Canad. J. Bot. 75: 581–594.

    Article  Google Scholar 

  • Kirchoff BK and H Kennedy. 1985 Foliar, nonstructural nectaries in the Marantaceae. Canad. J. Bot. 63: 1785–1788.

    Google Scholar 

  • Kirchoff BK and H Kunze. 1995. Inflorescence and floral development in Orchidantha maxillarioides(Lowiaceae). Int. J. Plant Sci. 156: 159–171.

    Article  Google Scholar 

  • Kress WJ. 1984. Systematics of Central American Heliconia(Heliconiaceae) with pendant inflorescences. J. Arnold Arbor. 65: 429–532.

    Google Scholar 

  • Kress WJ. 1986. Exineless pollen structure and pollination system of tropical Heliconia(Heliconiaceae). In: S Blackmore and IK Ferguson, eds. Pollen and spores: form and function, pp. 329–345. Linnean Soc., London.

    Google Scholar 

  • Kress WJ. 1990a. The phylogeny and classification of the Zingiberales. Ann. Missouri Bot. Gard. 77: 698–721.

    Article  Google Scholar 

  • Kress WJ. 1990b. The taxonomy of Old World Heliconia(Heliconiaceae). Allertonia 6: 1–58.

    Google Scholar 

  • Kress WJ. 1993. Morphology and floral biology of Phenakospermum(Strelitziaceae), an arborescent herb of the Neotropics. Biotropica 25: 290–300.

    Article  Google Scholar 

  • Kress WJ. 1995. Phylogeny of the Zingiberanae: morphology and molecules. In: PJ Rudall, PJ Cribb, DF Cutler, and CJ Humphries, eds. Monocotyledons: systematics and evolution, vol. 2, pp. 443–460. Royal Botanic Gardens, Kew.

    Google Scholar 

  • Kress WJ. 1998. The Zingiberales: phylogenetic relationships among the families – one last time. In: Monocots II, p.34 (Abstract). Sydney.

    Google Scholar 

  • Kress J and K Larsen. 2001. Smithatris, a new genus of Zingiberaceae from Southeast Asia. Syst. Bot. 26: 226–230.

    Google Scholar 

  • Kress WJ and DE Stone. 1982. Nature of the sporoderm in monocotyledons, with special reference to the pollen grains of Cannaand Heliconia. Grana 21: 129–148.

    Google Scholar 

  • Kress WJ and DE Stone. 1983. Morphology and phylogenetic significance of exineless pollen of Heliconia(Heliconiaceae). Syst. Bot. 8: 149–167.

    Article  Google Scholar 

  • Kress WJ and CD Specht. 2005. Between Cancer and Capricorn: phylogeny, evolution and ecology of the primarily tropical Zingiberales. Biol. Skr. 55: 459–478.

    Google Scholar 

  • Kress WJ and CD Specht. 2006. The evolutionary and biogeo-graphic origin and diversification of the tropical monocot order Zingiberales. In: JT Columbus, EA Friar, CW Hamilton, JM Porter, LM Prince, and MG Simpson, eds. Moconots: comparative biology and evolution, pp.619–630. Clermont. [Aliso 22: 619–630].

    Google Scholar 

  • Kress WJ, DE Stone and SC Sellers. 1978. Ultrastructure of exineless pollen: Heliconia(Heliconiaceae). Am. J. Bot. 65: 1064–1076.

    Article  Google Scholar 

  • Kress WJ, LM Prince, WJ Hahn and EA Zimmer. 2001. Unraveling the evolutionary radiation of the families of the Zingiberales using morphological and molecular evidence. Syst. Biol. 50: 926–944.

    Article  PubMed  CAS  Google Scholar 

  • Kress WJ, LM Prince and KJ Williams. 2002. The phylogeny and new classification of the gingers (Zingiberales); evidence from molecular data. Am. J. Bot. 89: 1682–1696.

    Article  CAS  Google Scholar 

  • Kronestedt E and B Walles. 1986. Anatomy of the Strelitzia reginaeflower (Strelitziaceae). Nord. J. Bot. 6: 307–320.

    Article  Google Scholar 

  • Kubitzki K. 1998. Cannaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 4, pp. 103–106. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Kunze H. 1984. Vergleichende Studien an Cannaceen- und Marantaceenblüten. Flora 175: 301–318.

    Google Scholar 

  • Kunze H. 1985. Die Infloreszenzen der Marantaceen und ihr Zusammenhang mit dem Typus der Zingiberales-Synfloreszenz. Beitr. Biol. Pfl. 60: 93–140.

    Google Scholar 

  • Kunze H. 1986. Infloreszenz- und Blütenmorphologie von Orchidantha maxillarioides(Ridl.) K. Schum. (Lowiaceae). Beitr. Biol. Pfl. 61: 221–234.

    Google Scholar 

  • Lane IE. 1955. Genera and generic relationships in Musaceae. Mitt. Bot. Staatssamml. München 2(13): 114–131.

    Google Scholar 

  • Larsen K. 1966. Chromosome cytology and relationship of the Lowiaceae. Nat. Hist. Bull. Siam. Soc. 21: 21–24.

    Google Scholar 

  • Larsen K. 1998a. Costaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 4, pp. 128–132. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Larsen K. 1998b. Lowiaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 4, pp. 275–277. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Larsen K and J Mood. 1998. Siamanthus, a new genus of Zingib-eraceae from Thailand. Nat. Hist. Bull. Siam Soc. 45: 217–221.

    Google Scholar 

  • Larsen K and T Jenjittikul. 2001. Laosanthus, a new genus of Zingiberaceae from Laos. Nord. J. Bot. 21: 135–138.

    Article  Google Scholar 

  • Larsen K, JM Lock, H Maas, and PJM Maas. 1998. Zingiberaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 4, pp. 474–495. Springer, Berlin/Heidelberg/ New York.

    Google Scholar 

  • Liao J, Y Wen, and Q Wu. 1998 Studies on vascular system anatomy of the flower of Orchidantha chinensisT. L. Wu. J. Trop. Subtrop. Bot. 6: 275–282.

    Google Scholar 

  • Liao J-P and Q-G Wu. 2000. A preliminary study of the seed anatomy of Zingiberaceae. Bot. J. Linn. Soc. 134: 287–300.

    Google Scholar 

  • Liao J-P, Y-J Tang, X-L Ye, and Q-G Wu. 2004. Seed anatomy of species in banana families of Zingiberales and its systematic significance. J. Trop. Subtrop. Bot. 12: 291–297 (in Chinese.).

    Google Scholar 

  • Long H and Y Wen. 1997. Pollen morphology of Lowiaceae from China. J. Trop. Subtrop. Bot. 5(3): 6–9.

    Google Scholar 

  • Maas PJM. 1972. Costoideae (Zingiberaceae). Flora Neotropica, Monograph 8. Hafner, New

    Google Scholar 

  • Maas PJM. 1977. Renealmia(Zingiberaceae-Zingiber-oideae) Costoideae (Additions) (Zingiberaceae). Flora Neotropica, Monograph 18. New York.

    Google Scholar 

  • Mangaly JK and J Nayar. 1990. Palynology of South Indian Zingiberaceae. Bot. J. Linn. Soc. 103: 351–366.

    Article  Google Scholar 

  • Manning JC and P Goldblatt. 1989. Chromosome number in Phenacospermumand Strelitziaand the basic chromosome number in Strelitziaceae (Zingiberales). Ann. Missouri Bot. Gard. 76: 932–933.

    Article  Google Scholar 

  • Mauritzon J. 1936. Samenbau und Embryologie einiger Scitamineen. Acta Univ. Lund. 31(9): 1–31.

    Google Scholar 

  • Mood J and K Larsen. 1997. Cornukaemperia, a new genus of Zingiberaceae from Thailand. Natural History Bulletin of the Siam Society 45: 217–221.

    Google Scholar 

  • Nakai T. 1948. A new attempt in the classification of the Strelitziaceae. Bull. Tokyo Sci. Mus. 22: 19–24.

    Google Scholar 

  • Nam TV. 1975. Costaceae et Zingiberaceae, leurs appareils ligu-laires. Adansonia, ser. 2, 14: 561–570.

    Google Scholar 

  • Newman SWH and BK Kirchoff. 1992. Ovary structure in the Costaceae (Zingiberales). Int. J. Plant Sci. 153: 471–487.

    Article  Google Scholar 

  • Ngamriabsakul C, MF Newman, and QC Cronk. 2004. The phy-logeny of the tribe Zingibereae (Zigiberaceae) based on ITS (nrDNA) and trnL-F (cpDNA) sequences. Edinb. J. Bot. 60: 483–507.

    Google Scholar 

  • Nur N. 1976. Studies on pollination in Musaceae. Ann. Bot. 40: 167–177.

    Google Scholar 

  • Olatunji OA. 1980. The structure and development of stomata in some Zingiberales. Notes Roy. Bot. Gard. Edinb. 38: 499–516.

    Google Scholar 

  • Pai RM. 1965. The floral anatomy of Elettaria cardamomumMaton. A reinvestigation. New Phytol. 64: 187–204.

    Article  Google Scholar 

  • Pedersen LB. 2004. Phylogenetic analysis of the subfamily Alpinioideae (Zingiberaceae), particularly EtlingeraGiseke, based on nuclear and plastid DNA. Plant Syst. Evol. 245: 239–258.

    Article  CAS  Google Scholar 

  • Pedersen LB and B Johansen. 2004. Anatomy of the unusual stigma in Orchidantha(Lowiaceae). Am. J. Bot. 91: 299–305.

    Article  Google Scholar 

  • Plisko MA. 1985. Zingiberales. In: A Takhtajan, ed. Comparative seed anatomy, vol. 1, pp. 206–235. Nauka, Leningrad (in Russian).

    Google Scholar 

  • Prince LM and WJ Kress. 2006. Phylogenetic relationships and classification in Marantaceae: insights from plastid DNA sequence data. Taxon 55: 281–296.

    Article  Google Scholar 

  • Pugialli HRL, MAC Kaplan and OR Gottlieb. 1994. Evolucao flavonoidica em Zingiberales. An. Acad. Bras. Ci. 66: 491–494.

    CAS  Google Scholar 

  • Punt W. 1968. Pollen morphology of the American species of the subfamily Costoideae(Zingiberaceae). Rev. Palaeobot. Palynol. 7: 31–43.

    Article  Google Scholar 

  • Rao VS. 1963. The epigynous glands of Zingiberaceae. New. Phytol. 62: 342–349.

    Article  Google Scholar 

  • Raynolds PK. 1927. The banana. Houghton Mifflin Company, Cambridge, MA.

    Google Scholar 

  • Rao VS, H Karnik, and K Gupte. 1954. The floral anatomy of some Scitamineae. I. J. Indian Bot. Soc. 33: 118–147.

    Google Scholar 

  • Rogers GK. 1984. The Zingiberales (Cannaceae, Maranthaceae and Zingiberaceae) in the southeastern United States. J. Arnold Arbor. 65: 5–55.

    Google Scholar 

  • Rowley JR and JJ Skvarla. 1986. Development of the pollen grain wall in Canna. Nord. J. Bot. 6: 39–65.

    Article  Google Scholar 

  • Rudall P and RM Bateman. 2003. Evolution of zygomorphy in monocot flowers: iterative patterns and developmental constraints. New Phytol. 162: 25–44.

    Article  Google Scholar 

  • Sakai S and H Nagamasu. 2000. Systematic studies of Bornean Zingiberaceae: III. Tamijia: a new genus. Edinb. J. Bot. 57: 245–255.

    Article  Google Scholar 

  • Schachner J. 1924. Beiträge zur Kenntnis der Blüten- und Samenentwicklung der Scitamineen. Flora 117: 16–40.

    Google Scholar 

  • Scutch AF. Anatomy of the axis of the banana. Bot. Gaz. 93: 233–258.

    Google Scholar 

  • Searle RJ and TAJ Hedderson. 2000. A preliminary phylogeny of the Hedychieae tribe (Zingiberaceae) based on ITS sequences of the nuclear rRNA cistron In: KL Wilson and DA Morrison, eds. Monocots: systematics and evolution, pp. 710–718. CSIRO Collinwood.

    Google Scholar 

  • Simao DG and VL Scatena. 2001. Morphology and anatomy in Heliconia angustaVell. and H. vellozianaL. Emygd. (Zingiberales: Heliconiaceae) from the Atlantic forest of southeastern Brazil. Rev. Brasil. Bot. 24(4): 415–424.

    Google Scholar 

  • Simão DG, VL Scatena, F Bouman. 2006. Developmental anatomy and morphology of the ovule and seed of Heliconia(Heliconiaceae, Zingiberales). Plant Biol. 8: 143–154.

    Article  Google Scholar 

  • Simmonds NW. 1962. The evolution of the bananas. Longman, London.

    Google Scholar 

  • Skvarla J and JR Rowley. 1970. The pollen wall of Cannaand its similarity to the germinal apertures of other pollen. Am. J. Bot. 57: 519–529.

    Article  Google Scholar 

  • Smith JE, WJ Kress, and EA Zimmer. 1993. Phylogenetic analysis of the Zingiberales based on rbcL sequences. Ann. Missouri Bot. Gard. 80: 620–630.

    Article  Google Scholar 

  • Song J-J, J-P Liao, Y-J Tang, and Z-Y Chen. 2004. Chromosome numbers in Orchidantha(Lowiaceae) and their biogeo-graphic and systematic implications. Ann. Bot. Fenn. 41: 429–433.

    Google Scholar 

  • Song J-J, YJ Tang, J-P Liao, X-X Huang and Z-Y Chen. 2003. Chromosome numbers of Orchidantha (Lowiaceae). Acta Bot. Yunn. 25: 609–612 (in Chinese).

    Google Scholar 

  • Specht CD. 2005. Phylogenetics, floral evolution and rapid radiation in the tropical monocot family Costaceae (Zingiberales). In: AK Sharma and A Sharma, eds. Plant genome: biodiversity and evolution, pp. 29–60. Science Publishers, Enfield, NH.

    Google Scholar 

  • Specht CD. 2006. Systematics and evolution of the tropical monocot family Costaceae (Zingiberales): a multiple dataset approach. Syst. Bot. 31: 89–106.

    Article  Google Scholar 

  • Specht CD and DW Stevenson. 2006. A new phylogeny-based generic taxonomy for the monocot family Costaceae (Zingiberales). Taxon 55: 153–163.

    Article  Google Scholar 

  • Specht CD, WJ Kress, DW Stevenson and R DeSalle. 2001. A molecular phylogeny of Costaceae (Zingiberales). Molec. Phylogen. Evol. 21: 333–345.

    Article  CAS  Google Scholar 

  • Stone DE, SC Sellers, and WJ Kress. 1979. Ontogeny of exine-less pollen in Heliconia,a banana relative. Ann. Missouri Bot. Gard. 66: 701–730.

    Article  Google Scholar 

  • Stone DE, SC Sellers, and WJ Kress. 1981. Ontogenetic and evolutionary implications of a neotenous exine in Tapeinochilos(Zingiberales: Costaceae) pollen. Am. J. Bot. 68: 49–63.

    Article  Google Scholar 

  • Adams LG. 1987. Philydraceae. Flora Australia 45: 40–46.

    Google Scholar 

  • Anderberg AA and P Eldenas. 1991. A cladistic analysis of Anigozanthos and Macropidia (Haemodoraceae). Austral. J. Bot. 4: 655–664.

    Google Scholar 

  • Banerji I and S Haldar. 1942. A contribution to the morphology and cytology of Monochoria hastaefolia Presl. Proc. Indian Acad. Sci. 16B: 91–106.

    Google Scholar 

  • Barett SCH. 1988. Evolution of breeding systems in Eichhornia (Pontederiaceae): a review. Ann. Missouri Bot. Gard. 75: 741–760.

    Article  Google Scholar 

  • Barrett SCH and SW Graham. 1997. Adaptive radiation in the aquatic plant family Pontederiaceae: insight from phyloge-netic analysis. In: YJ Givnish and KJ Sytsma, eds. Molecular evolution and adaptive radiation, pp. 225–228. Cmabridge University Press, Cambridge.

    Google Scholar 

  • Bayer C, O Appel, and PJ Rudall. 1998. Hanguanaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 4, pp. 223–225. Springer, Berlin/Heidelberg/ New York.

    Google Scholar 

  • Brenan JPM. 1966. The classification of Commelinaceae. Bot. J. Linn. Soc. 59: 340–370.

    Article  Google Scholar 

  • Brückner G. 1926. Beiträge zur Anatomie, Morphologie und Systematik der Commelinaceae. Bot. Jahrb. Syst. 61, Beiblatt 137: 1–70.

    Google Scholar 

  • Burton E and MG Simpson. 1996. Floral anatomy and phylog-eny of the Pontederiaceae using new and revised morphological characters and outgroup information. Am. J. Bot. 83: 143 (Abstract).

    Google Scholar 

  • Chikkannaiah PS. 1963. Embryology of some members of the family Commelinaceae: Commelina subulata Roth. Phytomorphology 13: 174–184.

    Google Scholar 

  • Chub VV and EV Mavrodiev. 2001. Morphological characters of the leaf series in the Commelinaceae family with special emphasis on the number of prophylls and their homology in monocots. Bot. Zhurn. 86(4): 1–11 (in Russian with English summary).

    Google Scholar 

  • Coker WC. 1907. The development of the seed in the Pontederiaceae. Bot. Gaz. 44: 293–301.

    Article  Google Scholar 

  • Cook CDK. 1998. Pontederiaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 4, pp. 395–403. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Cooke RG and JM Edwards. 1981. Naturally occurring phenale-nones and related compounds. Fortschr. Chem. Org. Naturst. 40: 158–190.

    Google Scholar 

  • Daumann E. 1965. Das Blütennektarium bei den Pontederiaceen und die systematische Stellung dieser Familie. Preslia 37: 407–412.

    Google Scholar 

  • Dellert R. 1933. Zur systematischen Stellung von Wachendorfia. Oesterr. Bot. Z. 82: 335–345.

    Article  Google Scholar 

  • De Vos MP. 1956. Studies on the embryology and relationships of South African genera of the Haemodoraceae: Dilatris Berg. and Wachendorfia Burm. South Afr. J. Bot. 22: 41–63.

    Google Scholar 

  • De Vos MP. 1961. On the embryology and relationships of the South African genera of the Haemodoraceae. In: Recent Adv. Bot. 1: 194–698.

    Google Scholar 

  • Eckenwalder JE and SCH Barnett. 1986. Phylogenetic systemat-ics of Pontederiaceae. Syst. Bot. 11: 373–391.

    Article  Google Scholar 

  • Evans TM, RB Faden, and KJ Sytsma. 2000a. Homoplasy in the Commelinaceae: a comparison of different classes of morphological characters. In: KL Wilson and DA Morrison, eds. Monocots: systematic and evolution, pp. 557–565. CSIRO, Collingwood.

    Google Scholar 

  • Evans TM, RB Faden, MG Simpson, and KJ Sytsma. 2000b. Phylogenetic relationships in the Commelinaceae: I. A cla-distic analysis of morphological data. Syst. Bot. 25: 668–691.

    Article  Google Scholar 

  • Evans TM, KJ Sytsma, RB Faden, and TJ Givnish. 2003. Phylogenetic relationships in the Commelinaceae: II. A cla-distic analysis of rbcL sequences and morphology. Syst. Bot. 28: 270–292.

    Google Scholar 

  • Faden RB. 1991. The morphology and taxonomy of Aneilema R. Brown (Commelinaceae). Smithsonian Contr. Bot. 76: 1–166.

    Google Scholar 

  • Faden RB. 1998. Commelinaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 4, pp. 109–128. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Faden RB and DR Hunt. 1991. The classification of the Commelinaceae. Taxon 40: 19–31.

    Article  Google Scholar 

  • Faden RB and Y Suda. 1980. Cytotaxonomy of Commelinaceae: chromosome numbers of some African and Asiatic species. Bot. J. Linn. Soc. 81: 301–325.

    Article  Google Scholar 

  • Geerinck D. 1968. Considerations taxonomiques au sujet des Haemodoraceae et des Hypoxidaceae (Monocotyledones). Bull. Soc. Bot. Belg. 101: 265–278.

    Google Scholar 

  • Geerinck D. 1969a. Genera des Haemodoraceae et des Hypoxidaceae. Bull. Jard. Bot. Nat. Belg. 39: 47–82.

    Article  Google Scholar 

  • Geerinck D. 1969b. Le genre Conostylis R. Br. (Haemodoraceae d'Australie). Bull. Jard. Bot. Nat. Belg. 39: 167–177.

    Article  Google Scholar 

  • Geerinck D. 1970. Revision du genre Anigozanthos Labill. (Haemodoraceae d'Australie). Bull. Jard. Bot. Nat. Belg. 40: 261–276.

    Article  Google Scholar 

  • Givnish TJ, TM Evans, and KJ Sytsma. 1995. The Commelinales: an extreme example of convergent evolution in monocots. Am. J. Bot. 82(6): 132 (Abstract).

    Google Scholar 

  • Givnish TJ, TM Evans, JC Pires and KJ Sytsma. 1999. Polyphyly and convergent morphological evolution in Commelinales and Commelinidae: evidence from rbcL sequence data. Molec. Phylogen. Evol. 12: 360–385.

    Article  CAS  Google Scholar 

  • Graham SW and SCH Barrett. 1995. Phylogenetic systematics of Pontederiales: implications for breeding -system evolution. In: PJ Rudall, PJ Cribb, DF Cutler and CJ Humphries, eds. Monocotyledons: systematics and evolution, vol. 2, pp. 415–441. Royal Botanic Gardens, Kew.

    Google Scholar 

  • Graham SW, JR Kohn, BR Morton, JE Eckenwalder, and SCH Barrett. 1998. Phylogenetic congruence and discordance among one morphological and three molecular data sets from Pontederiaceae. Syst. Biol. 47(4): 545–567.

    Article  PubMed  CAS  Google Scholar 

  • Green JW. 1959. The genus Conostylis R. Br.: I. Leaf anatomy Proc. Linn. Soc. N. S. W. 84: 194–206.

    Google Scholar 

  • Green JW. 1961. The genus Conostylis R. Br.: II. Taxonomy. Proc. Linn. Soc. N. S. W. 85: 334–373.

    Google Scholar 

  • Hamann U. 1962. Über Bau und Entwicklung des Endosperms der Philydraceae und über die Begriffe “mehliges Nährgewebe” und “Farinosae.” Bot. Jahrb. Syst. 81: 397–407.

    Google Scholar 

  • Hamann U. 1963. Die Embryologie von Philydrum lanugino-sum (Monocotyledoneae-Philydraceae). Ber. Deutsch. Bot. Ges. 76: 203–208.

    Google Scholar 

  • Hamann U. 1966. Embryologische, morphologisch-anatomis-che, und systematische Untersuchungen an Philydraceen. Willdenowia 4: 1–178.

    Google Scholar 

  • Hamann U. 1998. Philydraceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 4, pp. 389–394. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Hardy CR and DW Stevenson. 2000. Development of gameto-phytes, flower and floral vasculature of Cochliostema odorat-issimum (Commelinaceae). Bot. J. Linn. Soc. 134: 131–157.

    Google Scholar 

  • Heime NA and HP Linder. 1992. Morphology, evolution, and taxonomy of Wachendorfia (Haemodoraceae). Bothalia 22: 59–75.

    Google Scholar 

  • Hofreiter A and HJ Tillich. 2002. Root anatomy of the Commelinaceae (Monocotyledoneae). Feddes Repert. 113(3–4): 231–255.

    Article  Google Scholar 

  • Hopper SD and NA Campbell. 1977. A multivariate morpho-metric study of species relationships in kangaroo paws (Anigozanthos Labill. and Macropidia Drumm. ex Harv.: Haemodoraceae). Austral. J. Bot. 25: 523–544.

    Article  Google Scholar 

  • Hopper SD, MF Fay, M Rossetto, and MW Chase. 1999. A molecular phylogenetic analysis of the bloodroot and kangaroo paw family, Haemodoraceae: taxonomic, biogeo-graphic and conservation implications. Bot. J. Linn. Soc. 131: 285–299.

    Article  Google Scholar 

  • Horn CN. 1998. Pontederiaceae pickerelweed family. J. Arizona-Nevada Acad. Sci. 30(2): 133–136.

    Google Scholar 

  • Jones K and C Jopling. 1972. Chromosomes and the classification of the Commelinaceae. Bot. J. Linn. Soc. 65: 129–162.

    Article  Google Scholar 

  • Kapil RN and K Walia. 1965. The embryology of Philydrum lanuginosum Banks ex Gaertn, and the systematic position of the Philydraceae. Beitr. Biol. Pfl. 41: 381–404.

    Google Scholar 

  • Keighery GJ. 1981. Pollination and the generic status of Blancoa canescens Lindl. (Haemodoraceae). Flora 171: 521–524.

    Google Scholar 

  • Larsen K. 1972. Flagellariaceae; Hanguanaceae. Flora of Thailand. 2(2): 162–166. Bankok, Applied Scientific Research Corporation of Thailand, [for flora of Thailand]

    Google Scholar 

  • Larsen K. 1983. Hanguanaceae. In: JF Leroy, ed. Flore du Cambodge, du Laos et du Vietnam. Part 20: 129–132. Paris.

    Google Scholar 

  • Lee DW, Yap Kim Pin, and Liew Foo Yew. 1975. Serological evidence on the distinctness of the monocotyledonous families Flagellariaceae, Hanguanaceae and Joinvilleaceae. Bot. J. Linn. Soc. 70: 77–81.

    Article  Google Scholar 

  • Maas PJM and H Maasvan de Kamer. 1993. Neotropical Haemodoraceae. Flora Neotropica 61: 1–44. New York.

    Google Scholar 

  • MacFarlane TD, SD Hopper, RW Purdie, AS George, and SJ Patrick. 1987. Haemodoraceae. Flora Australia 45: 55–148. Canberra.

    Google Scholar 

  • Maheshwari SC and B Baldev. 1958. A contribution to the morphology of Commelina forskalaei Vahl. Phy-tomorphology 8: 277–298.

    Google Scholar 

  • Maury MP. 1888. Sur les affinites du genre Susum. Bull. Soc. Bot. France 35: 410–417.

    Google Scholar 

  • Murty YSN, NP Saxena, and V Singh. 1974. Floral morphology of the Commelinaceae. J. Indian Bot. Soc. 53: 127–136.

    Google Scholar 

  • Nemirovich-Danchenko EN. 1985a. Hanguanaceae. In: A Takhtajan, ed. Comparative seed anatomy, vol. 1, pp. 98–99. Nauka, Leningrad (in Russian).

    Google Scholar 

  • Nemirovich-Danchenko EN. 1985b. Haemodoraceae. In: A Takhtajan, ed. Comparative seed anatomy, vol. 1, pp. 113–117. Nauka, Leningrad (in Russian).

    Google Scholar 

  • Nemirovich-Danchenko EN. 1985c. Pontederiaceae. In: A Takhtajan, ed. Comparative seed anatomy, vol. 1, pp. 121–122. Nauka, Leningrad (in Russian).

    Google Scholar 

  • Oganezova GG. 1995. On the systematical position of the families Haemodoraceae, Hypoxidaceae and Taccaceae (data on the seed structure). Bot. Zhurn. 80(7): 12–25 (in Russian with English summary).

    Google Scholar 

  • Ono T. 1928. Embryologische Studien an einigen Pontederiaceen. Sci. Rep. Tohoku Imp, Univ., 4th ser. (Biol.) 3: 405–415.

    Google Scholar 

  • Ornduff R. 1979. Chromosome numbers and relationships of certain African and American genera of Haemodoraceae. Ann. Missouri Bot. Gard. 66: 577–580.

    Article  Google Scholar 

  • Pichon M. 1946. Sur les Commélinacées. Notul. Syst. (Paris) 12: 217–242.

    Google Scholar 

  • Poole MM and DR Hunt. 1980. Pollen morphology and the taxonomy of the Commelinaceae: an exploratory survey. Vol. 8 of American Commelinaceae. Kew Bull. 34: 639–660.

    Article  Google Scholar 

  • Prychid CJ, CA Furness and PJ Rudall. 2003. Systematic signifi-cance of cell inclusions in Haemodoraceae and allied families: silica bodies and tapetal raphides. Ann. Bot. 92: 571–580.

    Article  PubMed  Google Scholar 

  • Qiong Y and Q-E Yang. 2006. Chromosomes of four species in three genera of Commelinaceae from China and their systematic implications. Bot. J. Linn. Soc. 152: 399–403.

    Article  Google Scholar 

  • Radulescu D. 1973. La morphologie du pollen chez quelques Haemodoraceae. Lucr. Gard. Bot. Bucuresti 1972–1973: 123–132.

    Google Scholar 

  • Robertson KR. 1976. The genera of Haemodoraceae in the southeastern United States. J. Arnold Arbor. 57: 205–216.

    Google Scholar 

  • Rohweder O. 1963. Anatomische und histogenetische Untersuchungen an Laubsprossen und Blüten der Commelinaceen. Bot. Jahrb. Syst. 82: 1–99.

    Google Scholar 

  • Rohweder O. 1969. Beiträge zur Blütenmorphologie und anatomic der Commelinaceen mit Anmerkungen zur Begrenzung und Gliederung der Familie. Ber. Schweiz. Bot. Ges. 79: 199–220.

    Google Scholar 

  • Rosatti TR. 1987. The genera of Pontederiaceae in southeastern United States. J. Arnold Arbor. 68: 35–71.

    Google Scholar 

  • Rudall PJ, DW Stevenson, and HP Linder. 1999. Structure and systematics of Hanguana, a monocotyledon of uncertain affinity. Austral. Syst. Bot. 12: 311–330.

    Article  Google Scholar 

  • Schneider EL and S Carlquist. 2005a. Orogin and nature of vessels in Monocotyledons. 7. Philydraceae and Haemodoraceae. J. Torrey Bot. Soc. 132: 377–383.

    Article  Google Scholar 

  • Schneider EL and S Carlquist. 2005b. Origins and nature of vessels in monocotyledons. 6. Hanguana (Hanguanaceae). Pacific Sci. 59: 393–398.

    Article  Google Scholar 

  • Schwartz O. 1927. Zur Systematik und Geographie der Pontederiaceen. Bot Jahrb. Syst. 61, Beibl. 139: 28–50.

    Google Scholar 

  • Simpson MG. 1983. Pollen ultrastructure of the Haemodoraceae and its taxonomic significance. Grana 22: 79–103.

    Google Scholar 

  • Simpson MG. 1985. Pollen ultrastructure of the Philydraceae. Grana 24: 23–31.

    Google Scholar 

  • Simpson MG. 1987. Pollen ultrastructure of the Pontederiaceae: evidence for exine homology with the Haemodoraceae. Grana 26: 113–126.

    Google Scholar 

  • Simpson MG. 1988. Embryological development of Lachnanthes caroliniana (Haemodoraceae). Am. J. Bot. 75: 1394–1408.

    Article  Google Scholar 

  • Simpson MG. 1989. Pollen wall development of Xiphidium coeruleum (Haemodoraceae) and its systematic implications. Ann. Bot. 64: 257–269.

    Google Scholar 

  • Simpson MG. 1990. Phylogeny and classification of the Haemodoraceae. Ann Missouri Bot. Gard. 77: 722–784.

    Article  Google Scholar 

  • Simpson MG. 1993. Septal nectary anatomy and phylogeny in the Haemodoraceae. Syst. Bot. 18: 593–613.

    Article  Google Scholar 

  • Simpson MG. 1998a. Reversal in ovary position from inferior to superior in the Haemodoraceae, evidence from floral ontogeny. Int. J. Plant Sci. 159: 466–479.

    Article  Google Scholar 

  • Simpson MG. 1998b. Haemodoraceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 4, pp. 212–232. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Simpson MG and WC Dickison. 1981. Comparative anatomy of Lachnanthes and Lophiola (Haemodoraceae). Flora 171: 95–113.

    Google Scholar 

  • Singh V. 1962. Vascular anatomy of the flower of some species of the Pontederiaceae. Proc. Indian Acad. Sci. B 56: 339–353.

    Google Scholar 

  • Skottsberg C. 1932. Bemerkungen über die Philydraceen. Bot. Jahrb. Syst. 65: 253–274.

    Google Scholar 

  • Skottsberg C. 1948. Philydraceae. In: CGGJ van Steenis, ed. Flora Malesiana, ser. 1, 4: 5–7. Leyden.

    Google Scholar 

  • Smith RW. 1898. A contribution to the life history of the Pontederiaceae. Bot. Gaz. 25: 324–337.

    Article  Google Scholar 

  • Smith RW. 1908. Endosperm of Pontederia. Bot. Gaz. 45: 338–339.

    Article  Google Scholar 

  • Smithson E. 1956. The comparative anatomy of the Flagellariaceae. Kew Bull. 9: 491–501

    Article  Google Scholar 

  • Steinecke H und U Hamann. 1989. Embryologisch-Systematische Untersuchungen an Haemodoraceen. Bot. Jahrb. Syst. 111: 247–262.

    Google Scholar 

  • Stenar H. 1927. Zur Entwicklungsgeschichte der Gattung Anigozanthos Labill. Bot. Not. 1927: 104–114.

    Google Scholar 

  • Stenar H. 1938. Die systematische Stellung der Gattung Xiphidium. Svensk Bot. Tidskr. 32: 274.

    Google Scholar 

  • Strange A, PJ Rudall and CJ Prychid. 2004. Comparative floral anatomy of Pontederiaceae. Bot. J. Linn. Soc. 144: 395–408.

    Article  Google Scholar 

  • Tillich H-J. 1994. Untersuchungen zum Bau der keimpflanzen der Philydraceae und Pontederiaceae (Monocotyledonae). Sendtnera 2: 171–186.

    Google Scholar 

  • Tillich H-J. 1996. Seeds and seedling in Hanguanaceae and Flagellariaceae (Monocotyledons). Sendtnera 3: 187–197.

    Google Scholar 

  • Tillich H-J und E Sill. 1999. Systematische Studien zur Morphologie und Anatomie von Hanguana Blume (Hanguanaceae) und Flagellaria L. (Flagellariaceae), mit der Beschreibung einer neuen Art Hanguana bogneri spec. nov. Sendtnera 6: 215–238.

    Google Scholar 

  • Tomlinson PB. 1966. Anatomical data in the classification of Commelinaceae. Bot. J. Linn. Soc. 59: 371–395.

    Article  Google Scholar 

  • Tomlinson PB. 1969. Commelinales-Zingiberales. In: CR Metcalfe, ed. Anatomy of the monocotyledons, vol. 3, pp. 78–81. Clarendon Press, Oxford.

    Google Scholar 

  • Vyshenskaya TD. 1985. Commelinaceae. In: A Takhtajan, ed. Comparative seed anatomy, vol. 1, pp. 170–177. Nauka, Leningard (in Russian).

    Google Scholar 

  • Arekal GD and SN Ramaswamy. 1980. Embryology of Eriocaulon hookerianum Stapf and the systematic position of Eriocaulaceae. Bot. Not. 133: 295–309.

    Google Scholar 

  • Benko-Iseppson AM and MGL Wanderley. 2002. Cytogenetic studies on Brazilian Xyris species (Xyridaceae). Bot. J. Linn. Soc. 138: 245–252.

    Article  Google Scholar 

  • Boubier A-M. 1895. Remarques surranatomie systématique des Rapateacées et des families voisines. Bull. Herb. Boiss. 3(2): 115–120.

    Google Scholar 

  • Carlquist S. 1960. Anatomy of Guyana Xyridaceae: Abolboda, Orectanthe, and Achlyphila. Mem. New York Bot. Gard. 10(2): 65–117.

    Google Scholar 

  • Carlquist S. 1961. Pollen morphology of Rapateaceae. Aliso 5: 39–66.

    Google Scholar 

  • Carlquist S. 1966. Anatomy of Rapateaceae: roots and stems. Phytomorphology 16 (I): 17–38.

    Google Scholar 

  • Carlquist S. 1969. Rapateaceae. In: CE Metcalfe, ed. Anatomy of the monocotyledons, vol. 3, pp. 130–145. Clarendon Press, Oxford.

    Google Scholar 

  • Cheadle V and H Kosakai. 1982. Occurrence and specialization of vessels in Xyridales. Nord J. Bot. 2: 97–109.

    Article  Google Scholar 

  • Cooke DA. 1987. Hydatellaceae. In: AS George, ed. Flora of Australia, vol. 45, pp. 1–5. Australian Government Publishing Service, Canberra.

    Google Scholar 

  • Giulietti AM, WR Monteiro, SJ Mayo, and J Stephens. 1988. A preliminary survey of testa sculpture in Eriocaulaceae. Beiträge Biol. Pflanzen 62: 189–209.

    Google Scholar 

  • Givnish TJ, TM Evans, and KJ Sytsma. 1994. Molecular evolution and adaptive radiation in South American elements of the plant family Rapateaceae. Am. J. Bot. 81(6): 445 (Abstract).

    Google Scholar 

  • Givnish TJ, TM Evans, KJ Sytsma, TB Patterson, and MI Zjhra. 1998. Molecular evolution, adaptive radiation, and origin of the amphiatlantic distribution of the family Rapateaceae. In: Monocots II, p. 22 (Abstract). Sydney.

    Google Scholar 

  • Govil GM and S Lavania. 1982. Floral vasculature of Eriocaulon L. J. Indian Bot. Soc. 61: 371–376.

    Google Scholar 

  • Govindappa DA (= Arekal GD). 1956. Embryological studies in Xyris pauciflora Willd. Proc. Indian Acad. Sci. 42B: 47–57.

    Google Scholar 

  • Grootjen CJ. 1983. Development of ovule and seed in Cartonema spicatum R. Br. (Cartonemataceae). Austral. J. Bot. 31: 297–305.

    Article  Google Scholar 

  • Hamann U. 1961. Merkmalsbestand und Verwandschafts-beziehungen der Farinosae: Ein Beitrag zum System der Monocotyledonen. Willdenowia, 2, 5: 639–763.

    Google Scholar 

  • Hamann U. 1962. Weiteres über Merkmalsbestand und Verwandtschaftsbeziehungen der “Farinosae”. Willdenowia 3: 169–207.

    Google Scholar 

  • Hamann U. 1975. Neue Untersuchungen zur Embryologie und Systematik den Centrolepidaceae. Bot. Jahrb. Syst. 96: 154–191.

    Google Scholar 

  • Hamann U. 1976. Hydatellaceae: a new family of Monocotyle-doneae. New Zealand J. Bot. 14: 193–196.

    Google Scholar 

  • Hamann U. 1998. Hydatellaceae. In: K Kubitzki, ed. The families and genera of vascular plants vol. 4, pp. 231–234. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Hamann U, K Kaplan, and T Rübsamen. 1979. Über die Samen-schalenstruktur der Hydatellaceae (Monocotyledoneae) und die systematische Stellung von Hydatella filamentosa. Bot. Jahrb. Syst. 100: 555–563.

    Google Scholar 

  • Hohendorff U. 1981. Embryologische Untersuchungen an Eriocaulaceen. Thesis, University of Bochum.

    Google Scholar 

  • Horn af Rantzien H. 1946. Notes on the Mayacaceae of the Regnelian Herbarium in the Riksmuseum Stockholm. Svensk Bot. Tidskr. 40: 405–424.

    Google Scholar 

  • Kircher E. 1977. Embryologische Untersuchungen an Xyris cap-ensis Thunb. Thesis, University of Bochum.

    Google Scholar 

  • Körnicke F. 1873. Monographic der Rapateaceen. Linnaea 37: 417–494.

    Google Scholar 

  • Kral R. 1966a. Xyris (Xyridaceae) of the continental United States and Canada. SIDA 2: 177–260.

    Google Scholar 

  • Kral R. 1966b. Eriocaulaceae of continental North America north of Mexico. SIDA 2: 285–332.

    Google Scholar 

  • Kral R. 1972. A treatment of American Xyridaceae exclusive of Xyris. Ann. Missouri Bot. Gard. 79: 819–895.

    Article  Google Scholar 

  • Kral R. 1983. The Xyridaceae in the southeastern United States. J. Arnold Arbor. 64: 421–429.

    Google Scholar 

  • Kral R. 1989. The genera of Eriocaulaceae in the southeastern United States. J. Arnold Arbor. 70: 131–142.

    Google Scholar 

  • Kral R. 1992. A treatment of American Xyridaceae exclusive of Xyris. Ann. Missouri Bot. Gard. 79: 819–885.

    Article  Google Scholar 

  • Kral R. 1998. Xyridaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 4, pp. 461–469. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Krauss JE, MG Sajo, CL Dias Leme, MGL Wanderley. 1994. Aspectos morfologicos do desenvolvimento pos-seminal em especies de Xyris L. (Xyridaceae). Hoehnea 21: 29–38.

    Google Scholar 

  • Lourteg A. 1952. Mayacaceae. Notul. Syst. (Paris) 14: 234–248.

    Google Scholar 

  • Maguire B and JJ Wurdack. 1958. The botany of the Guyana Highland, part 3. Mem. New York Bot. Gard. 10: 19–49.

    Google Scholar 

  • Maguire B and JJ Wurdack. 1960. Xyridaceae. In: B Maguire et al. The botany of the Guyana Highland, part 4. Mem. New York Bot. Gard. 10(2): 11–15.

    Google Scholar 

  • Maguire B and JJ Wurdack. 1965. The botany of the Guyana Highland, part 6. Mem. New York Bot. Gard. 12: 69–102.

    Google Scholar 

  • Maguire B and LB Smith. 1963. Xyridales. In: B Maguire et al. The botany of the Guyana Highland, part 5. Mem. New York Bot. Gard. 10(5): 7–37.

    Google Scholar 

  • Maguire B. 1979. Additions to the Rapateaceae. Acta Amazonia 9: 267–269.

    Google Scholar 

  • Malrne G. 1925. Xyridologische Beiträge. Arkiv Bot. 19(13): 1–8.

    Google Scholar 

  • Malrne G. 1933. Beiträge zur Kenntnis der südamerikanischen Xyridaceen. Arkiv Bot. 25(12): 1–18.

    Google Scholar 

  • Ramaswamy SN and GD Arekal. 1982. Embryology of Eriocaulon xeranthemum Mart. (Eriocaulaceae). Acta Bot. Neerl. 31: 41–54.

    Google Scholar 

  • Ramaswamy SN and MVS Raju. 1982. The embryo sac of Xyris schoenoides Mart. (Xyridaceae). Bull. Torrey Bot. Club 109(3): 325–329.

    Article  Google Scholar 

  • Roisa MM and VL Scatena. 2003. Floral anatomy of Eriocaulon elichrysoides and Syngonanthus caulescens (Eriocaulaceae). Flora 198: 188–199.

    Google Scholar 

  • Rosa MM and VL Scatena. 2007. Floral anatomy of Paepalanthoideae (Eriocaulaceae, Poales) and their nectariferous structures. Ann. Bot. 99: 131–139.

    Article  PubMed  Google Scholar 

  • Saarela JM, HS Rai, JA Doyle, PK Endress, S Mathews, AD Marchant, B Briggs, and SW Graham. 2007. Hydatellaceae identified as a new branch near the base of the angiosperm phylogenetic tree. Nature 446: 312–315.

    Article  PubMed  CAS  Google Scholar 

  • Sajo MG. 1992. Estudos morfoanatomicos em orgais foliares de Xyris L. (Xyridaceae). Bol. Bot. Univ. São Paulo 13: 67–86.

    Google Scholar 

  • Sajo MG and PJ Rudall. 1999. Systematic vegetative anatomy and ensiform leaf development in Xyris (Xyridaceae). Bot. J. Linn. Soc. 130: 171–182.

    Google Scholar 

  • Scatena VL and F Bauman. 2001. Embryology and seed development of Paepalanthus sect. Actinocephalus (Koern.) Ruhland (Eriocaulaceae). Plant Biol. 3: 341–350.

    Article  Google Scholar 

  • Scatena VL, AM Giulietti, EL Borba, and C van den Berg. 2005. Anatomy of Brazilian Eriocaulaceae: correlation with taxonomy and habitat using multivatiate analyses. Plant Syst. Evol. 253: 1–22.

    Article  Google Scholar 

  • Splett S, W Barthlott, T Stützel, and MAG Barros. 1993. Leaf anatomy of Brazilian Eriocaulaceae and its diagnostic sig-nificance. Flora 188: 399–411.

    Google Scholar 

  • Stevenson DW. 1983. Systematic implications of the floral morphology of the Mayacaceae. Am. J. Bot. 70(5, pt.2): 32.

    Google Scholar 

  • Stevenson DW. 1998. Mayacaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 4, pp. 294–296. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Stevenson DW, M Colella and B Boom. 1998. Rapateaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 4, pp. 415–424. Springer, Berlin/Heidelberg/ New York.

    Google Scholar 

  • Stevenson DW, JI Davis, JV Freudenstein, CR Hardy, MP Simmonds, and CD Specht. 2000. A phylogenetic analysis of the monocotyledons based on morphological and molecular character sets, with comments on the placement of Acorus and Hydatellaceae. In: KL Wilson and DA Morrison, eds. Monocots: systematics and evolution, pp.17–24. CSIRO, Collingwood.

    Google Scholar 

  • Steyermark JA. 1984. Flora of the Venezuelan Guyana, part 1. Ann. Missouri Bot. Gard. 71: 297–340.

    Article  Google Scholar 

  • Stützel T. 1984. Blüten- und infloreszenzmorphologische Untersuchungen zur Systematik der Eriocaulaceae. Diss. Bot. 71: 1–108.

    Google Scholar 

  • Stützel T. 1985. Die epipetalen Drüsen der Gattung Eriocaulon (Eriocaulaceae). Beitr. Biol. Pflanz. 60: 271–276.

    Google Scholar 

  • Stützel T. 1988. Untersuchungen zur Wurzelanatomie der Eriocaulaceen. Flora 180: 223–239.

    Google Scholar 

  • Stützel T. 1990. “Appendices” am Gynoeceum der Xyridaceen. Beitr. Biol. Pflanzen 65: 275–299.

    Google Scholar 

  • Stützel T. 1998. Eriocaulaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 4, pp. 197–207. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Stützel T and N Gansser. 1995. Floral morphology of North American Eriocaulaceae and its taxonomic implications. Feddes Repert 106: 495–502.

    Google Scholar 

  • Stützel T and F Weberling. 1982. Untersuchungen über Verzweigung und Infloreszenzaufbau von Eriocaulaceen. Flora 172: 105–112.

    Google Scholar 

  • Suessenguth K and R Beyerle. 1936. Über die Xyridaceengat-tung Abolboda Humb. et Bonpl. Bot. Jahrb. Syst. 67(2): 132–142.

    Google Scholar 

  • Thanikaimoni G. 1965. Contribution to the pollen morphology of Eriocaulaceae. Pollen Spores 7: 181–191.

    Google Scholar 

  • Thieret JW. 1975. The Mayacaceae in the southeastern United States. J. Arnold Arbor. 56: 248–255.

    Google Scholar 

  • Thorsch JA and VI Cheadle. 1996. Vessels in Eriocaulaceae. IAWA J. 17: 183–204.

    Google Scholar 

  • Tiemann A. 1985. Untersuchungen zur Embryologie, Blütenmorphologie, und Systematik der Rapateaceen und der Xyridaceen-Gattung Abolboda (Monocotyledoneae). Diss. Bot. 82: 1–202.

    Google Scholar 

  • Tomlinson PB. 1964. Notes on the anatomy of Triceratella (Commelinaceae). Kirkia 4: 207–212.

    Google Scholar 

  • Uphof JCT. 1924. The physiological anatomy of Mayaca fluvia-tilis. Ann. Bot. 38: 389–393.

    Google Scholar 

  • Venturelli M and F Bouman. 1988. Development of ovule and seed in Rapateaceae. Bot. J. Linn. Soc. 97: 267–294.

    Article  Google Scholar 

  • Venturelli M and F Bouman. 1986. Embryology and seed development in Mayaca fluviatilis (Mayacaceae). Acta Bot. Neerl. 35: 497–516.

    Google Scholar 

  • Vyshenskaya TD. 1985a. Rapateaceae, Xyridaceae. In: A Takhtajan, ed. Comparative seed anatomy, vol. 1, pp. 167–169. Nauka, Leningrad (in Russian).

    Google Scholar 

  • Vyshenskaya TD. 1985b. Mayacaceae, Eriocaulaceae. In: A Takhtajan, ed. Comparative seed anatomy, vol. 1, pp. 177–183. Nauka, Leningrad (in Russian).

    Google Scholar 

  • Vyshenskaya TD. 1985c. Hydatellaceae. In: A Takhtajan, ed. Comparative seed anatomy, vol. 1, pp. 190–191. Nauka, Leningrad (in Russian).

    Google Scholar 

  • Weinzieher S. 1914. Beiträge zur Entwicklungsgeschichte von Xyris indica L. Flora 106: 393–432.

    Google Scholar 

  • Anway JC. 1969. The evolution and taxonomy of Calectasia cta-nea R. Br. (Xanthorrhoeaceae) in terms of its present day variation and cytogenetics. Austral. J. Bot. 17: 147–159.

    Article  Google Scholar 

  • Barrett RL and Dixon KW. 2001. A revision of the genus Calectasia (Calectasiaceae) with eight new species described from south-west Western Australia. Nuytsia 13: 411–448.

    Google Scholar 

  • Bedford DJ, AT Lee, TD MacFarlane, RJF Henderson, and AS George. 1986. Xanthorrhoeaceae. Fl. Austral. 46: 88–171.

    Google Scholar 

  • Briggs BG. 1986. Chromosome numbers in Lomandra (Dasypogonaceae). Telopea 2: 741–744.

    Google Scholar 

  • Chanda S and K Ghosh. 1976. Pollen morphology and its evolutionary significance in Xanthorrhoeaceae. In: IK Ferguson and J Muller, eds. The evolutionary significance of the exine, pp. 527–559. Linn. Soc. Symposium, No. 1. London/ New York.

    Google Scholar 

  • Chanda S, B Lugardon, and G Thanikaimoni. 1978. On the ultrastructure of pollen apertures in Calectasia R.Br. (Xanthorrhoeaceae). Pollen Spores 20: 351–356.

    Google Scholar 

  • Clifford HT, GJ Keighery, and JG Conran. 1998. Dasypogonaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 4, pp. 190–194. Springer, Berlin/Heidelberg/ New York.

    Google Scholar 

  • Conran JG. 1998e. Lomandraceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 3, pp. 354–365. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Fahn A. 1954. The anatomical structure of the Xanthorrhoeaceae Dumort. Bot. J. Linn. Soc. 55: 158–184.

    Article  Google Scholar 

  • Keighery GJ. 1983. Balistochory (explosive seed dispersal) in Baxteria R. Br. (Xanthorrhoeaceae). W. Austral. Nat. 15: 163–166.

    Google Scholar 

  • Neyland R. 2002. A phylogeny inferred from large-subunit (26S) ribosomal DNA sequences suggests that the family Dasypogonaceae is closely aligned with the Restionaceae allies. Austral. Syst. Bot. 15: 749–754.

    Article  Google Scholar 

  • Rudall P. 1994. The ovule and embryo sac in Xanthorrhoeaceae sensu lato. Flora 189: 335–351.

    Google Scholar 

  • Rudall P and MW Chase. 1996. Systematics of Xanth-orrhoeaceae sensu lato, evidence for polyphyly. Thelopea 6, 629–647.

    Google Scholar 

  • Balslev H. 1996. Juncaceae. Flora Neotropica Monograph. New York Botanical Garden, New York.

    Google Scholar 

  • Balslev H. 1998. Juncaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 4, pp. 252–269. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Barnard C. 1958. Floral histogenesis in monocotyledons: III. The Juncaceae. Austral. J. Bot. 6: 285–298.

    Article  Google Scholar 

  • Blaser NW. 1941, 1944. Studies in the morphology of the Cyperaceae: I. Morphology of flowers: A. Scirpoid genera. B. Rhynchosporoid genera. II. The prophyll. Am. J. Bot. 28: 542–551, 832–838, 1941; 31: 53–54, 1944.]

    Article  Google Scholar 

  • Bruhl J. 1995. Sedge genera of the world: relationships and a new classification of the Cyperaceae. Austral. Syst. Bot. 8: 125–305.

    Article  Google Scholar 

  • Bruhl J, L Watson, and MJ Dallwitz. 1992. Genera of Cyperaceae: Interactive identification and information retrieval. Taxon 41: 225–234.

    Article  Google Scholar 

  • Cheadle VI. 1955. The taxonomic use of specialization of vesels in the metaxylem of Gramineae, Cyperaceae, Juncaceae, and Restionaceae. J. Arnold Arbor. 36: 141–157.

    Google Scholar 

  • Cheadle VI and H Kosakai. 1972. Vessels in the Cyperaceae. Bot. Gaz. 133: 214–223.

    Article  Google Scholar 

  • Cheadle VI and H Kosakai. 1973. Vessels in Juncales: I. Juncaceae and Thurniaceae. Phytomorphology 23: 80–87.

    Google Scholar 

  • Cutler DF. 1965. Vegetative anatomy of Thurniaceae. Kew Bull. 19: 431–441.

    Article  Google Scholar 

  • Cutler DF. 1969. Juncales. In: CR Metcalfe, ed. Anatomy of the monocotyledons, vol. 4. Clarendon Press, Oxford.

    Google Scholar 

  • Drábková K, J Kirschner, O Seberg, G Petersen, and Č Vlček. 2003. Phylogeny of the Juncaceae based on rbcL sequences, with special emphasis on Luzula DC and Juncus L. Plant Syst. Evol. 240: 133–147.

    Article  CAS  Google Scholar 

  • Dunbar A. 1973. Pollen development in the Eleocharis palustris group (Cyperaceae): I. Ultrastructure and ontogeny. Bot. Not. 126: 197–254.

    Google Scholar 

  • Eiten LT. 1976. Inflorescence units in the Cyperaceae. Ann. Missouri Bot. Gard. 63: 81–112.

    Article  Google Scholar 

  • Goetghebeur P. 1986. Genera Cyperacearum. Masters thesis, University of Ghent.

    Google Scholar 

  • Goetghebeur P. 1998. Cyperaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 4, pp. 141–198. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Holttum RE. 1948. The Spikelets in Cyperaceae. Bot. Rev. 14: 525–541.

    Article  Google Scholar 

  • Kirpes CC, LG Clark, and NR Lersten. 1996. Systematic signifi-cance of pollen arrangement in microsporangia of Poaceae and Cyperaceae, review and observations on representative taxa. Am. J. Bot. 83: 1609–1622.

    Article  Google Scholar 

  • Kirschner J. 2002a. Species plantarum: Flora of the World, Part 6. Juncaceae 1: Rostkovia to Luzula. Australian Biological Resources Study, Canberra.

    Google Scholar 

  • Kirschner J. 2002b. Species plantarum: Flora of the World, Part 7. Juncaceae 2: Juncus subgenus Juncus. Australian Biological Resources Study, Canberra.

    Google Scholar 

  • Kirschner J. 2002c. Species plantarum: Flora of the World, Part 8. Juncaceae 3: Juncus subgenus Agathryon. Australian Biological Resources Study, Canberra.

    Google Scholar 

  • Kovtonjuk N. 1999. Systematic significance of seed surfaces in some Juncaceae and Caryophyllaceae. In: MH Kurmann, AR Hemsley, eds. The evolution of plant architecture, pp. 367–374. Royal Botanic Gardens, Kew.

    Google Scholar 

  • Koyama T. 1961. Classification of the family Cyperaceae, part 1. J. Fac. Sci. Univ. Tokyo, Sect. 3, Bot. 8: 37–148.

    Google Scholar 

  • Kristiansen KA, M Cilieborg, L Drábková, T Jørgensenm, G Petersen, O Seberg. 2005. DNA taxonomy — the riddle of Oxychloë (Juncaceae). Syst. Bot. 30: 284–289.

    Article  Google Scholar 

  • Kubitzki K. 1966. Untersuchungen über den Blütenbau von Oreobolus R. Br. Bot. Jahrb. Syst. 85: 80–87.

    Google Scholar 

  • Kubitzki K. 1998. Thurniaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 4, pp. 455–457. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Kukkonen I. 1984. On the inflorescence in the family Cyperaceae. Ann. Bot. Fenn. 21: 257–264.

    Google Scholar 

  • Laurent M. 1904. Recherches sur le développement des Joncées. Ann. Sci. Nat. Bot. 19: 97–194.

    Google Scholar 

  • Lye KA. 2000. Achene structure and function of structure in Cyperaceae. In: KL Wilson and DA Morrison, eds. Mono-cots: systematic and evolution, pp. 615–628. CSIRO, Collingwood.

    Google Scholar 

  • Makde KH. 1982. Pollen development in the Cyperaceae. J. Indian Bot. Soc. 61: 242–249.

    Google Scholar 

  • Makde KH and SM Bhuskute. 1984. Trends of specialization in endosperm of Cyperaceae. Current Science 53: 504–506.

    Google Scholar 

  • Metcalfe CR. 1971. Cyperaceae. In: CR Metcalfe, ed. Anatomy of the monocotyledons, vol. 5. Clarendon Press, Oxford.

    Google Scholar 

  • Michalska A. 1953. Cytological investigations on Luzula. Acta Soc. Bot. Polon. 22: 169–186.

    Google Scholar 

  • Muasya AM, JJ Bruhl, DA Simpson, A Culham, and MW Chase. 2000. Suprageneric phylogeny of Cyperaceae: a combined analysis. In: KL Wilson and DA Morrison, eds. Mono-cots: systematic and evolution, pp. 593–601. CSIRO, Collingwood.

    Google Scholar 

  • Muasya AM, DA Simpson, MW Chase, and A Culham. 1998. An assessment of the suprageneric phylogeny in Cyperaceae using rbcL DNA sequences. Plant Syst. Evol. 211: 257–271.

    Article  CAS  Google Scholar 

  • Munro SL and HP Linder. 1997. The embryology and systematic relationships of Prionium serratum (Juncaceae: Juncales). Am. J. Bot. 84: 850–860.

    Article  Google Scholar 

  • Munro SL and HP Linder. 1998. The phylogenetic position of Prionium (Juncaceae) within the order Juncales based on morphological and rbcL sequence data. Syst. Bot. 23: 43–55.

    Article  Google Scholar 

  • Nemirovich-Danchenko EN. 1985. Thurniaceae. In: A Takhtajan, ed. Comparative seed anatomy, vol. 1, pp. 161–162. Nauka, Leningrad (in Russian).

    Google Scholar 

  • Plunkett GM, DE Soltis, PS Soltis and RE Brooks. 1995. Phylogenetic relationships between Juncaceae and Cyperaceae, insights from rbcL sequence data. Am. J. Bot. 82: 520–525.

    Article  Google Scholar 

  • Reihmann D. 1977. Vergleichende Embryologie und system-atische Stellung der Juncaceae mit neuen Beiträgen zur Samenentwicklung von Juncus und Luzula. Thesis, University of Bochum.

    Google Scholar 

  • Richards J, JJ Bruhl, and KL Wilson. 2005. Understanding floral morphology of mapaniid Cyperaceae: development of reproductive structures in Exocarya scleroides. In: Botany 2005. Learning from plants (Abstracts), pp. 37–38.

    Google Scholar 

  • Roalson EH. 2005. Phylogenetic relationships in the Juncaceae inferred from nuclear ribosomal DNA internal transcribed spacer sequence data. Int. J. Plant Sci. 166: 397–413.

    Article  CAS  Google Scholar 

  • Schneider M. 1932. Untersuchungen über die Embryobildung und Entwicklung der Cyperaceen. Beih. Bot. Centralbl. 49: 649–674.

    Google Scholar 

  • Schultze-Motel W. 1959. Entwicklungsgeschichtliche und ver-gleichend-morphologische Untersuchungen im Blütenbereich der Cyperaceae. Bot. Jahrb. Syst. 78: 129–170.

    Google Scholar 

  • Shah CK. 1967. A taxonomic evaluation of the families Cyperaceae and Juncaceae. Bull. Nation. Inst. Sci. India 34: 248–256.

    Google Scholar 

  • Shah CK. 1968. Development of pericarp and seed coat in the Cyperaceae. Naturaliste Canad. 95: 39–48.

    Google Scholar 

  • Shah CK. 1974. Morphology and embryology of the family Cyperaceae. Adv. Plant Morph. 1972: 102–112.

    Google Scholar 

  • Simpson D. 1995. Relationships within Cyperales. In: Rudall PJ, PJ Cribb, DF Cutler, and CJ Humphries, eds. Monocotyledons: systematics and evolution, vol. 2, pp. 497–509. Royal Botanic Gardens, Kew.

    Google Scholar 

  • Simpson D. 1998. Mapaniaceae – fact or fiction? In Mono-cots II, p. 50 (Abstract). Sydney.

    Google Scholar 

  • Simpson DA, CA Furness, TR Hodkinson, AM Muasya, and MW Chase. 2003. Phylogenetic relationships in Cyperaceae subfamily Mapanioideae inferred from pollen and plastid DNA sequence data. Am. J. Bot. 90: 1971–1086.

    Article  Google Scholar 

  • Smith DL and JS Faulkner. 1976. The inflorescence of Carex and related genera. Bot. Rev. 42: 53–81.

    Article  Google Scholar 

  • Snell RS. 1936. Anatomy of the spikelets and flowers of Carex, Kobresia, and Uncinia. Bull. Torrey Bot. Club. 63: 277–295.

    Article  Google Scholar 

  • Starr JR, RJ Bayer, and BA Ford. 1999. The phylogenetic position of Carex section Phyllostachys and its implications for phylogeny and subgeneric circumscription in Carex (Cyperaceae). Am. J. Bot. 86: 563–577.

    Article  PubMed  CAS  Google Scholar 

  • Starr JR, SA Harris, and DA Simpson. 2004. Phylogeny of the unispicate taxa in Cyperaceae tribe Cariceae I: generic relationships and evolutionary scenarios. Syst. Bot. 29: 528–544.

    Article  Google Scholar 

  • Starr JR, Teoh V, E Roalson, AM Muasya, and DA Simpson. 2006. Towards a phylogenetic classification of sedges (Cyperaceae): chloroplast (rbcL, matK, NdhF) and nuclear (ADC) data. In: Botany 2006 – Looking to the future, conserving the past (Abstracts), pp. 258–259.

    Google Scholar 

  • Tarasevich VF. 1986. On the position of the family Cyperaceae in the system of flowering plants in connection with the palynological data. In: VN Tikhomirov, ed. Sources of information in the phylogenetic systematics of plants, pp. 75–76. Nauka, Moscow (in Russian).

    Google Scholar 

  • Tejavathi DH. 1987. Seed development in some members of Cyperaceae. Beitr. Biol. Pflanz. 62: 43–55.

    Google Scholar 

  • Thimm U. 1985. Zur Embryologie, Blüten- und Fruchtanatomie der isolierten Juncales-Gattungen Prionia und Thurnia. Diploma Thesis Bochum. University of Bochum, Division of Biology.

    Google Scholar 

  • Tucker GC. 1987. The genera of Cyperaceae in the SE United States. J. Arnold Arbor. 68: 361–445.

    Google Scholar 

  • Van der Veken P. 1965. Contribution a embryographie system-atique des Cyperaceae-Cyperoideae. Bull. Jard. Bot. Brux. 35: 285–354.

    Google Scholar 

  • Van Wichelen J, K Camelbeke, P Chaerle, P Goetghebeur, and S Huysmans. 1999. Comparison of different treatments for LM and SEM studies and systematic value of pollen grains in Cyperaceae. Grana 38: 50–58.

    Article  Google Scholar 

  • Vovk AG. 1985a. Juncaceae. In: A Takhtajan, ed. Comparative seed anatomy, vol. 1, pp. 158–159. Nauka, Leningrad (in Russian).

    Google Scholar 

  • Vovk AG. 1985b. Cyperaceae. In: A Takhtajan, ed. Comparative seed anatomy, vol. 1, pp. 163–166. Nauka, Leningrad (in Russian).

    Google Scholar 

  • Vrijdaghs A, P Caris, P Goetghebeur, and E Smets. 2004. The bristles of Dulichium (Cyperaceae), a floral ontogenetic study. In: Botany 2004. Alpine diversity: adapted to the peaks (Abstracts), p. 164.

    Google Scholar 

  • Vrijdaghs A, P Caris, P Goetghebeur, and E Smets. 2005a. Floral ontogeny in Scirpus, Eriophorum and Dulichium (Cyperaceae), with special reference to the perianth. Ann. Bot. 95: 1199–1209.

    Article  CAS  Google Scholar 

  • Vrijdaghs A, P Goetghebeur, AM Muasya, P Caris, and E Smets. 2005b. Floral ontogeny in Ficinia and Isolepis (Cyperaceae), with focus on the nature and origin of the gynophore. Ann. Bot. 96: 1247–1264.

    Article  CAS  Google Scholar 

  • Wilczek E. 1892. Beiträge zur Kenntnis des Baues der Frucht und des Samens der Cyperaceen. Bot. Centralbl. 51: 129– 138, 193–201, 225–233, 257–265.

    Google Scholar 

  • Williams CA and JB Harborne. 1975. Luteolin and daphnetin derivatives in the Juncaceae and their systematic signifi-cance. Biochem. Syst. Ecol. 3: 181–190.

    Article  CAS  Google Scholar 

  • Wulff HD. 1939. Die Pollenentwicklung der Juncaceen nebst einer Auswertung der embryologischen Befunde hinsichtlich einer Verwandtschaft zwischen den Juncaceen und Cyperaceen. Jahrb. Wiss. Bot. 87: 533–556.

    Google Scholar 

  • Yen AC and RG Olmstead. 2000. Molecular Systematics of Cyperaceae Tribe Cariceae based on two chloroplast DNA regions: ndhF and trnL intron-intergenic spacer. Syst. Bot. 25: 479–494.

    Article  Google Scholar 

  • Zhang X, KL Wilson, and JJ Bruhl. 2004. Sympodial structure of spikelets in the tribe Schoeneae (Cyperaceae). Am. J. Bot. 91: 24–36.

    Article  Google Scholar 

  • Asplund I. 1972. Embryological studies in the genus Typha. Svensk Bot. Tidskr. 66: 1–17.

    Google Scholar 

  • Bergner I and U Jensen. 1989. Phytoserological contribution to the systematic placement of the Typhales. Nord. J. Bot. 8: 447–456.

    Article  Google Scholar 

  • Cook CDK and MS Nicholls. 1986, 1987. A monographic study of the genus Sparganium (Sparganiaceae). Part I. Subgenus Xanthosparganium Holmberg. Bot. Helv. 96: 213–267, 1987; Part II. Subgenus Sparganium. Bot. Helv. 97: 1–44, 1987.

    Google Scholar 

  • Gibbs RD. 1974. Chemotaxonomy of flowering plants, pp. 1–4. McGill-Queen's University Press, Montreal.

    Google Scholar 

  • Graef PE. 1955. Ovule and embryo sac development in Typha latifolia. Am. J. Bot. 42: 806–809.

    Article  Google Scholar 

  • Haines RW and KA Lye. 1972. Studies in African Cyperaceae: VII. Panicle morphology and possible relationships in Sclerieae and Cariceae. Bot. Not. 125: 331–343.

    Google Scholar 

  • Lee DW and DE Fairbrothers. 1972. Taxonomic placement of the Typhales within the monocotyledons: preliminary sero-logical investigation. Taxon 21: 39–44.

    Article  Google Scholar 

  • Malik R and AK Sharma. 1966. Chromosome studies in Indian Pandanales. Cytologia 31: 402–410.

    Google Scholar 

  • Mavrodoev EV. 2001. Rohrbachia, a new genus of the Typhaceae. Bot. Zhurn. 86, 9: 120–124 (in Russian with English summary).

    Google Scholar 

  • Meyer FJ. 1933. Beiträge zur vergleichenden Anatomie der Typhaceae (Gattung Typha). Beitr. Bot. Centralbl. 51: 335–376.

    Google Scholar 

  • Müller-Doblies U. 1969. Über die Blütenstande und Blüten sowie zur Embryologie von Sparganium. Bot. Jahrb. Syst. 89: 459–450.

    Google Scholar 

  • Müller-Doblies D. 1970. Über die Verwandtschaft von Typha und Sparganium im Infloreszenz- und Blütenbau. Bot. Jahrb. Syst. 89: 451–562.

    Google Scholar 

  • Parmelee J and BDO Savile. 1954. Life history and relationship of rusts of Sparganium and Acorus. Mycologia 46: 823–836.

    Google Scholar 

  • Radhakrishnaiah M, G Nageshwar, and LL Narayana. 1984. Chemotaxonomy of Pandanus and Typha. Curr. Sci. 53: 759–760.

    Google Scholar 

  • Rendle A. 1953. The classification of flowering plants. Vol. 1. Gymnosperms and monocotyledons, 2nd ed. Cambridge University Press, Cambridge

    Google Scholar 

  • Rowlatt U. 1992. Architecture of the leaf of the greater reed mace, Typha latifolia L. Bot. J. Linn. Soc. 110: 161–170.

    Article  Google Scholar 

  • Savile DB0. 1979. Fungi as aids in higher plant classification. Bot. Rev. 45: 377–503.

    Article  Google Scholar 

  • St. John H. 1941. Teratological Typha. Rhodora 43: 85–91.

    Google Scholar 

  • Thieret JW. 1982. The Sparganiaceae in the southeastern United States. J. Arnold Arbor. 63: 341–355.

    Google Scholar 

  • Wagner P. 1977. Vessel types of monocotyledons: a survey. Bot Not. 130: 383–402.

    Google Scholar 

  • Zubkova IG and LK Shabes. 1985. Typhaceae. In: A Takhtajan, ed. Comparative seed anatomy, vol. 1, pp. 262–263. Nauka, Leningrad (in Russian).

    Google Scholar 

  • Appel O and C Bayer. 1998. Flagellariaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 4, pp. 208–211. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Baker CA. 1951. Flagellariaceae. In: CGGJ van Steenis, ed. Flora Malesiana, ser. 1, 4: 245–250. Leyden.

    Google Scholar 

  • Baranova MA. 1975. Stomatographical studies of the family Flagellariaceae. Bot. Zhurn. 60: 1690–1697 (in Russian).

    Google Scholar 

  • Bayer C and O Appel. 1998. Joinvilleaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 4, pp. 249–251. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Borwein B, ML Goetsee, and S Krupko. 1949. Development of the embryo sac of Restio dodii and Elegia racemosa. South Afr. J. Bot. 15: 1–11.

    Google Scholar 

  • Briggs BG and LAS Johnson. 1998. New combinations arising from a new classification of non-African Restionaceae. Telopea 8: 21–33.

    Google Scholar 

  • Briggs BG and LAS Johnson. 1999. A guide to a new classification of Restionaceae and allied families. In: KA Meney and JS Pate, eds. Australian rushes, biology, identification and conservation of Restionaceae and allied families, pp. 25–56. University of Western Australia Press, Perth.

    Google Scholar 

  • Briggs BG and LAS Johnson. 2000. Hopkinsiaceae and Lyginiaceae, two new families of Poales in Western Australia, with revisions of Hopkinsia and Lyginia. Telopea 8: 477–502.

    Google Scholar 

  • Briggs BG, AD Marchant, S Gilmore, and CL Porter. 2000. A molecular phylogeny of Restionaceae and allies. In: KL Wilson and DA Morrison, eds. Monocots: systematics and evolution, pp. 661–671. CSIRO, Collinwood.

    Google Scholar 

  • Chanda S. 1966. On the pollen morphology of the Centrolepidaceae, Restionaceae, and Flagellariaceae with special reference to taxonomy. Grana Palynol. 6: 355–415.

    Article  Google Scholar 

  • Chanda S and S Rowley. 1967. Apertural types in pollen of Restionaceae and Flagellariaceae. Grana Palynol. 7: 16–36.

    Google Scholar 

  • Cheadle VI. 1955. The taxonomic use of specialization of vessels in the metaxylem of Gramineae, Cyperaceae, Juncaceae, and Restionaceae. J. Arnold Arbor. 36: 141–157.

    Google Scholar 

  • Cheadle VI and H Kosakai. 1975. Vessels in Juncales, II. Centrolepidaceae and Restionaceae. Am. J. Bot. 62: 1017–1026.

    Article  Google Scholar 

  • Cooke DA. 1998. Centrolepidaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 4, pp. 106–109. Springer, Berlin/Heidelberg/New York.

    Google Scholar 

  • Cutler DF. 1969. Juncales. In: CR Metcalfe, ed. Anatomy of the monocotyledons, vol. 4. Clarendon Press, Oxford.

    Google Scholar 

  • Cutler DF and HK Airy Shaw. 1965. Anarthriaceae and Ecdeiocoleaceae: Two new monocotyledonous families, separated from the Restionaceae. Kew Bull. 19: 489–499.

    Article  Google Scholar 

  • Eldenäs PK and HP Linder. 2000. Congruence and complementarity of morphological and trnL-trnF sequence data and the phylogeny of the African Restionaceae. Syst. Bot. 25: 692–701.

    Article  Google Scholar 

  • Hamann U. 1962. Beitrag zur Embryologie der Centrolepidaceae mit Bemerkungen über den Bau der Blüten und Blütenstande und die systematische Stellung der Familie. Ber. Deutsch. Bot. Ges. 75: 153–171.

    Google Scholar 

  • Hamann U. 1963. Über die Entwicklung und den Bau des Spaltöffnungsapparates der Centrolepidaceae. Bot. Jahrb. Syst. 82: 316–320.

    Google Scholar 

  • Hamann U. 1975. Neue Untersuchungen zur Embryologie und Systematik der Centrolepidaceae. Bot. Jahrb. Syst. 96: 154–191.

    Google Scholar 

  • Harborne JB, CA Williams, BG Briggs, and LAS Johnson. 2000. Flavonoid patterns and the phylogeny of the Restionaceae. In: KL Wilson and DA Morrison, eds. Monocots: systematics and evolution, pp. 661–671. CSIRO, Collinwood.

    Google Scholar 

  • Hochuli PA. 1979. Ursprung und Verbreitung der Re-stionaceen. Vierteljahrsschr. Naturf. Ges. Zürich 124: 109–131.

    Google Scholar 

  • Johnson LAS and BG Briggs. 1981. Three old southern families Myrtaceae, Proteaceae, and Restionaceae. In: A Keast, ed. Ecological biogeography of Australia, pp. 427–469. W. Junk, Utrecht.

    Google Scholar 

  • Keighery GJ. 1998. Systematics and biology of the Centro-lepidaceae. In: Monocots II, p. 30 (Abstract). Sydney.

    Google Scholar 

  • Kircher P. 1986. Untersuchungen zur Blüten- und Inflo-reszenzmorphologie, Embryologie, und Systematik der Restionaceen im Vergleich mit Gramineen und verwandten Familien. Diss. Bot. 94: 1–219.

    Google Scholar 

  • Krupko S. 1962. Embryological and cytological investigations in Hypodiscus aristatus Nees (Restionaceae). South Afr. J. Bot. 28: 21–44.

    Google Scholar 

  • Krupko S. 1963. Macrosporogenesis and embryo sac development in Chondropetalum hookerianum (Mast.) Pillans (Restionaceae). Acta Soc. Bot. Polon. 32: 17–190.

    Google Scholar 

  • Krupko S. 1966. Some loose embryological and cytological observations on members of Restionaceae family. Bull. Soc. Amis Sci. Poznan, ser. D, 7: 59–67.

    Google Scholar 

  • Ladd PG. 1977. Pollen morphology of some members of the Restionaceae and related families, with notes on the fossil record. Grana Palynol. 16: 1–14.

    Google Scholar 

  • Lee DW, YK Pin, and LF Yew. 1975. Serological evidence on the distinctness of the monocotyledonous families Flagellariaceae, Hanguanaceae, and Joinvilleaceae. Bot. J. Linn. Soc. 70: 77–81.

    Article  Google Scholar 

  • Linder HP. 1984. A phylogenetic classification of the genera of the African Restionaceae. Bothalia 15: 11–76.

    Google Scholar 

  • Linder HP. 1985. Conspectus of the African species of Restionaceae. Bothalia 15: 387–503.

    Google Scholar 

  • Linder HP. 1987. A hypothesis on the evolutionary history of the Poales/Restionales. Kew Bull. 42: 297–318.

    Article  Google Scholar 

  • Linder HP. 1991. A review of the African Restionaceae. Contrib. Bolus Herb. 13: 209–264.

    Google Scholar 

  • Linder HP. 1992a. The structure and evolution of the female flower of the African Restionaceae. Bot. J. Linn. Soc. 109: 401–425.

    Article  Google Scholar 

  • Linder HP. 1992b. The gynoecia of Australian Restionaceae: morphology, anatomy and systematic implications. Austral. Syst. Bot. 109: 227–245.

    Article  Google Scholar 

  • Linder HP. 2000. Vicariance, climate change, anatomy and phy-logeny of Restionaceae. Bot. J. Linn. Soc. 134: 159–177.

    Article  Google Scholar 

  • Linder HP and LR Caddick. 2001. Restionaceae seedlings: morphology, anatomy and systematic implications. Feddes Repert. 112(1–2): 59–80

    Google Scholar 

  • Linder HP and IK Ferguson. 1985. On the pollen morphology and phylogeny of the Restionales and Poales. Grana 24: 65–76.

    Google Scholar 

  • Linder HP and PJ Rudall. 1993. The megagametophyte in Anarthria (Anarthriaceae, Poales) and its implications for the phylogeny of the Poales. Am. J. Bot. 80: 1455–1464.

    Article  Google Scholar 

  • Linder HP, BG Briggs, and LAS. Johnson. 1998a. Anarthriaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 4, pp. 19–21. Springer, Berlin/Heidelberg/ New York.

    Google Scholar 

  • Linder HP, BG Briggs, and LAS Johnson. 1998b. Ecdeiocoleaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 4, pp. 195–197. Springer, Berlin/Heidelberg/ New York.

    Google Scholar 

  • Linder HP, BG Briggs, and LAS Johnson. 1998c. Restionaceae. In: K Kubitzki, ed. The families and genera of vascular plants, vol. 4, pp. 425–445. Springer, Berlin/Heidelberg/ New York.

    Google Scholar 

  • Linder HP, BG Briggs, and LAS Johnson. 2000. Restiona-ceae – a morphological phylogeny. In: KL Wilson and DA Morrison, eds. Monocots: systematics and evolution, pp. 653–660. CSIRO, Collinwood.

    Google Scholar 

  • Manning JC and HP Linder. 1990. Cladistic analysis of patterns of endothecial thickenings in the Poales/Restionales. Am. J. Bot. 77: 196–210.

    Article  Google Scholar 

  • Meney KA, KW Dixon, and JS Pate. 1999. Seed reproduction and germination ecology in Restionaceae. In: KA Meney and JS Pate, eds. Australian rushes, biology, identification and conservation of Restionaceae and allied families. pp. 97–108. University of Western Australia Press, Perth.

    Google Scholar 

  • Michelangeli FA, JI Davis, and DW Stevenson. 2002. Phylogenetic relationships among Poaceae and related families as inferred from morphology, chloroplast structure, and sequence data from the mitochondrial and plastid genomes. In: Botany 2002: Botany in the curriculum (Abstracts), p. 139. Madison.

    Google Scholar 

  • Michelangeli FA, JI Davis and DW Stevenson. 2003. Phylogenetic relationships among Poaceae and related families as inferred from morphology, inversions in the plastid genome, and sequence data from the mitochondrial and plastid genomes. Am. J. Bot. 90: 93–106.

    Article  CAS  Google Scholar 

  • Newell TK. 1969. A study of the genus Joinvillea ( Fla-gellariaceae). J. Arnold Arbor. 50: 527–555.

    Google Scholar 

  • Neyland R. 2002. A phylogeny inferred from large-subunit (26S) ribosomal DNA sequences suggests that the family Dasypogonaceae is closely aligned with the Restionaceae allies. Austral. Syst. Bot. 15: 749–754

    Article  Google Scholar 

  • Pin YK and LF Yew. 1975. Serological evidence on the distinctness of the monocotyledonous families Flagellariaceae, Huanguan-aceae and Joinvilleaceae. J. Linn. Soc. Bot. 70: 77–81.

    Article  Google Scholar 

  • Prakash N. 1970. The floral development and embryology of Centrolepis fascicularis. Phytomorphology 19: 285–291.

    Google Scholar 

  • Ronse Decraene LP, PH Linder and EF Smets. 2001. Floral ontogenetic evidence in support of the Willdenowia clade of South African Restionaceae. J. Plant Res. 114: 329–342.

    Article  Google Scholar 

  • Ronse Decraene LP, HP Linder, and EF Smets. 2002. Ontogeny and evolution of the flowers of South African Restionaceae with special emphasis on the gynoecium. Plant Syst. Evol. 231: 225–258.

    Article  Google Scholar 

  • Rudall P. 1990. Development of the ovule and megagametophyte in Ecdeiocolea monostachya. Austral. Syst. Bot. 3: 265–274.

    Article  Google Scholar 

  • Rudall P and HP Linder. 1988. Megagametophyte and nucellus in Restionaceae and Flagellariaceae. Am. J. Bot. 75: 1777–1786.

    Article  Google Scholar 

  • Rudall P, W Stuppy, J Cunniff, EA Kellogg, BC Briggs. 2005. Evolution of reproductive structures in grasses (Poaceae) inferred by sister-group comparison with their putative closest living relatives, Ecdeiocoleaceae. Am. J. Bot. 92: 1432–1443.

    Article  Google Scholar 

  • Sack FD. 1994. Structure of the stomatal complex of the mono-cot Flagellaria indica. Am. J. Bot. 81: 339–344.

    Article  Google Scholar 

  • Smith AC. 1978. Flagellaria. Allertonia 1: 341–344.

    Google Scholar 

  • Smithson E. 1956. Comparative anatomy of the Flagellariaceae. Kew Bull. 11: 491–501.

    Article  Google Scholar 

  • Subramanyam K and HS Narayana. 1972. Some aspects of the floral morphology and embryology of Flagellaria indica L. In: YS Murty, BM Johri, HY Mohan Ram, and TM Varghese, eds. Advances in plant morphology, pp. 211–217. Sarita Prakashan, Meerut, India.

    Google Scholar 

  • Tillich HJ. 1996. Seeds and seedlings in Hanguanaceae and Flagellariaceae (Monocotyledons). Sendtnera 3: 187–197

    Google Scholar 

  • Tillich H-J und E Sill. 1999. Systematische Studien zur Morphologie und Anatomie von Hanguana Blume (Hanguanaceae) und Flagellaria L. (Flagellariaceae), mit der Beschreibung einer neuen Art Hanguana bogneri spec. nov. Sendtnera 6: 215–238.

    Google Scholar 

  • Tomlinson PB and AC Smith. 1970. Joinvilleaceae, a new family of monocotyledons. Taxon 19: 887–889.

    Article  Google Scholar 

  • Tomlinson PB and U Posluszny. 1977. Features of dichotomizing apices in Flagellaria indica (Monocotyledones). Am. J. Bot. 64: 1057–1065.

    Article  Google Scholar 

  • Vyshenskaya TD. 1985a. Flagellariaceae. In: A Takhtajan, ed. Comparative seed anatomy, vol. 1, pp. 184–185. Nauka, Leningrad (in Russian).

    Google Scholar 

  • Vyshenskaya TD. 1985b. Centrolepidaceae. In: A Takhtajan, ed. Comparative seed anatomy, vol. 1, pp. 187–189. Nauka, Leningrad (in Russian).

    Google Scholar 

  • Whipple CJ, and RJ Schmidt. 2006. Genetics of grass flower development. Adv. Bot. Res. 44: 385–424.

    Article  CAS  Google Scholar 

  • Williams CA, JB Harborne, J Greenham, BG Briggs, and LAS Johnson. 1997. Flavonoid evidence and the classification of the Anarthriaceae within the Poales. Phytochemistry 45: 1189–1196.

    Article  CAS  Google Scholar 

  • Williams CA, JB Harborne, J Greenham, BG Briggs, and LAS Johnson. 1998. Flavonoid patterns and the revised classification of Australian Restionaceae. Phytochemistry 49: 529–552.

    Article  CAS  Google Scholar 

  • Andre JP. 1998. A study of the vascular organization of bamboos (Poaceae-Bambuseae) using a microcasting method. IAWA J. 19: 265–301.

    Google Scholar 

  • Anton AM and AE Cocucci. 1984. The grass mega-gametophyte and its possible phylogenetic implications. Plant Syst. Evol. 146: 117–121.

    Article  Google Scholar 

  • Arber A. 1934. The Gramineae: a study of cereal, bamboo, and grass. Cambridge University Press, Cambridge.

    Google Scholar 

  • Avdulov NP. 1931. Karyosystematische Untersuchungen der Familie Gramineen. Bull. Appl. Bot. (Suppl.) 44: 1–428 (in Russian with German summary).

    Google Scholar 

  • Barker NP and HP Linder. 1999. Sequences of the grass-specific insert in the chloroplast rpoC2 gene elucidate generic relationships of the Arundinoideae (Poaceae). Syst. Bot. 23: 327–350.

    Article  Google Scholar 

  • Barker NP, HP Linder, and EH Harley. 1995. Polyphyly of the Arundinoideae (Poaceae): evidence from rbcL sequence data. Syst. Bot. 20: 423–435.

    Article  Google Scholar 

  • Barker NP, HP Linder, and EH Harley. 1999. Sequences of the grass-specific insert in the chloroplast rpoC2 gene elucidate generic relationships of the Arundinoideae (Poaceae). Syst. Bot. 23: 327–350.

    Article  Google Scholar 

  • Barker NP, CM Morton and HP Linder. 2000. The Danthonieae: generic composition and relationships. In: SWL Jacobs and J Everett, eds. Grasses: systematics and evolution, pp. 221– 229. CSIRO, Collingwood.

    Google Scholar 

  • Barker NP, LG Clark, JI Davis, MR Duvall, GF Guala, C Hsiao, EA Kellogg, HP Linder, RJ Mason-Gamer, SY Mathews, MP Simmons, RJ Soreng, RE Spangler (GPWG, Grass Phylogeny Working Group). 2001. Phylogeny and subfamilial classification of the grasses (Poaceae). Ann. Missouri Bot. Gard. 88: 373–457.

    Article  Google Scholar 

  • Barkworth ME. 2000. Changing perceptions of the Triticeae. In: SWL Jacobs and J Everett, eds. Grasses: systematics and evolution, pp. 110–120. CSIRO, Collingwood.

    Google Scholar 

  • Batygina TB and MS Yakovlev. 1990. Poaceae. In: TB Batygina and MS Yakovlev, eds. Comparative embryology of flower-ing plants: Monocotyledons, pp. 217–234. Nauka, Leningrad (in Russian).

    Google Scholar 

  • Baum BR and BO Savile. 1985. Rusts (Redinales) of Triticeae: evolution and extent of coevolution, a cladistic analysis. Bot. J. Linn. Soc. 91: 367–394.

    Article  Google Scholar 

  • Baum BR, JR Estes and PK Gupta. 1987. Assesment of the genomic system of classification in the Triticeae. Am. J. Bot. 74: 1338–1395. and ecology. Longman, London.

    Article  Google Scholar 

  • Bhanwra RK. 1988. Embryology in relation to systematics of Gramineae. Ann. Bot. 62: 215–233.

    Google Scholar 

  • Bhanwra RK, N Kaur, and A Garg. 1991. Embryological studies in some grasses and their taxonomic significance. Bot. J. Linn. Soc. 107: 405–417.

    Article  Google Scholar 

  • Birch WR. 1963. Epiblast in Gramineae. Nature 198 (4877): 304.

    Article  Google Scholar 

  • Brown W V. 1958. Leaf anatomy in grass systematics. Bot. Gaz. (Crawfordsville) 119: 170–178.

    Article  Google Scholar 

  • Brown W V. 1959. The epiblast and coleoptile of the grass embryo. Bull. Torrey Bot. Club 86: 13–16.

    Article  Google Scholar 

  • Brown WV. 1960. The morphology of the grass embryo. Phytomorphology 10: 215–323.

    Google Scholar 

  • Brown W V. 1965. The grass embryo: a rebuttal. Phytomorphology 15: 274–284.

    Google Scholar 

  • Brown WV and SC Johnson. 1962. The fine structure of the grass guard cell. Am. J. Bot. 49: 110–115.

    Article  Google Scholar 

  • Butzin F. 1965. Neue Untersuchungen über die Blüte der Gramineae. Ph.D. dissetration., University of Berlin.

    Google Scholar 

  • Cai LB. 2002. A preliminary discussion on the taxonomic values of the main characters of reproductive organ of Poaceae and their ranks suitable for differentiating taxa. Bull. Bot. Res. 22: 278–284.

    Google Scholar 

  • Calderon CE and TR Soderstrom. 1980. The genera of Bambusoideae (Poaceae) of the American continent: keys and comments. Smithsonian Contr. Bot. 44: 1–27.

    Google Scholar 

  • Campbell CS. 1985. The subfamilies and tribes of Gramineae (Poaceae) in the southeastern United States. J. Arnold Arbor. 66: 123–299.

    Google Scholar 

  • Campbell CS and EA Kellogg. 1987. Sister group relationships in the Poaceae. In: TR Soderstrom et al., eds. Grass system-atics and evolution, pp. 217–224. Smithsonian Institution Press, Washington.

    Google Scholar 

  • Caro JA. 1982. Sinopsis taxonomica de las gramineas Argentinas. Dominguezia 4: 1–51.

    Google Scholar 

  • Carolin RC, SWL Jacobs and M Vesk. 1973. The structure of the cells of the mesophyll and parenchymatous bundle sheath of the Gramineae. Bot. J. Linn. Soc. 66: 269–273.

    Article  Google Scholar 

  • Čelakovsky L. 1889. Über den Archenbau der brasilianischen Grasgattung Streptochaeta Schrad. Sitzungsber. Königl. Böhm. Ges. Wiss. Prag. Math.-Naturwiss. Kl. 1: 14–42.

    Google Scholar 

  • Čelakovsky L. 1897. Über die Homologien des Grasembryos. Bot. Z. 55: 141–174.

    Google Scholar 

  • Chandra N. 1963. Morphological studies in the Gramineae: III. On the nature of the gynoecium in the Gramineae. J. Indian Bot. Soc. 42: 252–259.

    Google Scholar 

  • Cheadle VI. 1955. The taxonomic use of specialization of vessels in the metaxylem of Gramineae, Cyperaceae, Juncaceae, and Restionaceae. J. Arnold Arbor. 36: 141–157.

    Google Scholar 

  • Clark LG and EJ Judziewicz. 1996. The grass subfamilies Ano-mochlooideae and Pharoideae (Poaceae). Taxon 45: 641–645.

    Article  Google Scholar 

  • Clark LG, W Zhang and JF Wendel. 1995. A phylogeny of the grass family (Poaceae) based on ndhF sequence data. Syst. Bot. 20: 463–460.

    Article  Google Scholar 

  • Clark LG, M Kobayashi, S Mathews, RE Spangler, and EA Kellogg. 2000. The Puelioideae, a new subfamily of Poaceae. Syst. Bot. 25: 181–187.

    Article  Google Scholar 

  • Clayton WD. 1978. Gramineae. In: VW Heywood et al., eds. Flowering plants of the world, pp. 285–290. Mayflower Books, New York.

    Google Scholar 

  • Clayton WD. 1981. Evolution and distribution of grasses. Ann. Missouri Bot. Gard. 68: 5–14.

    Article  Google Scholar 

  • Clayton WD and SA Renvoize. 1986. Genera Grammum. Kew Bull., additional ser., 13: 1–389.

    Google Scholar 

  • Clifford HT. 1961. Floral evolution in the family Gramineae. Evolution 15: 455–460.

    Article  Google Scholar 

  • Conert HJ. 1987. Current concepts in the systematics of the Arundinoideae. In: TR Soderstrom, KW Hilu, CS Campbell and ME Barkworth, eds. Grass systematics and evolution, pp. 239–250. Smithsonian Institution Press, Washington.

    Google Scholar 

  • Coro JA. 1982. Sinopsis taxonómica de las gramneas Argentina. Dominguezia 4: 1–4.

    Google Scholar 

  • Davis JI and RJ Soreng. 1993. Phylogenetic structure in the grass family (Poaceae) as inferred from chloroplast DNA restriction site variation. Am. J. Bot. 80: 1444–1454.

    Article  CAS  Google Scholar 

  • Doebley J, M Durbin, E Golenberg, M Clegg, and D Ma. 1990. Evolutionary analysis of the large subunit of carboxylase (rbcL) nucleotide sequence among the grasses (Gramineae). Evolution 44: 1097–1108.

    Article  CAS  Google Scholar 

  • Duvall MR, JD Noll, and AH Minn. 2001. Phylogenetics of Paniceae (Poaceae). Am. J. Bot. 88: 1988–1992.

    Article  CAS  Google Scholar 

  • Ellis RP. 1987. A review of comparative leaf blade anatomy in the systematics of the Poaceae: the past twenty-five years. In: TR Soderstrom et al., eds. Grass systematics and evolution, pp. 3–10. Smithsonian Institution Press, Washington.

    Google Scholar 

  • Esen A and KW Hilu. 1989. Immunological affinities among subfamilies of the Poaceae. Am. J. Bot. 76: 196–203.

    Article  Google Scholar 

  • Esen A and KW Hilu. 1991. Electrophoretic and immunological studies of prolamins in the Poaceae: II. Phylogenetic affini-ties of the Aristideae. Taxon 40: 5–17.

    Article  Google Scholar 

  • Francis A. 1990. The Tripsacinae: an interdisciplinary review of maize (Zea mays) and its relatives. Acta Bot. Fenn. 140: 1–51.

    Google Scholar 

  • Gaut BS, LP Tredway, C Kubik, RL Gaut, and W Meyer. 2000. Phylogenetic relationships and genetic diversity among members of the Festuca-Lolium complex (Poaceae) based on ITS sequence data. Plant Syst. Evol. 224: 33–53.

    Article  CAS  Google Scholar 

  • Ge S, A Li, BR Lu, SZ Zhang, and DY Hong. 2002. A phylog-eny of the rice tribe Oryzeae (Poaceae) based on matK sequence data. Am. J. Bot. 89: 1967–1972.

    Article  Google Scholar 

  • Gillespie LJ and RJ Soreng. 2005. A phylogenetic analysis of the bluegrass genus Po a based on cpDNA restriction site data. Syst. Bot. 30: 84–105.

    Article  Google Scholar 

  • Giussani LM, JH Cota Sanchez, FO Zuloaga, and EA Kellogg. 2001. A molecular phylogeny of the grass subfamily Panicoideae (Poaceae) shows multiple origins of C4 photosynthesis. Am. J. Bot. 88: 1993–2012.

    Article  CAS  Google Scholar 

  • Gomez-Martinez R and A Culham. 2000. Phylogeny of the subfamily Panicoideae with emphasis on the tribe Paniceae: evi-cence from the chloroplast trnL-F cpDNA region. In: SWL Jacobs and J Everett, eds. Grasses: systematics and evolution, pp. 136–140. CSIRO, Collingwood.

    Google Scholar 

  • Gould FW and RB Shaw. 1983. Grass systematics, 2nd ed. Texas A&M University Press, College Station.

    Google Scholar 

  • Grass Phylogeny Working Group (GPWG). 2001. Phylogeny and subfamilial classification of the grasses (Poaceae). Ann. Missouri Bot. Gard. 88: 373–457.

    Article  Google Scholar 

  • Grebenstein B, M Roser, W Sauer, and V Hemleben. 1998. Molecular phylogenetic relationships in Aveneae (Poaceae) species and other grasses as inferred from ITS1 and ITS2 rDNA sequences. Plant Syst. Evol. 213: 233–250.

    Article  Google Scholar 

  • Guala GF. 2000. The relation of space and geography to clado-genic events in Agenium and Homozeugos (Poaceae: Andropogoneae) in South America and Africa. In: SWL Jacobs and J Everett, eds. Grasses: systematics and evolution, pp. 159–166. CSIRO, Collingwood.

    Google Scholar 

  • Guignard JL. 1961. Recherches sur 1'embryogénie des Graminées: Rapports des Graminées avec les autres Monocotylédones. Ann. Sci. Nat. Bot., 12th ser., 2: 491–610.

    Google Scholar 

  • Gundel PE, PH Maseda, MM Vila-Aiub, GM Chersa, and R Benech-Arnold. 2006. Effects of Neotyphodium fungi on Lolium multiflorum seed germination in relation to water availablity. Ann. Bot. 97: 571–577.

    Article  PubMed  CAS  Google Scholar 

  • Guo Y-L, and S Ge. 2005. Molecular phylogeny of Oryzeae (Poaceae) based on DNA sequences from chloroplast, mito-chondrial, and nuclear genomes. Am. J. Bot. 92: 1548–1558.

    Article  CAS  Google Scholar 

  • Hartley W. 1958, 1973. Studies on the origin, evolution, and distribution of the Gramineae: II. The tribe Paniceae. V. The subfamily Festucoideae. Austral. J. Bot. 6: 343–357, 1958; 21: 201–234, 1973.

    Article  Google Scholar 

  • Hartley W. 1964. The distribution of the grasses. In: C Bernard, ed. Grasses and grasslands, pp. 29–46. Macmillan, London.

    Google Scholar 

  • Hilu KW. 1985. Trends of variation and systematics of Poaceae. Taxon 34: 102–114.

    Article  Google Scholar 

  • Hilu KW. 2000. Contribution of prolamin size diversity and structure to the systematics of the Poaceae. — In: SWL Jacobs and J Everett, eds. Grasses: systematics and evolution, pp. 241–247. CSIRO, Collingwood.

    Google Scholar 

  • Hilu KW and LA Alice. 1999. Evolutionary implications of matK indels in Poaceae. Am. J. Bot. 86: 1735–1741.

    Article  PubMed  Google Scholar 

  • Hilu KW and LA Alice. 2000. Phylogenetic relationships in subfamily Chloridoideae (Poaceae) based on matK sequences: a preliminary assessment. In: SWL Jacobs and J Everett, eds. Grasses: systematics and evolution, pp. 173–179. CSIRO, Collingwood.

    Google Scholar 

  • Hilu KW and LA Alice. 2001. A Phylogeny of Chloridoideae (Poaceae) based on matK sequences. Syst. Bot. 26: 386–405.

    Google Scholar 

  • Hilu KW and A Esen. 1988. Prolamin size diversity in the Poaceae. Biochem. Syst. Ecol. 16: 457–465.

    Article  CAS  Google Scholar 

  • Hilu KW and A Esen. 1990. Prolamins in systematics of Poaceae subfam. Arundinoideae. Plant Syst. Evol. 173: 47–70.

    Google Scholar 

  • Hilu KW and A Esen. 1993. Prolamin and immunological studies in the Poaceae: III. Subfamily Chloridoideae. Am. J. Bot. 80: 104–113.

    Article  CAS  Google Scholar 

  • Hilu KW and K Wright. 1982. Systematics of Gramineae: cluster analysis study. Taxon 31: 9–36.

    Article  Google Scholar 

  • Hilu KW, LA Alice, and H Liang. 1999. Phylogeny of Poaceae inferred from matK sequences. Ann. Missouri Bot. Gard. 86: 835–851.

    Article  Google Scholar 

  • Hodkinson TR, MW Chase, MD Lledo, N Salamin, and SA Renvoize. 2002. Phylogenetics of Miscanthus, Saccharum and related genera (Saccharinae, Andropogoneae, Poaceae) based on DNA sequences from ITS nuclear ribosomal DNA and plastid trnL intron and trnL-F intergenic spacers. J. Plant Res. 115: 381–392.

    Article  PubMed  CAS  Google Scholar 

  • Holttum RE. 1956. The classification of the bamboos. Phytomorphology 6: 73–90.

    Google Scholar 

  • Hsiao C, SWL Jacobs, Barker NP, and NJ Chatterton. 1998. A molecular phylogeny of the subfamily Arundinoideae (Poaceae) based on sequences of rDNA. Austral. Syst. Bot. 11: 41–52.

    Article  Google Scholar 

  • Hsiao C, SWL Jacobs, NJ Chatterton, and KH Asay. 1999. A molecular phylogeny of the grass family (Poaceae) based on the sequences of nuclear ribosomal DNA (ITS). Austral. Syst. Bot. 11: 667–688.

    Article  Google Scholar 

  • Hubbard C. E. 1954. Grasses. Penguin Books, London.

    Google Scholar 

  • Irish EE. 1998. Grass spikelets: a thorny problem. BioEssays 20: 789–793.

    Article  Google Scholar 

  • Jacobs SWL, J Everett, M Barkworth, and C Hsiao. 1998. Relationships within the stipoid grasses (Gramineae). Monocots II, pp. 29–30 (Abstract). Sydney.

    Google Scholar 

  • Judziewicz EJ. 1987. Taxonomy and morphology of the tribe Phareae (Poaceae, Bambusoideae). Ph.D. Thesis. Madison.

    Google Scholar 

  • Judziewicz EJ and TH Soderstrom. 1989. Morphological, anatomical, and taxonomic studies in Anomochloa and Streptochaeta (Poaceae: Bambusoideae). Smithsonian Contr. Bot. 68: 1–51.

    Google Scholar 

  • Judziewicz EJ, RJ Soreng, G Davidse, PM Peterson, TS Filgueiras, and FO Zuloaga. 2000. Catalogue of New World grasses (Poaceae): 1. Subfamilies Anomochlooideae, Bambusoideae, Ehrhartoideae and Pharoideae. Smithsonian Institution Press, Washington.

    Google Scholar 

  • Kellogg EA. 2000. Molecular and morphological evolution in the Andropogoneae. In: SWL Jacobs and J Everett, eds. Grasses: systematics and evolution, pp. 149–158. CSIRO, Collingwood.

    Google Scholar 

  • Kellogg EA and CS Campbell. 1987. Phylogenetic analyses of the Gramineae. In: TR Soderstrom et al., eds. Grass system-atics and evolution, pp. 310–322. Smithsonian Institution Press, Washington.

    Google Scholar 

  • Kellogg EA and HP Linder. 1995. Phylogeny of Poales. In: PJ Rudall, PJ Cribb, DF Cutler, and CJ Humphries, eds. Monocotyledons: systematics and evolution, vol. 2, pp. 511–542. Royal Botanic Gardens, Kew.

    Google Scholar 

  • Kellogg EA and L Watson. 1993. Phylogenetic studies of a large data set: I. Bambusoideae, Andropogonoideae, and Pooideae (Gramineae). Bot. Rev. 59: 273–343.

    Article  Google Scholar 

  • Kircher P. 1986. Untersuchungen zur Blüten- und Infloreszenzmorphologie, Embryologie, und Systematik der Restionaceen im Vergleich mit Gramineen und verwandten Familien. Diss. Bot. 94: 1–219.

    Google Scholar 

  • Kirpes CC, LG Klark, and NR Lersten. 1996. Systematic signifi-cance of pollen arrangement in microsporangia of Poaceae and Cyperaceae, review and observations on representative taxa. Am. J. Bot. 83: 1609–1622.

    Article  Google Scholar 

  • Le Roux LG and EA Kellogg. 1999. Floral development and the formation of unisexual spikelets in the Andropogoneae (Poaceae). Am. J. Bot. 86: 354–366.

    Article  PubMed  Google Scholar 

  • Liang H and KW Hilu. 1996. Application of the matK gene sequences to grass systematics. Canad. J. Bot. 74: 125–134.

    Article  CAS  Google Scholar 

  • Linder HP and IK Ferguson. 1985. On the pollen morphology and phylogeny of the Restionales and Poales. Grana 24: 65–76.

    Article  Google Scholar 

  • Linder HP and PJ Rudall. 2005. Evolutionary history of Poales. Ann. Rev. Ecol. Syst. 36: 107–124.

    Article  Google Scholar 

  • Liu Q, N-X Zhao, and G Hao. 2005. The phylogeny of the Chloridoideae (Gramineae): a cladistic analysis. J. Trop. Subtrop. Bot. 13: 432–442.

    CAS  Google Scholar 

  • Macfarlane TD. 1987. Poaceae subfamily Pooideae. In: TR Soderstrom et al., eds. Grass systematics and evolution, pp. 265–276. Smithsonian Institution Press, Washington.

    Google Scholar 

  • Macfarlane TD and L Watson. 1982. The classification of Poaceae subfamily Pooideae. Taxon 31: 178–203.

    Article  Google Scholar 

  • Malcomber ST, JC Preston, R Reinheimer, J Kossuth, and EA Kellogg. 2006. Developmental gene evolution and the origin of grass inflorescence diversity. Adv. Bot. Res. 44: 425–481.

    Article  CAS  Google Scholar 

  • Mant JG, RJ Bayer, MD Crisp, and JWH Treuman. 2000. A phy-logeny of Triodieae (Poaceae: Chloridoideae) based on the ITS region of nrDNA: testing conflict between anatomical and inflorescence characters. In: SWL Jacobs and J Everett, eds. Grasses: systematics and evolution, pp. 213–217. CSIRO, Collingwood.

    Google Scholar 

  • Mathews S, RC Tsal, and EA Kellog. 2000. Phylogenetic structure in the grass family (Poaceae): evidence from the nuclear gene Phytochrome B. Am. J. Bot. 87: 96–107.

    Article  PubMed  CAS  Google Scholar 

  • Mathews S, RE Spangler, RJ Mason-Gamer, and EA Kellog. 2002. Phylogeny of Andropogoneae inferred from phytochrome B, GBSSI, and NDHF. Int. J. Plant Sci. 163: 441–450.

    Article  Google Scholar 

  • Mathews S, RC Tsal, and EA Kellog. 2001. Phylogenetic structure in the grass family (Poaceae): the wild type and the gynomonoecious fsf1 mutant. Am. J. Bot. 88: 363–381.

    Article  Google Scholar 

  • Mejia-Saulés T and FA Bisby. 2000. Preliminary views on the tribe Meliceae (Gramineae: Pooideae). In: SWL Jacobs and J Everett, eds. Grasses: systematics and evolution, pp. 83–88. CSIRO, Collingwood.

    Google Scholar 

  • Mensah JK, and LS Gill. 1997. Cuticular and leaf blade anatomical studies of the tribe Sporoboleae (Poaceae) from West Africa. J. Plant Anat. Morphol. 7: 72–81.

    Google Scholar 

  • Metcalfe CR. 1960. Gramineae. In: CR Metcalfe, ed., Anatomy of the monocotyledons, vol. 1. Clarendon Press, Oxford.

    Google Scholar 

  • Michelangeli FA, JI Davis, and DW Stevenson. 2003. Phylogenetic relationships among Poaceae and related families as inferred from morphology, inversions in the plastid genome, and sequence data from the mitochondrial and plas-tid genomes. Am. J. Bot. 90: 93–106.

    Article  CAS  Google Scholar 

  • Negby M and D Koller. 1962. Homologies in the grass embryo: a reevaluation. Phytomorphology 12: 289–296.

    Google Scholar 

  • Ortiz-Diaz J-J and A Culham. 2000. Phylogenetic relationships of the genus Sporobolus (Poaceae: Eragrostideae) based on nuclear ribosomal DNA ITS sequences. In: SWL Jacobs and J Everett, eds. Grasses: systematics and evolution, pp. 184–188. CSIRO, Collingwood.

    Google Scholar 

  • Page VM. 1947. Leaf anatomy of Streptochaeta and the relation of this genus to the Bamboos. Bull. Torrey Bot. Club 74: 232–239.

    Article  Google Scholar 

  • Page VM. 1951. Morphology of the spikelet of Streptochaeta. Bull. Torrey Bot. Club 78: 22–37.

    Article  Google Scholar 

  • Peterson PM, RD Webster, and J Valdés-Reyna. 1995. Subtribal classification of the New World Eragrostideae (Poaceae, Chloridoideae). SIDA 16: 529–544.

    Google Scholar 

  • Peterson PM, RD Webster, and J Valdés-Reyna. 1997. Genera of New World Eragrostideae (Poaceae: Chloridioideae). Smithsonian Contr. Bot. 87: 1–50.

    Google Scholar 

  • Peterson PM, RJ Soreng, G Davidse, TS Filgueiras, FO Zuloaga, and EJ Judziewicz. 2001. Catalogue of New World grasses (Poaceae): II. Subfamily Chloridoideae. Smithsonian Institution Press, Washington.

    Google Scholar 

  • Petersen G, O Seberg, M Yde, and K Berthelsen. 2006. Phylogenetic relationships of Triticum and Aegilops and evidence for the origin of the A, B, and D genomes of common wheat (Triticum aestivum). Molec. Phylogen. Evol. 39: 70–82.

    Article  CAS  Google Scholar 

  • Petrova LR and NN Tsvelev. 1974. On the evolution of inflores-cence in Poaceae: On the nature and functions of lodicules. Bot. Zhurn. 59: 1713–1720 (in Russian with English summary).

    Google Scholar 

  • Petrova LR, TA Fedotova, and TC Nikolaevskaya. 1985. Poaceae. In: A Takhtajan, ed. Comparative seed anatomy, vol. 1, pp. 192–205. Nauka, Leningrad (in Russian).

    Google Scholar 

  • Philipson WR. 1985. Is the grass gynoecium monocarpellary? Am. J. Bot. 72: 1954–1961.

    Article  Google Scholar 

  • Pilger R. 1954. Das System der Gramineae. Bot. Jahrb. Syst. 76: 281–384.

    Google Scholar 

  • Piperno DR and H-D Sues. 2005. Dinosaurs dined on grass. Science 310: 1126–1128.

    Article  PubMed  CAS  Google Scholar 

  • Pizzolato TD. 2000. A systematic view of the development of vascular systems in culms and inflorescences of grasses. In: SWL Jacobs and J Everett, eds. Grasses: systematics and evolution, pp. 8–28. CSIRO, Collingwood.

    Google Scholar 

  • Poddubnaya-Arnoldi VA. 1978. Cytoembryological characteristics of the Poaceae. Bull. Main Bot. Gard. 109: 57–60 (in Russian).

    Google Scholar 

  • Prat H. 1936. La systématique des Graminées. Ann. Sci. Nat. Bot., 10th ser., 18: 165–258.

    Google Scholar 

  • Prat H. 1960. Vers une classification naturelle des Graminées. Bull. Soc. Bot. France 107: 32–79.

    Google Scholar 

  • Reeder JR. 1953. The embryo of Streptochaeta and its bearing on the homology of the coleoptile. Am. J. Bot. 40: 77–80.

    Article  Google Scholar 

  • Reeder JR. 1957. The embryo in grass systematics. Am. J. Bot. 44: 756–768.

    Article  Google Scholar 

  • Reeder JR. 1962. The bambusoid embryo: A reappraisal. Am. J. Bot. 49: 639–641.

    Article  Google Scholar 

  • Reimer E and JH Cota-Sanches. 2007. An SEM survey of the leaf epidermis in Danthonoioid grasses (Poaceae: Danthonioideae). Syst. Bot. 32: 60–70.

    Article  Google Scholar 

  • Renvoize SA. 1981. The subfamily Arundinoideae and its position in relation to a general classification of the Gramineae. Kew Bull. 36: 85–102.

    Article  Google Scholar 

  • Renvoize SA. 1985. A survey of leaf-blade anatomy in grasses. VII. Pommereulleae, Orcuttieae and Pappophoreae. Kew Bull. 40: 737–744.

    Article  Google Scholar 

  • Rondeau R, C Rouch, and G Besnard. 2005. NADP-malate dehydrogenase gene evolution in Andropogoneae (Poaceae): Gene duplication folllowed by sub-functionalization. Ann. Bot., n.s. 96: 1307–1314.

    Article  PubMed  CAS  Google Scholar 

  • Roth I. 1955. Zur morphologischen Deutung des Gra-sembryos und verwandter Embryotypen. Flora 142: 564–600.

    Google Scholar 

  • Roshevits R Yu. 1937. Grasses. Nauka, Moscow/Leningrad (in Russian).

    Google Scholar 

  • Rudall PJ. 2005. Evolution of reproductive structures in grasses (Poaceae) inferred by sister-group comparison with their putative closest living relatives, Ecdeiocoleaceae. Am. J. Bot. 92: 1432–1443.

    Article  Google Scholar 

  • Sanchez-Ken JG and LG Clark. 2001. Gynerieae, a new neotropical tribe of grasses (Poaceae). Novon 11: 350–352.

    Article  Google Scholar 

  • Sanchez-Ken JG, LG Clark, EA Kellogg, and EE Kay. 2007. Reinstatement and emendation of subfamily Micrairoideae (Poaceae). Syst. Bot. 32: 71–80.

    Article  Google Scholar 

  • Savile DBO. 1990. Relationships of Poaceae, Cyperaceae, and Juncaceae reflected by their fungal parasites. Canad. J. Bot. 68: 731–734.

    Article  Google Scholar 

  • Schuster J. 1910. Über die Morphologic der Grasblute. Flora (Jena) 100: 213–266.

    Google Scholar 

  • Seberg O and S Frederiksen. 2001. A phylogenetic analysis of the monogenomic Triticeae (Poaceae) based on morphology. Bot. J. Linn. Soc. 136: 75–97.

    Article  Google Scholar 

  • Skvortsov AK. 1977. Once more on the morphological nature of the parts of embryo and seedling. Bull. Moscow Soc. Naturalists 82(5): 96–111 (in Russian with English summary).

    Google Scholar 

  • Soderstrom TR. 1981. The crass subfamily Centostecoideae. Taxon 30: 614–616.

    Article  Google Scholar 

  • Soderstrom TR. 1987. Some evolutionary trends in the Bambusoideae (Poaceae). Ann. Missouri Bot. Gard. 68: 15–47.

    Article  Google Scholar 

  • Soderstrom TR and RP Ellis. 1987. The position of bamboo genera and allies in a system of grass classification. In: TR Soderstrom, KW Hilu, CS Campbell, and ME Barkworth, eds. Grass systematics and evolution, pp. 225–238. Washington.

    Google Scholar 

  • Soreng RJ and JI Davis. 1998a. Phylogenetics and character evolution in the grass family (Poaceae): simultaneous analysis of morphological and chloroplast DNA restriction site character sets. Bot. Rev. 64: 1–85.

    Article  Google Scholar 

  • Soreng RJ and JI Davis. 1998b. A cladistic analysis of Poaceae subfamily Pooideae. In: Monocots II, p. 52 (Abstract). Sydney.

    Google Scholar 

  • Soreng RJ and JI Davis. 2000. Phylogenetic structure in Poaceae subfamily Pooideae as inferred from molecular and morphological characters: misclassification versus reticulation. In: SWL Jacobs and J Everett, eds. Grasses: systematics and evolution, pp. 61–74. CSIRO, Collingwood.

    Google Scholar 

  • Soreng RJ, JI Davis, and JJ Doyle. 1990. A phylogenetic analysis of chloroplast DNA restriction site variation in Poaceae subfam. Pooideae. Plant Syst. Evol. 172: 83–97.

    Article  Google Scholar 

  • Stanley KE. 1999. Evolutionary trends in the grasses (Poaceae): a review. Mich. Bot. 38: 3–12.

    Google Scholar 

  • Stebbins GL. 1956. Cytogenetics and evolution of the grass family. Am. J. Bot. 43: 890–905.

    Article  Google Scholar 

  • Stebbins GL. 1981. Coevolution of grasses and herbivores. Ann. Missouri Bot. Gard. 68: 75–86.

    Article  Google Scholar 

  • Tateoka T. 1962. Starch grains of endosperm in grass systemat-ics. Bot. Mag. (Tokyo) 75(892): 377–383.

    Google Scholar 

  • Tateoka T, S Inoue, and S Kawano. 1959. Notes on some grasses. IX. Systematic significance of bicellular microhairs of leaf epidermis. Bot. Gaz. 21: 80–91.

    Article  Google Scholar 

  • Tenório E. 1976. The subfamily Centostecoideae (Gramineae). Ph.D. thesis. University of Maryland.

    Google Scholar 

  • Terrell EE and PM Peterson. 1993. Caryopsis morphology and classification in the Triticeae (Pooideae, Poaceae). Smithsonian Contr. Bot. 83: 1–24.

    Google Scholar 

  • Tulloch AP. 1981. Composition of epicuticular waxes from 28 genera of Gramineae: Differences between subfamilies. Canad. J. Bot. 59: 1213–1221.

    Article  CAS  Google Scholar 

  • Tsvelev NN. 1989. The system of grasses (Poaceae) and their evolution. Bot. Rev. 55: 142–204.

    Google Scholar 

  • Van Den Borre A and L Watson. 1997. On the classification of the Chloridoideae. Austral. Syst. Bot. 10: 491–531.

    Article  Google Scholar 

  • Van Den Borre A and L Watson. 2000. On the classification of the Chloridoideae: results from morphological and leaf anatomical data analyses. In: SWL Jacobs and J Everett, eds. Grasses: systematics and evolution, pp. 180–183. CSIRO, Collingwood.

    Google Scholar 

  • Van Tieghem P. 1897. Morphologie de l'embryon et de la plan-tule chez les Graminees et les Cyperacees. Ann. Sci. Natur. Bot. Biol. Veget. 8: 259–309.

    Google Scholar 

  • Vegetti AC. 1998a. The structure of the paracladial zone in Luziolinae (Oryzeae-Poaceae). Beitr. Biol. Pfl. 70: 101–106.

    Google Scholar 

  • Vegetti AC. 1998b. Estudio fenetico de la inflorescencia en Andropogoneae (Poaceae). Kurtziana 26: 145–163.

    Google Scholar 

  • Vegetti AC. 2000. Typology of synflorescences in Oryzeae (Poaceae). Phyton (Austria) 40: 71–88.

    Google Scholar 

  • Vegetti AC. 2002. Caracterizacion de los sistemas de ramificacion en especies de Oryzeae (Poaceae). Candollea 57: 251–260.

    Google Scholar 

  • Vegetti C and AM Anton. 1995. Some evolution trends in the inflorescence of Poaceae. Flora 190: 225–228.

    Google Scholar 

  • Vegetti C and AM Anton. 2000. The grass inflorescence. In: SWL Jacobs and J Everett, eds. Grasses: systematics and evolution, pp. 29–31. CSIRO, Collingwood.

    Google Scholar 

  • Watson L, HT Clifford, and MJ Dallwitz. 1985. The classification of the Poaceae: Subfamilies supertribes. Austral. J. Bot. 33: 433–484.

    Article  Google Scholar 

  • Watson L and MJ Dallwitz. 1992. The grass genera of the world. CAB International. Wallingford, UK.

    Google Scholar 

  • Webster RD. 1988. Genera of the North American Paniceae (Poaceae: Panicoideae). Syst. Bot. 13: 576–609.

    Article  Google Scholar 

  • Whipple CJ and RJ Schmidt. 2006. Genetics of grass flower development. Adv. Bot. Res. 44: 385–424.

    Article  CAS  Google Scholar 

  • Yakovlev MS. 1948. Morphological types of embryo and grass embryo. Doklady of Armenian Akad. Sci. 8: 127–134 (in Russian).

    Google Scholar 

  • Yakovlev MS. 1950. Endosperm and embryo structure of grasses as a taxonomic feature. Trudy Komarov Bot. Inst. Acad. Sci. USSR, 7th sen, 1: 121–218 (in Russian).

    Google Scholar 

  • Zhang W-P and LG Clark. 2000. Phylogeny and classification of the Bambusoideae (Poaceae). In: SWL Jacobs and J Everett, eds. Grasses: systematics and evolution, pp. 35–42. CSIRO, Collingwood.

    Google Scholar 

  • Zuloaga FO, O Morrone, and LM Giussani. 2000. A cladistic analysis of the Paniceae: a preliminary approach. In: SWL Jacobs and J Everett, eds. Grasses: systematics and evolution, pp. 123–135. CSIRO, Collingwood.

    Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

(2009). Class Liliopsida (Monocotyledons). In: Takhtajan, A. (eds) Flowering Plants. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9609-9_3

Download citation

Publish with us

Policies and ethics