Skip to main content

Ecological correlates of species differences in the Lake Tanganyika crab radiation

  • Conference paper
  • First Online:
  • 604 Accesses

Part of the book series: Developments in Hydrobiology ((DIHY,volume 205))

Abstract

The endemic crabs of Lake Tanganyika include a phenotypically diverse clade that exhibits recent divergence and low phylogenetic species resolution. There are indications that ecological niche segregation has played a prominent role in the divergence of this clade. We used habitat surveys, gut content analyses and stable isotope analyses to test the extent to which morphological species are ecologically different. Our data show some interspecific segregation in depth, substrate type and mean stable isotope signatures. At the same time, a considerable level of ecological niche overlap is evident among species of Platythelphusa that coexist in rocky littoral habitats. We consider these results in the framework of adaptive radiation theory, and we discuss general ramifications for the maintenance of species diversity in Lake Tanganyika.

Guest editors: T. Wilke, R. Väinölä & F. Riedel Patterns and Processes of Speciation in Ancient Lakes: Proceedings of the Fourth Symposium on Speciation in Ancient Lakes, Berlin, Germany, September 4–8, 2006

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albertson, R. C. & T. D. Kocher, 2006. Genetic and developmental basis of cichlid trophic diversity. Heredity 97: 211–221.

    Article  PubMed  CAS  Google Scholar 

  • Albertson, R. C., J. A. Markert, P. D. Danley & T. D. Kocher, 1999. Phylogeny of a rapidly evolving clade: the cichlid fishes of Lake Malawi, East Africa. Proceedings of the National Academy of Sciences of the USA 96: 5107–5110.

    Article  PubMed  CAS  Google Scholar 

  • Albrecht, C., S. Trajanovski, K. Kuhn, B. Streit & T. Wilke, 2006. Rapid evolution of an ancient lake species flock: freshwater limpets (Gastropoda: Ancylidae) in the Balkan Lake Ohrid. Organisms, Diversity & Evolution 6: 294–307.

    Article  Google Scholar 

  • Arnegaard, M. E. & A. S. Kondrashov, 2004. Sympatric speciation by sexual selection alone is unlikely. Evolution 58: 222–237.

    Google Scholar 

  • Barluenga, M. & A. Meyer, 2004. The Midas cichlid species complex: incipient sympatric speciation of Nicaraguan cichlid fishes? Molecular Ecology 12: 2061–2076.

    Article  CAS  Google Scholar 

  • Bellwood, D. R., P. C. Wainwright, C. J. Fulton & A. S. Hoey, 2006. Functional versatility supports coral reef biodiversity. Proceedings of the Royal Society Biological, Series 273: 101–107.

    Article  CAS  Google Scholar 

  • Cane, M. A. & P. Molnar, 2001. Closing of the Indonesian seaway as a precursor to east African aridification around 3–4 million years ago. Nature 411: 157–162.

    Article  PubMed  CAS  Google Scholar 

  • Capart, A., 1952. Exploration hydrobiologique du Lac Tanganyika (1946–1947), resultats scientifiques — Crustacés, Décapods, Brachyures. Institut Royal des Sciences Naturelles de Belgique 3: 41–67.

    Google Scholar 

  • Cohen, A. S., M. R. Palacios-Fest, E. S. Msaky, S. A. Alin, B. McKee, C. M. O’Reilly, D. L. Dettman, H. Nkotagu & K. E. Lezzar, 2005. Paleolimnological investigations of anthropogenic environmental change in Lake Tanganyika: IX. Summary of paleorecords of environmental change and catchment deforestation at Lake Tanganyika and impacts on the Lake Tanganyika ecosystem. Journal of Paleolimnology 43: 125–145.

    Article  Google Scholar 

  • Coulter, G. W., 1991. Lake Tanganyika and Its Life. Oxford University Press, London, UK.

    Google Scholar 

  • Cumberlidge, N., 1999. The Freshwater Crabs of West Africa, family Potamonautidae. Faune et Flore Tropicales No. 35. IRD, Paris.

    Google Scholar 

  • Cumberlidge, N., R. von Sternberg, I. R. Bills & H. Martin, 1999. A revision of the genus Platythelphusa A. Milne-Edwards, 1887 from Lake Tanganyika, East Africa (Decapoda: Potamoidea: Platythelphusidae). Journal of Natural History 33: 1487–1512.

    Article  Google Scholar 

  • Cunnington, W. A., 1899. On a new brachyurous crustacean from Lake Tanganyika. Proceedings of the Royal Society of London 1899: 697–704.

    Google Scholar 

  • Cunnington, W. A., 1907. Zoological results of the Third Tanganyika Expedition, conducted by Dr. W. A. Cunnington, 1904-1905. Report on the Brachyurous Crustacea. Proceedings of the Royal Society of London 2: 258–276.

    Google Scholar 

  • Darwall, W., K. Smith, T. Lowe & J.-C. Vié, 2005. The status and distribution of freshwater biodiversity in Eastern Africa. Occasional Paper of the IUCN Species Survival Commission 31. IUCN, Gland, Switzerland: 1–36.

    Google Scholar 

  • Day, J. J. & M. Wilkinson, 2006. On the origin of the Synodontis catfish species flock from Lake Tanganyika. Biology Letters 2: 548–552.

    Article  PubMed  Google Scholar 

  • Duftner, N., S. Koblmüller & C. Sturmbauer, 2005. Evolutionary relationships of the Limnochromini, a tribe of benthic deepwater cichlid fish endemic to Lake Tanganyika, East Africa. Journal of Molecular Evolution 60: 277–289.

    Article  PubMed  CAS  Google Scholar 

  • Evert, M. J., 1970. Le Lac Tanganyika et sa faune. Mémoire de licence. Université de Louvain, Belgium.

    Google Scholar 

  • Frigge, M., D. C. Hoaglin & B. Iglewicz, 1989. Some implementations of boxplot. American Statistical 43: 50–54.

    Article  Google Scholar 

  • Fryer, G., 2006. Evolution in ancient lakes: radiation of Tanganyikan atyid prawns and speciation of pelagic cichlid fishes in Lake Malawi. Hydrobiologia 568: 131–142.

    Article  Google Scholar 

  • Genner, M. J., G. F. Turner, S. Barker & S. J. Hawkins, 1999. Niche segregation among Lake Malawi cichlid fishes? Evidence from stable isotope signatures. Ecology Letters 2: 185–190.

    Article  Google Scholar 

  • Grant, S. A., D. E. Suckling, H. K. Smith, L. Torvell, T. D. A. Forbes & J. Hodgson, 1985. Comparative studies of diet selection by sheep and cattle: the Hill grasslands. Journal of Ecology 73: 987–1004.

    Article  Google Scholar 

  • Hill, B. J., 1976. Natural food, foregut clearance rate and activity of the crab Scylla serrata. Marine Biology 24: 109–116.

    Article  Google Scholar 

  • Hori, M., 1983. Feeding ecology of thirteen species of Lamp-rologus (Teleostei: Cichlidae) coexisting at a rocky-shore of Lake Tanganyika. Physiology and Ecology Japan 20: 129–149.

    Google Scholar 

  • Hori, M., M. M. Gashagaza, M. Nshombo & H. Kawanabe, 1993. Littoral fish communities in Lake Tanganyika: irreplaceable diversity supported by intricate interactions among species. Conservation Biology 7: 657–666.

    Article  Google Scholar 

  • Hudon, C. & G. Lamarche, 1989. Niche segregation between American lobster (Homarus americanus) and rock crab (Cancer irroratus). Marine Ecology Progress Series 52: 155–168.

    Article  Google Scholar 

  • Jackson, D. A., K. M. Somers & H. H. Harvey, 1989. Similarity coefficients: measures of co-occurrence and association or simply measures of occurrence? The American Naturalist 133: 436–453.

    Article  Google Scholar 

  • Kidd, M. R., C. E. Kidd & T. D. Kocher, 2006. Axes of differentiation in the bower-building cichlids of Lake Malawi. Molecular Ecology 15: 459–478.

    Article  PubMed  CAS  Google Scholar 

  • Koblmüller, S., N. Duftner, C. Katongo, H. Phiri & C. Sturmbauer, 2005. Ancient divergence in bathypelagic deep water cichlids: mitochondrial phylogeny of the tribe Bathybatini. Journal of Molecular Evolution 60: 297–314.

    Article  PubMed  CAS  Google Scholar 

  • Koblmüller, S., N. Duftner, K. M. Sefc, M. Aibara, M. Stipacek, M. Balnc, B. Egger & C. Sturmbauer, 2007. Reticulate phylogeny of gastropod-shell-breeding cichlids from Lake Tanganyika — the result of repeated introgressive hybridization. BMC Evolutionary Biology 7: 7.

    Article  PubMed  CAS  Google Scholar 

  • Koblmüller, S., W. Salzburger & C. Sturmbauer, 2004. Evolutionary relationships in the sand dwelling cichlid lineage of Lake Tanganyika suggest multiple colonization of rocky habitats and convergent origin of biparental mouthbrooding. Journal of Molecular Evolution 58: 79–96.

    Article  PubMed  CAS  Google Scholar 

  • Koblmüller, S., C. Sturmbauer, E. Verheyen, A. Meyer & W. Salzburger, 2006. Mitochondrial phylogeny and phylogeography of East African squeaker catfishes (Siluriformes: Synodontis). BMC Evolutionary Biology 6: 49.

    Article  PubMed  CAS  Google Scholar 

  • Lehman, S. M., 2000. Primate community structure in Guyana: a biogeographic analysis. International Journal of Primatology 21: 333–351.

    Article  Google Scholar 

  • Lewis, C., 2002. Elucidating the interplay between tectonic and climatic controls on modern depositional processes in the Luiche delta. Nyanza Project Reports 2002 University of Arizona, Tuscon: 1–7.

    Google Scholar 

  • Liem, K. F., 1980. Adaptive significance of intra-and interspecific differences in the feeidng repertoires of cichlid fishes. American Zoologist 20: 295–314.

    Google Scholar 

  • Liem, K. F. & J. W. M. Osse, 1975. Biological versatility, evolution and food resource exploitation in African cichlid fishes. American Zoologist 15: 427–454.

    Google Scholar 

  • Litvak, M. K. & R. I. C. Hansell, 1990. A community perspective on the multidimensional niche. Journal of Animal Ecology 59: 931–940.

    Article  Google Scholar 

  • Marijnissen, S. A. E., 2007. Lake Tanganyika Crabs: Evolution, Ecology, and Implications for Conservation. PhD thesis, University of Amsterdam, the Netherlands.

    Google Scholar 

  • Marijnissen, S. A. E., E. Michel, S. R. Daniels, D. Erpenbeck, S. B. J. Menken & F. R. Schram, 2006. Molecular evidence for recent divergence of Lake Tanganyika endemic crabs (Decapoda: Platythelphusidae). Molecular Phylogenetics and Evolution 40: 628–634.

    Article  PubMed  CAS  Google Scholar 

  • Marijnissen, S. A. E., F. R. Schram, N. Cumberlidge & E. Michel, 2004. Two new species of Platythelphusa A. Milne-Edwards, 1887 (Decapoda, Potamoidea, Platythelphusidae), comments on the taxonomic position of P. denticulata Capart, 1952 from Lake Tanganyika, East Africa. Crustaceana 77: 513–532.

    Article  Google Scholar 

  • McIntyre, P. B., E. Michel, K. France, A. Rivers, P. Hakizimana & A. S. Cohen, 2005. Individual-and assemblage-level effects of anthropogenic sedimentation on snails in Lake Tanganyika. Conservation Biology 19: 171–181.

    Article  Google Scholar 

  • Michel, E., 2000. Phylogeny of a gastropod species flock: exploring speciation in Lake Tanganyika in a molecular framework. In Rossiter, A. & H. Kawanabe (eds), Advances in Ecological Research. Ancient Lakes: Biodiversity, Ecology and Evolution. Academic Press, San Diego: 275–302.

    Google Scholar 

  • Michel, E., J. A. Todd, D. F. R. Cleary, I. Kingma, A. S. Cohen & M. J. Genner, 2004. Scales of endemism: challenges for conservation and incentives for evolutionary studies in a gastropod species flock from Lake Tanganyika. Journal of Conchology 3: 155–172.

    Google Scholar 

  • Milne-Edwards, A., 1887. Observations sur les crabes des eaux douces de l’Afrique. Annales des Sciences Naturelles, Paris 7: 161–191.

    Google Scholar 

  • Moed, J. R. & G. M. Hallegraeff, 1978. Some problems in the estimation of chlorophyll a and phaeopigments from pre-and post-acidification spectrophotometric measurements. Internationale Revue der Gesammten Hydrobiologie 63: 787–800.

    Article  CAS  Google Scholar 

  • Moran, P. & I. Kornfield, 1993. Retention of ancestral polymorphism in the mbuna species flock (Pisces: Cichlidae) of Lake Malawi. Molecular Biology and Evolution 10: 1015–1029.

    CAS  Google Scholar 

  • Navarette, S. A. & J. C. Castilla, 1990. Resource partitioning between intertidal predatory crabs: interference and refuge utilization. Journal of Experimental Marine Biology and Ecology 143: 101–129.

    Article  Google Scholar 

  • Newsome, S. D., C. Martinez del Rio, S. Bearhop & D. L. Phillips, 2007. A niche for isotopic ecology. Frontiers in Ecology and the Environment 5: 429–436.

    Google Scholar 

  • Ochiai, A., 1957. Zoogeographic studies on the soleoid fishes found in Japan and its neighbouring regions. Bulletin of the Japanese Society of Scientific Fisheries 22: 526–530.

    Google Scholar 

  • Platvoet, D., J. T. A. Dick, C. Macneil & G. van der Velde, 2008. Invader-invader interactions in relation to environmental heterogeneity leads to zonation of two invasive amphipods, Dikerogammarus villosus (Sowinsky) and Gammarus tigrinus Sexton. Biological Invasions (in press).

    Google Scholar 

  • Reed, S. R. & N. Cumberlidge, 2006. Taxonomy and biogeography of the freshwater crabs of Tanzania, East Africa (Brachyura: Potamoidea: Potamonautidae, Platythelphusidae, Deckeniidae). Zootaxa 1262: 1–139.

    Google Scholar 

  • Richards, R. A., 1992. Habitat selection and predator avoidance: ontogenetic shifts in habitat use by the Jonah crab Cancer borealis (Stimpson). Journal of Experimental Marine Biology and Ecology 156: 187–197.

    Article  Google Scholar 

  • Robinson, B. W. & D. S. Wilson, 1998. Optimal foraging, specialization, and a solution to Liem’s paradox. American Naturalist 151: 223–235.

    Article  PubMed  CAS  Google Scholar 

  • Rosales, A. B., S. A. E. Marijnissen, E. Michel & P. B. McIntyre, 2002. Snail susceptibility to crab predation: a case study of co-evolution from Lake Tanganyika, East Africa. Integrative Comparative Biology 42: 1303.

    Google Scholar 

  • Safran, P. & M. Omori, 1990. Some ecological observations on fishes associated with drifting seaweed off Tohoku coast, Japan. Marine Biology 105: 395–402.

    Article  Google Scholar 

  • Salzburger, W., S. Baric & C. Sturmbauer, 2002. Speciation via introgressiove hybridization in East African cichlids? Molecular Ecology 11: 619–625.

    Article  PubMed  CAS  Google Scholar 

  • Schelly, R., W. Saltzburger, S. Koblmäller, N. Duftner & S. Sturmbauer, 2006. Phylogenetic relationships of the lamprologine cichlid genus Lepidiolamprologus (Teleastei: Perciformes) based on mitochondrial and nuclear sequences, suggesting introgressive hybridization. Molecular Phylogenetics and Evolution 38: 426–438.

    Article  PubMed  CAS  Google Scholar 

  • Schliewen, U. K. & B. Klee, 2004. Reticulate sympatric speciation in Cameroonian crater lake cichlids. Frontiers in Zoology 1: 5.

    Article  PubMed  Google Scholar 

  • Schluter, D., 2000. The Ecology of Adaptive Radiation. Oxford University Press, Oxford.

    Google Scholar 

  • Seehausen, O., 2004. Hybridization and adaptive radiation. Trends in Ecology and Evolution 19: 198–207.

    Article  PubMed  Google Scholar 

  • Smith, E. A., 1880. On the shells of Lake Tanganyika and of the neighbourhood of Ujiji, Central Africa. Proceedings of the Zoological Society of London 1880: 344–352.

    Google Scholar 

  • Smith, P. F., A. Konings & I. Kornfield, 2003. Hybrid origin of a cichlid population in Lake Malawi: implications for genetic variation and species diversity. Molecular Ecology 12: 2497–2504.

    Article  PubMed  Google Scholar 

  • Sutherland, R. A., 1998. Loss on ignition estimate of organic matter and relationships to organic carbon in fluvial bed sediments. Hydrobiologia 389: 153–167.

    Article  CAS  Google Scholar 

  • Takhteev, V. V., 2000. Trends in the evolution of Baikal amphipods and evolutionary parallels with some marine malacostracan faunas. In Rossiter, A. & H. Kawanabe (eds), Advances in Ecological Research. Ancient Lakes: Biodiversity, Ecology and Evolution. Academic Press, San Diego: 197–220.

    Chapter  Google Scholar 

  • Van Doorn, G. S. & F. J. Weissing, 2001. Ecological versus sexual selection models of sympatric speciation: a synthesis. Selection 2: 17–40.

    Article  Google Scholar 

  • von Rintelen, T., A. B. Wilson, M. Meyer & M. Glaubrecht, 2004. Escalation and trophic specialization drive adaptive radiation of freshwater gastropods in ancient lakes on Sulawesi, Indonesia. Proceedings of the Royal Society London, Series B 271: 2842–2850.

    Article  Google Scholar 

  • Wentworth, C. K., 1922. A scale of grade and class terms for clastic sediments. Journal of Geology 30: 377–392.

    Article  Google Scholar 

  • West, K. & A. S. Cohen, 1994. Predator-prey coevolution as a model for the unusual morphologies of the crabs and gastropods of Lake Tanganyika. Archiv für Hydrobiologie/Ergebniss der Limnologie 4: 267–283.

    Google Scholar 

  • West, K., A. S. Cohen & M. Baron, 1991. Morphology and behaviour of crabs and gastropods from Lake Tanganyika, Africa: implications for lacustrine predator-prey coevolution. Evolution 45: 589–607.

    Article  Google Scholar 

  • West, K., E. Michel, J. Todd, D. Brown & J. Clabaugh, 2003. The gastropods of Lake Tanganyika: diagnostic key, classification and notes on the fauna. International Association of Theoretical Applied Limnology SIL. Occasional Publication 2: 1–123.

    Google Scholar 

  • William, E., 2002. Spatial relationship of grain size and coarse sediment mineralogy on the shallow Luiche delta platform and its river streams. Nyanza Project Reports 2002. University of Arizona, Tuscon: 1–7.

    Google Scholar 

  • Williams, M. J., 1981. Methods for analysis of natural diet in portunid crabs (Crustacea: Decapoda: Portunidae). Journal of Experimental Marine Biology and Ecology 52: 103–113.

    Article  Google Scholar 

  • Woodward, S. P., 1859. On some new freshwater shells from Central Africa. Proceedings of the Zoological Society of London 1895: 348–351.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this paper

Cite this paper

Marijnissen, S.A.E. et al. (2008). Ecological correlates of species differences in the Lake Tanganyika crab radiation. In: Wilke, T., Väinölä, R., Riedel, F. (eds) Patterns and Processes of Speciation in Ancient Lakes. Developments in Hydrobiology, vol 205. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9582-5_7

Download citation

Publish with us

Policies and ethics