Targeting Tumour Vascularization from Bench to Bedside: Suggestions for Combination with Hyperthermia

  • Girolamo Ranieri
  • Annamaria Catino
  • Vittorio Mattioli
  • Vito Fazio
  • Gennaro Gadaleta Caldarola
  • Cosmo Damiano Gadaleta


Angiogenesis is an important pathway in tumour growth and progression. Overexpression of pro-angiogenic factor or down regulation of physiologic angiogenic inhibitors are the stimuli that induce new blood vessel formation from a pre-existing vascular bed. On the other hand tumour vasculature is a major important factor influencing the therapeutic application of hyperthermia used as anticancer therapy. Both endothelial cells and microvessels can be lethally damaged by the hyperthermia. Because tumour vasculature is a target of hyperthermia combined treatments with angiogenesis inhibiting agents or vascular disrupting agents and hyperthermia may lead to synergetic effects or potentiation of the combined therapy over each modality alone. In this chapter we summarize the state of the art regarding the combination between drugs that targeting tumour vasculature and hyperthermia, furthermore the pre-clinical rationale for future clinical trials is suggested.


Angiogenesis Hyperthermia Angiogenesis inhibiting agents Vascular disrupting agents Clinical trials 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baguley BC. (2003). Antivascular therapy of cancer: DMXAA. Lancet Oncol., 4:141–8.PubMedCrossRefGoogle Scholar
  2. Bergers G, Hanahan D, Coussens LM. (1998). Angiogenesis and apoptosis are cellular parameters of neoplastic progression in transgenic mouse models of tumorigenesis. Int. J. Dev. Biol., 42(7):995–1002.PubMedGoogle Scholar
  3. Blakey DC, Westwood FR, Walker M, Hughes GD, Davis PD, Ashton SE, Ryan AJ. (2002). Antitumor activity of the novel vascular targeting agent ZD6126 in a panel of tumor models. Clin. Cancer Res., 8:1974–83.PubMedGoogle Scholar
  4. Brattstrom D, Bergqvist M, Hesselius P, Larsson A, Wagenius G, Brodin O. (2004). Serum VEGF and bFGF adds prognostic information in patients with normal platelet counts when sampled before, during and after treatment for locally advanced non-small cell lung cancer. Lung Cancer, 43(1):55–62.PubMedCrossRefGoogle Scholar
  5. Brooks PC, Strömblad S, Klemke R, Visscher D, Sarkar FH, Cheresh DA. (1995) Antiintegrin alpha v beta 3 blocks human breast cancer growth and angiogenesis in human skin. J. Clin. Invest., 96(4):1815–22.PubMedCrossRefGoogle Scholar
  6. Byrne AM, Bouchier-Hayes DJ, Harmey JH. (2005). Angiogenic and cell survival functions of vascular endothelial growth factor (VEGF). J. Cell. Mol. Med. 9(4):777–94.PubMedCrossRefGoogle Scholar
  7. Calderwood SK, Theriault JR, Gong J. (2005). How is the immune response affected by hyperthermia and heat shock proteins? Int. J. Hyperthermia, 21(8):713–6.PubMedCrossRefGoogle Scholar
  8. Dameron KM, Volpert OV, Tainsky MA, Bouck N. (1994). Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science, 9;265(5178):1582–4.PubMedCrossRefGoogle Scholar
  9. Davis PD, Tozer GM, Naylor MA, Thomson P, Lewis G, Hill SA. (2002). Enhancement of vascular targeting by inhibitors of nitric oxide synthase. Int. J. Radiat. Oncol. Biol. Phys., 54:1532–6.PubMedGoogle Scholar
  10. Denekamp J. (1982). Endothelial cell proliferation as a novel approach to targeting tumour therapy. Br. J. Cancer, 45:136–9.PubMedGoogle Scholar
  11. Denekamp J. (1990). Vascular attack as a therapeutic strategy for cancer. Cancer Metastasis Rev. 9:267–82.PubMedCrossRefGoogle Scholar
  12. Denekamp J, Hobson B. (1983). Vascular occlusion and tumour cell death. Eur J Cancer Clin Oncol., 19: 271–5.PubMedCrossRefGoogle Scholar
  13. Dewhirst MW, Vujaskovic Z, Jones E, Thrall D. (2005). Re-setting the biologic rationale for thermal therapy. Int. J. Hyperthermia, 21(8):779–90.PubMedCrossRefGoogle Scholar
  14. Distler O, Neidhart M, Gay RE, Gay S. (2002). The molecular control of angiogenesis. Int. Rev. Immunol., 21(1):33–49.PubMedCrossRefGoogle Scholar
  15. Eikesdal HP, Bjerkvig R, Mella O, Dahl O. (2001a). Combretastatin A-4 and hyperthermia;a potent combination for the treatment of solid tumors. Radiother. Oncol., 60:147–54.Google Scholar
  16. Eikesdal HP, Bjerkvig R, Raleigh JA, Mella O, Dahl O. (2001b). Tumor vasculature is targeted by the combination of combretastatin A-4 and hyperthermia. Radiother. Oncol., 61: 313–20.Google Scholar
  17. Eikesdal HP, Bjorkhaug ST, Dahl O. (2002). Hyperthermia exhibits anti-vascular activity in the s.c. BT4An rat glioma: lack of interaction with the angiogenesis inhibitor batimastat. Int. J. Hyperthermia, 18(2):141–52.PubMedCrossRefGoogle Scholar
  18. Eikesdal HP, Schem BC, Mella O, Dahl O. (2000). The new tubulin-inhibitor combretastatin A-4 enhances thermal damage in the BT4An rat glioma. Int. J. Radiat. Oncol. Biol. Phys. 1;46(3):645–52.PubMedGoogle Scholar
  19. Enhancement effect of an anti-angiogenic agent, TNP-470, on hyperthermia-induced growth suppression of human esophageal and gastric cancers transplantable to nude mice. Anticancer Res., 15(4):1355–8.Google Scholar
  20. Falk MH, Issels RD. (2001). Hyperthermia in oncology. Int. J. Hyperthermia, 17(1):1–18.PubMedCrossRefGoogle Scholar
  21. Folkman J. (1971). Tumor angiogenesis: therapeutic implications. N. Engl. J. Med., 285(21): 1182–6.PubMedGoogle Scholar
  22. Folkman J. (2002). Role of angiogenesis in tumor growth and metastasis. Semin Oncol., 29(6): 15–8.PubMedCrossRefGoogle Scholar
  23. Folkman J. (2004). Endogenous angiogenesis inhibitors. A.P.M.I.S., 12(7–8):496–507.Google Scholar
  24. Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD, Semenza GL. (1996). Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol. Cell. Biol., 16(9):4604–13.PubMedGoogle Scholar
  25. Gadaleta C, Catino A, Mattioli V. (2006). Radiofrequency thermal ablation in the treatment of lung malignancies. In Vivo, 20(6A):765–7.PubMedGoogle Scholar
  26. Gadaleta C, Catino A, Ranieri G, Armenise F, Colucci G, Lorusso V, Cramarossa A, Fiorentini G, Mattioli V. (2004). Radiofrequency thermal ablation of 69 lung neoplasms. J. Chemother., 16(5):86–9.PubMedGoogle Scholar
  27. Gadaleta C, Coviello M, Catino A, Venneri MT, Stea B, Quaranta M, Mattioli V, Ranieri G. (2004). Serum vascular endothelial growth factor concentrations in hepatocellular cancer patients undergoing percutaneously radiofrequency thermal ablation. J. Chemother., 16(5):7–10.PubMedGoogle Scholar
  28. Galbraith SM, Chaplin DJ, Lee F, Stratford MR, Locke RJ, Vojnovic B, Tozer GM. (2001). Effects of combretastatin A4 phosphate on endothelial cell morphology in vitro and relationship to tumour vascular targeting activity in vivo. Anticancer Res., 21:93–102,PubMedGoogle Scholar
  29. Gasparini G. (1999).The rationale and future potential of angiogenesis inhibitors in neoplasia. Drugs, 58(1):17–38.PubMedCrossRefGoogle Scholar
  30. Gasparini G, Brooks PC, Biganzoli E, Vermeulen PB, Bonoldi E, Dirix LY, Ranieri G, Miceli R, Cheresh DA. (1998). Vascular integrin alpha(v)beta3: a new prognostic indicator in breast cancer. Clin. Cancer Res., 4(11):2625–34.PubMedGoogle Scholar
  31. Griffioen AW, Molema G. (2000). Angiogenesis: potentials for pharmacologic intervention in the treatment of cancer, cardiovascular diseases, and chronic inflammation. Pharmacol Rev., 52(2):237–68.PubMedGoogle Scholar
  32. Griggs J, Metcalfe JC, Hesketh R. (2001). Targeting tumour vasculature: the development of combretastatin A4. Lancet Oncol., 2:82–7.PubMedCrossRefGoogle Scholar
  33. Hokland SL, Horsman MR. (2007). The new vascular disrupting agent combretastatin-A1-disodium-phosphate (OXi4503) enhances tumour response to mild hyperthermia and thermoradiosensitization. Int. J. Hyperthermia, 23(7):599–606.PubMedCrossRefGoogle Scholar
  34. Holmgren L, O’Reilly MS, Folkman J. (1995). Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat. Med., 1(2):149–53.PubMedCrossRefGoogle Scholar
  35. Horsman MR. (2008). Angiogenesis and vascular targeting: relevance for hyperthermia. Int. J. Hyperthermia, 24(1):57–65.PubMedCrossRefGoogle Scholar
  36. Ikeda S, Akagi K, Shiraishi T, Tanaka Y. (1998). Enhancement of the effect of an angiogenesis inhibitor on murine tumors by hyperthermia. Oncol. Rep., 5(1):181–4.PubMedGoogle Scholar
  37. Kampinga HH. (2006). Cell biological effects of hyperthermia alone or combined with radiation or drugs: a short introduction to newcomers in the field. Int. J. Hyperthermia, 22(3):191–6.PubMedCrossRefGoogle Scholar
  38. Kanamori S, Nishimura Y, Okuno Y, Horii N, Saga T, Hiraoka M. (1999). Induction of vascular endothelial growth factor (VEGF) by hyperthermia and/or an angiogenesis inhibitor. Int. J. Hyperthermia, 15(4):267–78.PubMedCrossRefGoogle Scholar
  39. Kanthou C, Tozer GM. (2002). The tumor vascular targeting agent combretastatin A-4-phosphate induces reorganization of the actin cytoskeleton and early membrane blebbing in human endothelial cells. Blood, 99:2060–9.PubMedCrossRefGoogle Scholar
  40. Kumar-Singh S, Weyler J, Martin MJ, Vermeulen PB, Van Marck E. (1999). Angiogenic cytokines in mesothelioma: a study of VEGF, FGF-1 and -2, and TGF beta expression. J. Pathol., 189(1):72–8.PubMedCrossRefGoogle Scholar
  41. Malcontenti-Wilson C, Muralidharan V, Skinner S, Christophi C, Sherris D, O’Brien PE. (2001). Combretastatin A4 prodrug study of effect on the growth and the microvasculature of colorectal liver metastases in a murine model. Clin. Cancer Res., 7:1052–60.PubMedGoogle Scholar
  42. Masunaga S, Ono K, Nishimura Y, Kanamori S, Saga T, Suzuki M, Kinashi Y, Takagaki M, Kasai S, Nagasawa H, Uto Y, Hori H. (2000). Combined effects of tirapazamine and mild hyperthermia on anti-angiogenic agent (TNP-470) treated tumors-reference to the effect on intratumor quiescent cells. Int. J. Radiat. Oncol. Biol. Phys., 1;47(3):799–807.CrossRefGoogle Scholar
  43. Melder RJ, Koenig GC, Witwer BP, Safabakhsh N, Munn LL, Jain RK. (1996). During angiogenesis, vascular endothelial growth factor and basic fibroblast growth factor regulate natural killer cell adhesion to tumor endothelium. Nat. Med., 2(9):992–7.PubMedCrossRefGoogle Scholar
  44. Murata R, Overgaard J, Horsman MR. (2001). Potentiation of the anti-tumour effect of hyperthermia by combining with the vascular targeting agent 5, 6-dimethylxanthenone-4-acetic acid. Int. J. Hyperthermia, 17:508–19.PubMedCrossRefGoogle Scholar
  45. Ng R, Chen EX. (2006). Sorafenib (BAY 43-9006): review of clinical development. Curr. Clin. Pharmacol., 1(3):223–8.PubMedCrossRefGoogle Scholar
  46. Nishimura Y, Murata R, Hiraoka M. (1996). Combined effects of an angiogenesis inhibitor (TNP-470) and hyperthermia. Br. J. Cancer, 73(3):270–4.PubMedGoogle Scholar
  47. Ohguri T, Imada H, Yahara K, Kakeda S, Tomimatsu A, Kato F, Nomoto S, Terashima H, Korogi Y. (2004). Effect of 8-MHz radiofrequency-capacitive regional hyperthermia with strong superficial cooling for unresectable or recurrent colorectal cancer. Int. J. Hyperthermia, 20(5):465–75.PubMedCrossRefGoogle Scholar
  48. Ohno T, Kawano K, Sasaki A, Aramaki M, Tahara K, Etoh T, Kitano S. (2002). Antitumor and antivascular effects of AC-7700, a combretastatin A-4 derivative, against rat liver cancer. Int. J. Clin. Oncol., 7:171–6.PubMedCrossRefGoogle Scholar
  49. Okada F, Rak JW, Croix BS, Lieubeau B, Kaya M, Roncari L, Shirasawa S, Sasazuki T, Kerbel RS. (1998). Impact of oncogenes in tumor angiogenesis: mutant K-ras up-regulation of vascular endothelial growth factor/vascular permeability factor is necessary, but not sufficient for tumorigenicity of human colorectal carcinoma cells. Proc. Natl. Acad. Sci. USA., 31;95(7): 3609–14.CrossRefGoogle Scholar
  50. Otani M, Natsume T, Watanabe JI, Kobayashi M, Murakoshi M, Mikami T, Nakayama T. (2000). TZT-1027, an antimicrotubule agent, attacks tumor vasculature and induces tumor cell death. Jpn. J. Cancer Res., 91:837–44.PubMedGoogle Scholar
  51. Patruno R, Arpaia N, Gadaleta CD, Passantino L, Zizzo N, Misino A, Lucarelli NM, Catino A, Valerio P, Ribatti D, Ranieri G. (2008). VEGF concentration from plasma activated platelets rich correlates with microvascular density and grading in canine mast cell tumour spontaneous model. J. Cell Mol. Med., 2008 Apr 18.Google Scholar
  52. Patruno R, Zizzo N, Zito AF, Catalano V, Valerio P, Pellecchia V, D’errico E, Mazzone F, Ribatti D, Ranieri G. (2006) Leuk. Lymph., 47(6):1138–43.Google Scholar
  53. Perez CA, Emami B. (1989) Clinical trials with local (external and interstitial) irradiation and hyperthermia. Current and future perspectives. Radiol. Clin. North. Am. 27(3):525–42.PubMedGoogle Scholar
  54. Philpott M, Baguley BC, Ching LM. (1995). Induction of tumour necrosis factor- by single and repeated doses of the antitumour agent 5, 6-dimethylxanthenone-4-acetic acid. Cancer Chemother. Pharmacol., 36:143–8.PubMedCrossRefGoogle Scholar
  55. Polyzos A. (2008). Activity of SU11248, a multitargeted inhibitor of vascular endothelial growth factor receptor and platelet-derived growth factor receptor, in patients with metastatic renal cell carcinoma and various other solid tumors. J. Steroid Biochem. Mol. Biol., 108(3–5):261–6.PubMedCrossRefGoogle Scholar
  56. Rak J, Filmus J, Finkenzeller G, Grugel S, Marmé D, Kerbel RS. (1995). Oncogenes as inducers of tumor angiogenesis. Cancer Metastasis Rev., 14(4):263–77.PubMedCrossRefGoogle Scholar
  57. Rak J, Yu JL, Klement G, Kerbel RS. (2000) Oncogenes and angiogenesis: signaling three-dimensional tumor growth. J. Investig. Dermatol. Symp. Proc., 5(1):24–33.PubMedCrossRefGoogle Scholar
  58. Ramnath N, Creaven PJ. (2004). Matrix metalloproteinase inhibitors. Curr. Oncol. Rep., 6(2):96–102.PubMedCrossRefGoogle Scholar
  59. Ranieri G, Coviello M, Chiriatti A, Stea B, Montemurro S, Quaranta M, Dittami R, Paradiso A. (2004). Vascular endothelial growth factor assessment in different blood fractions of gastrointestinal cancer patients and healthy controls. Oncol. Rep., 11(2):435–9.PubMedGoogle Scholar
  60. Ranieri G, Coviello M, Patruno R, Valerio P, Martino D, Milella P, Catalano V, Scotto F, De Ceglie A, Quaranta M, Ribatti D, Pellecchia A. (2004). Vascular endothelial growth factor concentrations in the plasma-activated platelets rich (P-APR) of healthy controls and colorectal cancer patients. Oncol. Rep., 12(4):817–20.PubMedGoogle Scholar
  61. Ranieri G, Gasparini G. (2001). Surrogate Markers of Angiogenesis and metastasis. In Brooks S, eds. Metastasis Research Protocols. Humana Press, UK, Oxford, pp. 99–114.CrossRefGoogle Scholar
  62. Ranieri G, Gasparini G, Angiogenesis and angiogenesis inhibitors. (2001) A new potential anticancer therapeutic strategy. Curr. Drug Targets Immune Endocrine Metabolic Disordies, 1:179–87.CrossRefGoogle Scholar
  63. Ranieri G, Labriola A, Achille G, Florio G, Zito AF, Grammatica L, Paradiso A. (2002). Microvessel density, mast cell density and thymidine phosphorylase expression in oral squamous carcinoma. Int. J. Oncol., 21(6):1317–23.PubMedGoogle Scholar
  64. Ranieri G, Patruno R, Lionetti A, Di Summa A, Mattioli E, Bufo P, Pellecchia A, Ribatti D, Zizzo N. (2005). Endothelial area and microvascular density in a canine non-Hodgkin’s lymphoma: an interspecies model of tumor angiogenesis. Leuk. Lymph., 46(11):1639–1643.CrossRefGoogle Scholar
  65. Ranieri G, Patruno R, Ruggieri E, Montemurro S, Valerio P, Ribatti D. (2006). Vascular endothelial growth factor (VEGF) as a target of bevacizumab in cancer: from the biology to the clinic. Curr. Med. Chem. 13(16):1845–57.PubMedCrossRefGoogle Scholar
  66. Ranieri G, Ria R, Roccaro AM, Vacca A, Ribatti D. (2005). Development of vascular targeting strategies for the treatment of chronic inflammatory diseases. Curr Drug Targets Inflamm Allergy, 4:13–22PubMedCrossRefGoogle Scholar
  67. Reinhold HS, Endrich B. (1986). Tumour microcirculation as a target for hyperthermia. Int. J. Hyperthermia, 2(2):111–37.PubMedCrossRefGoogle Scholar
  68. Responses of tumour cell lines implanted onto the chorioallantoic membrane of chick embryo to anticancer agents in combination with hyperthermia. Urol. Res., 20(3):237–9.Google Scholar
  69. Roca C, Primo L, Valdembri D, Cividalli A, Declerck P, Carmeliet P, Gabriele P, Bussolino F. (2003). Hyperthermia inhibits angiogenesis by a plasminogen activator inhibitor 1-dependent mechanism. Cancer Res., 63(7):1500–7.PubMedGoogle Scholar
  70. Vascular Targeting: Clinical Experience. Horizons in Cancer Therapeutics. From Bench to Bedside: Vol. 3, No2.Google Scholar
  71. Thompson JF, Kam PC. (2008). Current status of isolated limb infusion with mild hyperthermia for melanoma. Int. J. Hyperthermia, 24(3):219–25.PubMedCrossRefGoogle Scholar
  72. Thorpe PE, Chaplin DJ, Blakey DC. (2003). The first international conference on vascular targeting: meeting overview. Cancer Res., 63:1144–7.PubMedGoogle Scholar
  73. Tozer GM, Prise VE, Wilson J, Locke RJ, Vojnovic B, Stratford MR, Dennis MF, Chaplin DJ. (1999). Combretastatin A-4 phosphate as a tumor vascular-targeting agent: early effects in tumors and normal tissues. Cancer Res., 59:1626–34.PubMedGoogle Scholar
  74. Uchibayashi T, Egawa M, Nakajima K, Hisazumi H, Tanaka M, Endo Y, Sasaki T. (1992).Google Scholar
  75. Vailhe B, Feige JJ. (2003). Thrombospondins as anti-angiogenic therapeutic agents. Curr. Pharm. Des., 9(7):583–8.PubMedCrossRefGoogle Scholar
  76. van der Zee J. (2002). Heating the patient: a promising approach? Ann. Oncol., 13(8):1173–84.PubMedCrossRefGoogle Scholar
  77. Vermeulen PB, Gasparini G, Fox SB, Colpaert C, Marson LP, Gion M, Belien JA, de Waal RM, Van Marck E, Magnani E, Weidner N, Harris AL, Dirix LY. (2002). Heterogeneity of vascularisation in invasive breast carcinoma. Eur. J. Cancer, 38(12):1564–79.PubMedCrossRefGoogle Scholar
  78. Weidner N, Semple JP, Welch WR, Folkman J. (1991). Tumor angiogenesis and metastasis – correlation in invasive breast carcinoma. N. Engl. J. Med., 324(1):1–8.PubMedGoogle Scholar
  79. Woglom WH. (1923). A critique of tumour resistance. J Cancer Res., 7: 283–311.Google Scholar
  80. Wust P, Riess H, Hildebrandt B, Löffel J, Deja M, Ahlers O, Kerner T, von Ardenne A, Felix R. (2000). Feasibility and analysis of thermal parameters for the whole-body-hyperthermia system IRATHERM-2000. Int. J. Hyperthermia, 16(4):325–39.PubMedCrossRefGoogle Scholar
  81. Wylie S, MacDonald IC, Varghese HJ, Schmidt EE, Morris VL, Groom AC, Chambers AF. (1999). The matrix metalloproteinase inhibitor batimastat inhibits angiogenesis in liver metastases of B16F1 melanoma cells. Clin. Exp. Metastasis, 17(2):111–7.PubMedCrossRefGoogle Scholar
  82. Yano T, Tanase M, Watanabe A, Sawada H, Yamada Y, Shino Y, Nakano H, Ohnishi T. (1995).Google Scholar
  83. Zhang Y. (1998). Matrix metalloproteinase inhibitors. IDrugs. 1(7):750–1.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Girolamo Ranieri
    • 1
  • Annamaria Catino
    • 1
  • Vittorio Mattioli
    • 1
  • Vito Fazio
    • 1
  • Gennaro Gadaleta Caldarola
    • 1
  • Cosmo Damiano Gadaleta
    • 1
  1. 1.National Cancer Institute GiovanniIntrventional Radiology UnitBariItaly

Personalised recommendations