Skip to main content

Passive Solid State Dosimeters In Environmental Monitoring

  • Conference paper

Environmental dosimetry systems have to fulfil the requirement to measure the man-made contribution to environmental radiation (1:10) under variable environmental conditions (UV sunlight, humidity, temperature). The recently developed SC-1 flat RPL glass dosimeters with FGD-202 reader for environmental dosimetry were compared to various high sensitivity TL dosimeters. All characteristics of RPL and TL dosimeters investigated fulfil the requirements of the new IEC 61066:2006 Standard for personal and environmental dosimetry. To reach international standards and to improve the environmental dosimetry methods there is a need for intercomparisons. The protocol and the aim of the intercomparison are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ranogajec-Komor M (2003) Thermoluminescence dosimetry —application in environmental dosimetry. Radiat Safety Manag 2:2–16

    Google Scholar 

  2. http://wwwc-technolcojp/technol_eng/indexhtml

  3. Bos AJ (2007) Theory of thermoluminescence. Radiat Meas 41:S45–S56

    Article  CAS  Google Scholar 

  4. Kortov V (2007) Materials for thermoluminescent dosimetry: current status and future trends. Radiat Meas 42:576–581

    Article  CAS  Google Scholar 

  5. Bos AJJ (2001) High sensitivity thermoluminescence dosimetry. Nucl Instrum Meth Phys Res B 184:3-28

    Article  CAS  Google Scholar 

  6. Bilski P (2002) Lithium fluoride: from LiF:Mg,Ti to LiF:Mg,Cu,P. Radiat Prot Dosim 100:199–206

    CAS  Google Scholar 

  7. Tang K, Cui H, Zhu H, Fan Q (2007) Study of a new Lif:Mg,Cu,P formulation with enhanced thermal stability and a lower residual TL signal. Radiat Meas 42:24–28

    Article  CAS  Google Scholar 

  8. Kim JL, Lee JI, Pradhan AS, Kim BH, Kim JS (2008) Further studies on the dosimetric characteristics of LiF:Mg,Cu,Si – A high sensitivity thermoluminescence dosimeter (TLD). Radiat Meas 43:446–449

    Article  CAS  Google Scholar 

  9. Lee JI, Kim JL, Pradhan AS, Kim BH, Chung KS, Choe HS (2008) Role of dopants in LiF TLD materials. Radiat Meas 43:303–308

    Article  CAS  Google Scholar 

  10. Hsu SM, Yang HW, Huang DYC, Hsu WL, Lu CC, Chen WL (2008) Development and physical characteristics of a novel compound radiophotoluminescent glass dosimeter. Radiat Meas 43:538–541

    Article  CAS  Google Scholar 

  11. Prokic M (2001) Lithium borate solid TL detectors. Radiat Meas 33:393–396

    Article  CAS  Google Scholar 

  12. Fernandes AC, Osvay M, Santos JP, Holovey V, Ignatovych M (2008) TL properties of newly developed lithium tetraborate single crystals. Radiat Meas 43:476–479

    Article  CAS  Google Scholar 

  13. Dražić G, Trontelj M (1983) Sintered CaSO4: Dy TL dosimeters. Int J Appl Radiat Isotopes 34:1633–1637

    Article  Google Scholar 

  14. Ingle NB, Omanwar SK, Muthal PL, Dhopte SM, Kondawar VK, Gundurao TK, Moharil SV (2008) Synthesis of CaSO4:Dy, CaSO4:Eu3+ and CaSO4:Eu2+ phosphors, Radiat Meas 43:1191–1197

    Article  CAS  Google Scholar 

  15. Osvay M, Biró T (1980) Aluminium oxide in TL dosimetry. Nucl Instrum Meth 175:60–61

    Article  CAS  Google Scholar 

  16. Akselrod MS, Kortov VS, Kravetsky DJ, Gotlib VI (1990) Highly sensitive thermoluminescent anion-defect α-Al2O3:C single crystals detectors. Radiat Prot Dosim 33:119–122

    CAS  Google Scholar 

  17. Ihara Y, Kishi A, Kada W, Sato F, Kato Y, Yamamoto T, Iida T (2008) A compact system for measurement of radiophotoluminescence of phosphate glass dosimeter. Radiat Meas 43:542–545

    Article  CAS  Google Scholar 

  18. ICRU (1985) International Commission on radiation Units and Measurements, Determination of Dose Equivalents Resulting from External radiation Sources. ICRU Report 39, Bethesda, MD

    Google Scholar 

  19. Piesch E, Burgkhardt B (1984) Environmental monitoring, European interlaboratory test programme for integrating dosemeter systems. Commission of the European Communities, Luxemburg, EUR 8932

    Google Scholar 

  20. Hsu SM, Yeh SH, Lin MS, Chen WL (2006) Comparison on characteristics of radiophotoluminescent glass dosemeters and thermoluminescent dosemeters. Radiat Prot Dosim 119:327–331

    Article  CAS  Google Scholar 

  21. Ranogajec-Komor M, Knežević Ž, Miljanić S, Vekić B (2008) Characterisation of radiophotoluminescent dosimeters for environmental monitoring. Radiat Meas 43:392– 396

    Article  CAS  Google Scholar 

  22. IEC (2006) International Electrotechnical Commission, Thermoluminescence dosimetry systems for personal and environmental monitoring CEI/IEC International Standard 61066:2006

    Google Scholar 

  23. Ranogajec-Komor M, Osvay M (1986) Dosimetric characteristics of different TL phosphors. Radiat Prot Dosim 17:379–384

    CAS  Google Scholar 

  24. Knežević Ž (2007) Influence of activators on energy dependence of thermoluminescence detectors. University of Zagreb, Faculty of Science, Zagreb, Croatia

    Google Scholar 

  25. Miljanić S, Ranogajec-Komor M, KneŽević Ž, Štuhec M, Prokić M (2006) Comparative study of LiF:Mg,Cu,Na,Si and Li2B4O7 TL detectors. Radiat Prot Dosim 119:191–196

    Article  Google Scholar 

  26. Ranogajec-Komor M 2004 Thermoluminescence personal and medical dosimetry, Nato Advanced Research Workshop on Radiation Safety Problems in the Caspian Region (Proc Symp Baku Azerbaijan, 2003) (Eds. Zaidi MK, Mustafaev I) Kluwer, Dordrecht, The Netherlands, pp. 177–190

    Google Scholar 

  27. Miljanić S, Ranogajec-Komor M, Knežević ž, Vekić B (2002) Main dosimetric characteristics of some tissue-equivalent TL detectors, Radiat Prot Dosim 100:437–442

    Google Scholar 

  28. Ranogajec-Komor M, Vekić B, Korenika Dž, Dvornik I, Piesch E, Burgkhardt B (1989) Standard test program and environmental monitoring with TL-dosimeters. II Yugoslav-Italian Symposium on Radiation Protection, Advances in Yugoslavia and Italy (Proc Symp, Udine, Italy, 1988) pp. 501–504

    Google Scholar 

  29. Ranogajec–Komor M, Muhiy–Ed–Din F, Mlković Ð, Vekić B (1993) Thermoluminescence characteristics of various detectors for x ray diagnostic measurements. Radiat Prot Dosim 47:529–534

    CAS  Google Scholar 

  30. Alves JG (2008) Developments in standards and other guidance for individual monitoring. Radiat Meas 43:558–564

    Article  CAS  Google Scholar 

  31. Ranogajec–Komor M, Klemic G, Sengupta S, Knežević ž, Raccah F, Vekić B (1999) Investigation of the performance of 7LiF:Mg,Cu,P under environmental conditions. Radiat Prot Dosim 85:217–222

    CAS  Google Scholar 

  32. Klemic G, Shobe J, Sengupta S, Shebell P, Miller K, Carolan PT, Holeman G, Kahnhauser H, Lamperti P, Soares C, Azziz N, Moscovitch M (1999) State of the art of environmental dosimetry: 11th international intercomparison and proposed performance tests. Radiat Prot Dosim 85:201–206

    CAS  Google Scholar 

  33. Ranogajec–Komor M, Vekić B, Piesch E, Burgkhardt BB, Szabó PP (1989) Intercomparison of solid state dosemeters within environmental monitoring programs, 30th Anniversary Symposium of Radiation Protection in the Boris KidričInstitute of Nuclear Sciences, Radiation Protection–Selected Topics in Proc Symp Dubrovnik, Croatia, 1989, Eds. Ninković MM, Pavlović RS, Raicević JJ, pp. 385–390

    Google Scholar 

  34. Ranogajec–Komor M, Vekić B, Piesch E, Burgkhardt B, Szabó PP (1996) Intercomparison of solid state dosemeters within environmental monitoring. Radiat Prot Dosim 66:139–144

    CAS  Google Scholar 

  35. Ranogajec–Komor M,Klemic G (1997) Methods and advantages of intercomparisons of TLDs for environmental monitoring, 20th IRPA Regional Congress — The Second Regional Mediterranean Congress on Radiation Protection (Proc Congr Tel Aviv, Israel 1997) pp. 52–55

    Google Scholar 

  36. Ranogajec–Komor M, Uray I, Klemic G, Gabrić D (1999) Intercomparisons of new TLDs for environmental monitoring, IRPA Regional Symposium: Radiation Protection in Neighbouring Countries of Central Europe. (Proc Symp Budapest, Hungary, 1999) (Ed. Deme S), Roland Eötvös Physical Society, Budapest, Hungary pp. 504–511

    Google Scholar 

  37. Ranogajec–Komor M, Klemic G, Uray I (2002) Thermoluminescence dosimetry in environmental monitoring. IRPA Regional Congress on Radiation Protection in Central Europe (Proc Congress, Dubrovnik, Croatia, 2001) (Eds. Obelić B, Ranogajec–Komor M, Mljanić S, Krajcar Bronić I) CRPA, Zagreb, Croatia70–01

    Google Scholar 

  38. Duch MA, Sáez–Vergara JC, Ginjaume M, Gómez C, González–Leitón AM, Herrero J, de Lucas MJ, Rodríguez R, Marugán I, Salas R (2008) Long–term intercomparison of Spanish environmental dosimetry services Study of transit dose estimations. Radiat Meas 43:576–579

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MÁRia Ranogajec-Komor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this paper

Cite this paper

Ranogajec-Komor, M. (2009). Passive Solid State Dosimeters In Environmental Monitoring. In: Aycik, G.A. (eds) New Techniques for the Detection of Nuclear and Radioactive Agents. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9600-6_7

Download citation

Publish with us

Policies and ethics