Skip to main content
  • 674 Accesses

Summary

In this chapter the historical events of apoptotic research are followed by (a) the relationship of apoptosis to the genetic communication, (b) characterization of apoptosis and necrosis, (c) induction and chemical inducers of apoptosis, (d) apoptotic pathways, (e) antiapoptotic pathways and (f) apoptosis protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adachi, S., Cross, A.R., Babior, B.M. and Gottlieb, R.A. (1997). Bcl-2 and the outer mitochondrial membrane in the inactivation of cytochrome c during Fas-mediated apoptosis. J Biol Chem. 272, 21878–21882.

    Article  PubMed  CAS  Google Scholar 

  • Adler, V., Fuchs, S.Y., Kim, J., Kraft, A., King, M.P., Pelling, J. and Ronai, Z. (1995). Jun-NH2-terminal kinase activation mediated by UV-induced DNA lesions in melanoma and fibroblast cells. Cell Growth Differ. 6, 1437–1446.

    PubMed  CAS  Google Scholar 

  • Adler, V., Pincus, M.R., Minamoto, T., Fuchs, S.Y., Bluth, M.J., Brandt-Rauf, P.W., Friedman, F.K., Robinson, R.C., Chen, J.M., Wang, X.W., Harris, C.C. and Ronai, Z. (1997). Conformation-dependent phosphorylation of p53. Proc Natl Acad Sci USA 94, 1686–1691.

    Article  PubMed  CAS  Google Scholar 

  • Alderson, M.R., Tough, T.W., Davis, S.T., Braddy, S., Falk, B., Schooley, K.A., Goodwin, R.G., Smith, C.A., Ramsdell, F. and Lynch, D.H. (1995). Fas ligandmediates activationinduced cell death in human T lymphocytes. J Exp Med. 181, 71–77.

    Article  PubMed  CAS  Google Scholar 

  • Almog, N. and Rotter, V. (1998). An insight into the life of p53: a protein coping with many function! Biochim Biophys Acta. 1378, R43–R54.

    PubMed  CAS  Google Scholar 

  • Alnemri, E.S., Livingston, D.J., Nicholson, D.W. et al. (1996). Human ICE/CED-3 protease nomenclature. Cell. 87, 171.

    Article  PubMed  CAS  Google Scholar 

  • Amakawa, R., Hakem, A., Kundig, T.M., Matsuyama, T., Simard, J.J., Timms, E., Wakeham, A., Mittruecker, H.W., Griesser, H., Takimoto, H., Schmits, R., Shahinian, A., Ohashi, P., Penninger, J.M. and Mak, T.W. (1996). Impaired negative selection of T cells in Hodgkin’s disease antigen CD30-deficient mice. Cell. 84, 551–562.

    Article  PubMed  CAS  Google Scholar 

  • Ameisen, J.C. (2002). On the origin, evolution, and nature of programmed cell death: a timeline of four billion years. Cell Death Differ. 9, 367–93.

    Article  PubMed  CAS  Google Scholar 

  • André, N. (2003). Hippocrates of Cos and apoptosis. Lancet. 361, 1306.

    Article  PubMed  Google Scholar 

  • Appella, E. and Anderson, C.W. (2001). Post-translational modifications and activation of p53 by genotoxic stresses. Eur J Biochem. 268, 2764–2772. Review.

    Article  PubMed  CAS  Google Scholar 

  • Arends, M.J. and Wyllie, A.H., (1991). Apoptosis: mechanisms and roles in pathology. Int Rev Exp Pathol. 52, 223–254.

    Google Scholar 

  • Asher, G., Lotem, J., Kama, R., Sachs, L. and Shaul, Y. (2002). NQO1 stabilizes p53 through a distinct pathway. Proc Natl Acad Sci USA. 99, 3099–3104.

    Article  PubMed  CAS  Google Scholar 

  • Ashush, H., Rozenszajn, L.A., Blass, M., Barda-Saad, M., Azimov, D., Radnay, J., Zipori, D. and Rosenschein, U. (2000). Apoptosis induction of human myeloid leukemic cells by ultrasound exposure. Cancer Res. 60, 1014–1020.

    PubMed  CAS  Google Scholar 

  • Babiss, L.E., Gisberg, H.S., Darnell, J.E. Jr. (1985). Adenovirus E1B proteins are required for accumulation of late viral mRNA and for effects on cellular mRNA translation and transport. Mol Cell Biol. 5, 2552–2558.

    PubMed  CAS  Google Scholar 

  • Bacher, M., Rausch, U., Goebel, H.W., Polzar, B., Mannherz, H.G. and Aumuller, G. (1993). Stromal and epithelial cells from rat ventral prostate during androgen deprivation and estrogen treatment-regulation of transcription. Exp Clin Endocrinol. 101, 78–86.

    PubMed  CAS  Google Scholar 

  • Baker, S.J., Fearon, E.R., Nigro, J.M., Hamilton, S.R., Preisinger, A.C., Jessup, J.M., Van Tuinen, P., Ledebetter, D.H., Barker, D.F., Nakamura, Y., White, R. and Vogelstein, B. (1989). Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science. 244, 217–221.

    Article  PubMed  CAS  Google Scholar 

  • Bálint, È. and Vousden, KH. (2001). Activation and activities of the p53 tumour suppressor protein. Br J Cancer 85, 1813–1823.

    Article  CAS  Google Scholar 

  • Bánfalvi, G., Littlefield, N., Hass, B., Mikhailova, M., Csuka, I., Szepessy, E. and Chou, W.M. (2000). Effect of cadmium on the relationship between replicative and repair DNA synthesis in synchronized cho cells. Eur J Biochem. 267, 6580–6585.

    Article  PubMed  Google Scholar 

  • Bánfalvi, G., Klaisz, M., Ujvarosi, K., Trencsenyi, G., Rozsa, D. and Nagy, G. (2007). Gamma irradiation induced apoptotic changes in the chromatin structure of human erythroleukemia K562 cells. Apoptosis. 12, 2271–2283.

    Article  PubMed  CAS  Google Scholar 

  • Bánfalvi, G., Mikhailova, M., Poirier, L.A. and Chou, M.W. (1997). Multiple subphases of DNA replication in Chinese hamster ovary (CHO-K1) cells. DNA Cell Biol. 16, 1493–1498.

    PubMed  Google Scholar 

  • Bao, H., Jacobs-Helber, S.M., Lawson, A.E., Penta, K., Wickrema, A. and Sawyer, S.T. (1999). Protein kinase B (c-Akt), phosphatidylinositol 3-kinase, and STAT5 are activated by erythropoietin (EPO) in HCD57 erythroid cells but are constitutively active in an EPO-independent, apoptosis-resistant subclone (HCD57-SREI cells). Blood. 93, 3757–3773.

    PubMed  CAS  Google Scholar 

  • Bartek, J. and Lukas, J. (2001). Mammalian G1- and S-phase checkpoints in response to DNA damage. Curr Opin Cell Biol. 13, 738–747.

    Article  PubMed  CAS  Google Scholar 

  • Bartek, J., Lukas, C. and Lukas, J. (2004). Checking on DNA damage in S phase. Nat Rev Mol Cell Biol. 5, 792–804.

    Article  PubMed  CAS  Google Scholar 

  • Beere, H.M., Chresta, C.M., ALEJO-Herberg, A., Skladanowski, A., Dive, C., Larsen, A.K. and Hickman, J.A. (1995). Investigation of the mechanism of higher order chromatin fragmentation observed in drug-induced apoptosis. Mol Pharmacol. 47, 986–996.

    PubMed  CAS  Google Scholar 

  • Bellairs, R. (1961). Cell death in chick embryos as studied by electromicroscopy. J Anat. 95, 54–60.

    PubMed  CAS  Google Scholar 

  • Berman-Frank, I., Bidle, K.D. and Falkowski, P.G. (2004). The demise of the marine cyanobacteria, Trichodesmium spp., via an autocatalysed cell death pathway. Limnol Oceanogr. 49, 997–1005.

    Google Scholar 

  • Bernstein, E. and Hake, S.B. (2006). The nucleosome: a little variation goes a long way. Biochem Cell Biol. 84, 505–517.

    Article  PubMed  CAS  Google Scholar 

  • Bitar, K.N. (2002). HSP27 phosphorylation and interaction with actin-myosin in smooth muscle contraction. Am J Physiol Gastrointest Liver Physiol. 282, G894–903.

    PubMed  CAS  Google Scholar 

  • Blagosklonny, M.V. (2001). Do VHL and HIF-1 mirror p53 and Mdm-2? Degradation-transactivation loops of oncoproteins and tumour suppressors. Oncogene. 20, 395–398. Review.

    Article  PubMed  CAS  Google Scholar 

  • Blagosklonny, M.V. (2002). P53: An ubiquitous target of anticancer drugs. Int J Cancer, 98, 161–166.

    Article  PubMed  CAS  Google Scholar 

  • Boldin, M.P., Goncharov, T.M., Goltsev, Y.V. and Wallach, D. (1996). Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/Apo-1 and TNF receptor induced cell death. Cell. 85, 803–815.

    Article  PubMed  CAS  Google Scholar 

  • Boldin, M.P., Varfolomeev, E.E., Pancer, Z., Mett, I.L., Camonis, J.H. and Wallach, D. (1995). A novel protein that interacts with the death domain of Fas/APO1 contains a sequence motif related to the death domain. J Biol Chem. 270, 7795–7798.

    Article  PubMed  CAS  Google Scholar 

  • Bossy-Wetzel, E. and Green, D.R. (1999). Apoptosis: checkpoint at the mitochondrial frontier. Mutation Research/DNA Repair. 434, 243–251.

    Article  CAS  Google Scholar 

  • Bossy-Wetzel, E., Newmeyer, D.D. and Green, D.R. (1998). Mitochondrial cytochrome c release in apoptosis occurs upstream of DEVD-specific caspase activation and independently of mitochondrial transmembrane depolarization. EMBO J. 17, 37–49.

    Article  PubMed  CAS  Google Scholar 

  • Broker, L.E., Kruyt, F.A., Giaccone, G. (2005). Cell death independent of caspases: a review. Clin Cancer Res. 11, 62–3155.

    Article  Google Scholar 

  • Brown, D.G., Sun, X.M. and Cohen, G.M. (1993). Dexamethasoneinduced apoptosis involves cleavage of DNA to large fragments prior to internucleosomal fragmentation; J Biol Chem. 268, 3037–3039.

    PubMed  CAS  Google Scholar 

  • Bruey, J.M., Ducasse, C., Bonniaud, P., Ravagnan, L., Susin, S.A., Diaz-Latoud, C., Gurbuxani, S., Arrigo, A.P., Kroemer, G., Solary, E. and Garrido, C. (2000a). Hsp27 negatively regulates cell death by interacting with cytochrome c. Nat Cell Biol. 2, 645–652.

    Article  CAS  Google Scholar 

  • Bruey, J.M., Paul, C., Fromentin, A., Hilpert, S., Arrigo, A.P., Solary, E. and Garrido, C. (2000b). Differential regulation of HSP27 oligomerization in tumour cells grown in vitro and in vivo. Oncogene. 19, 4855–63.

    Article  CAS  Google Scholar 

  • Bryan, T.M. and Reddel, R.R. (1994). SV40-induced immortalization of human cells. Crit Rev Oncog. 5, 5331–5357.

    Google Scholar 

  • Bursch, W., Ellinger, A., Gerner, C., Fröhwein, U. and Schulte-Hermann, R. (2000). Programmed cell death (PCD). Apoptosis, autophagic PCD, or others? Ann N Y Acad Sci. 926, 1–12.

    PubMed  CAS  Google Scholar 

  • Büttner, S., Carmona-Gutierrez, D., Vitale, I., Castedo, M., Ruli, D., Eisenberg, T., Kroemer, G. and Madeo, F. (2007). Depletion of endonuclease G selectively kills polyploid cells. Cell Cycle. 6, 1072–1076.

    PubMed  Google Scholar 

  • Caelles, C., Helmberg, A. and Karin, M. (1994). p53-dependent apoptosis in the absence of transcriptional activation of p53-target genes. Nature. 370, 220–223.

    Article  PubMed  CAS  Google Scholar 

  • Cai, J. and Jones, D.P. (1998). Superoxide in apoptosis. Mitochondrial generation triggered by cytochrome c loss. J Biol Chem. 273, 11401–11404.

    Article  PubMed  CAS  Google Scholar 

  • Casiano, C.A., Ochs, R.L. and Tan, E.M. (1998). Distinct cleavage products of nuclear proteins in apoptosis and necrosis revealed by autoantibody probes. Cell Death Differ. 5, 183–90.

    Article  PubMed  CAS  Google Scholar 

  • Casiano, C.A. and Tan, E.M. (1996). Antinuclear autoantibodies: probes for defining proteolytic events associated with apoptosis. Mol Biol Rep. 23, 211–216. Review.

    Article  PubMed  CAS  Google Scholar 

  • Castedo, M., Perfettini, J.-L., Roumier, T., Andreau, K., Medema, R., Kroemer, G. (2004). Cell death by mitotic catastrophe: a molecular definition. Oncogene. 23, 2825–2837.

    Article  PubMed  CAS  Google Scholar 

  • Certo, M., Del Gaizo Moore, V., Nishino, M., Wei, G., Korsmeyer, S., Armstrong, S.A. and Letai, A. (2006). Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell. 9, 351–361.

    Article  PubMed  CAS  Google Scholar 

  • Chakravarti, D. and Hong, R. (2003). SET-ting the stage for life and death. Cell. 112, 589–591.

    Article  PubMed  CAS  Google Scholar 

  • Chang, Y.C., Chang, H.W., Liao, C.B., Liu, Y.C. (2002). The role of p53, DNA repair and oxidative stress in UVC induction of PCNA expression. Ann N Y Acad Sci. 973, 384–391.

    PubMed  CAS  Google Scholar 

  • Charette, S.J. and Landry, J. (2000). The interaction of HSP27 with Daxx identifies a potential regulatory role of HSP27 in Fas-induced apoptosis. Ann N Y Acad Sci. 926, 126–131.

    PubMed  CAS  Google Scholar 

  • Charette, S.J., Lavoie, J.N., Lambert, H. and Landry, J. (2000). Inhibition of Daxx-mediated apoptosis by heat shock protein 27. Mol Cell Biol. 20, 7602–7612.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Y.R., Meyer, C.F. and Tan, T.H. (1996). Persistent activation of c-Jun N-terminal kinase 1 (JNK1) in gamma radiation-induced apoptosis. J Biol Chem. 271, 631–634.

    Article  PubMed  CAS  Google Scholar 

  • Chinnaiyan, A.M., O’rourke, K., Lane, B.R. and Dixit, V.M. (1997). Interaction of CED-4 with CED-3 and CED-9 $±$ a molecular framework for cell death. Science. 275, 1122–1126.

    Article  PubMed  CAS  Google Scholar 

  • Chinnaiyan, A.M., O’rourke, K., Tewari, M. and Dixit, V.M. (1995). FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell. 81, 505–512.

    Article  PubMed  CAS  Google Scholar 

  • Chinnaiyan, A.M., O’rourke, K., Yu, G.-L., Lyons, R.H., Garg, M., Duan, D.R., Xing, L., Gentz, R., Ni, J. and Dixit, V.M. (1996). Signal transduction by DR3, a death domain-containing receptor related to TNFR-1 and CD95. Science 274, 990–992.

    Article  PubMed  CAS  Google Scholar 

  • Cho, Y., Gorina, S., Jeffrey, P.D., Pavletich, N.P. (1994). Crystal structure of a p53 tumour suppressor-DNA complex: understanding tumorigenic mutations. Science. 265, 346–355.

    Article  PubMed  CAS  Google Scholar 

  • Cikala, M., Wilm, B., Hobmayer, E., Bottger, A. and David, C.N. (1999). Identification of caspases and apoptosis in the simple metazoan Hydra. Curr Biol. 9, 959–962.

    Article  PubMed  CAS  Google Scholar 

  • Clarke, P.G.H. and Clarke, S. (1996). Nineteenth century research on naturally occurring cell death and related phenomena. Anat Embryol. 193, 81–99.

    Article  PubMed  CAS  Google Scholar 

  • Cleary, M.L., Smith, S.D. and Sklar, J. (1986). Cloning and structural analysis of cDNAs for bcl-2 and a hybrid bcl-2/immunoglobulin transcript resulting from the t(14;18) translocation. Cell. 47, 19–28.

    Article  PubMed  CAS  Google Scholar 

  • Clem, R.J., Fechheimer, M. and Miller, L.K. (1991). Prevention of apoptosis by a baculovirus gene during infection of insect cells. Science. 254, 1388–1390.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, J.J. and Duke, R.C. (1984). Glucocorticoid activation of calcium-dependent endonuclease in thymocyte nuclei leads to cell death. J Immunol. 132, 38–42.

    PubMed  CAS  Google Scholar 

  • Cohen, G.M., Sun, X.M., Fearnhea, H., Macfarlane, M., Brown, D.G., Snowden, R.T. and Dinsdale, D. (1994). Formation of large molecular weight fragments of DNA is a key committed step of apoptosis in thymocytes. J Immunol. 153, 507–516.

    PubMed  CAS  Google Scholar 

  • Conradt, B. and Horvitz, H.R. (1998). The C. elegans protein EGL-1 is required for programmed cell death and interacts with the Bcl-2-like protein CED-9. Cell. 93, 519–529.

    Article  PubMed  CAS  Google Scholar 

  • Conway, E.M., Pollefeyt, S., steiner-Mosonyi, M., Luo, W., Devriese, A., Lupu, F., Bono, F., Leducq, N., Dol, F., Schaeffer, P., Collen, D. and Herbert, J.M. (2002). Deficiency of survivin in transgenic mice exacerbates Fas-induced apoptosis via mitochondrial pathways. Gastroenterology. 123, 619–631.

    Article  PubMed  CAS  Google Scholar 

  • Cosman, D. (1994). A family of ligands for the TNF receptor superfamily. Stem Cells. 12,440–455.

    PubMed  CAS  Google Scholar 

  • Cossarizza, A., Kalashnikova, G., Grassilli, E., Chiappelli, F., Salvioli, S., Capri, M., Barbieri, D., Troiano, L., Monti, D. and Franceschi, C. (1994). Mitochondrial modifications during rat thymocyte apoptosis: a study at the single cell level. Exp Cell Res. 214, 323–330.

    Article  PubMed  CAS  Google Scholar 

  • Coux, O., Tanaka, K. and Goldberg, A. L. (1996). Structure and functions of the 20S and 26S proteasomes. Annu Rev Biochem. 65, 801–847.

    Article  PubMed  CAS  Google Scholar 

  • Cyrns, V. and Yuan, J. (1998). Proteases to die for. Genes Dev. 12, 1551–1570.

    Article  Google Scholar 

  • Decary, S., Decesse, J.T., Ogryzko, V., Reed, J.C., Naguibneva, I., Harel-Bellan, A. and Cremisi, C.E. (2002). The retinoblastoma protein binds the promoter of the survival gene bcl-2 and regulates its transcription in epithelial cells through transcription factor AP-2. Mol Cell Biol. 22, 7877–7888.

    Article  PubMed  CAS  Google Scholar 

  • Deng, G. and Podack, E.R. (1995). Deoxyribonuclease induction in apoptotic cytotoxic T lymphocytes. FASEB J. 9, 665–669.

    PubMed  CAS  Google Scholar 

  • De Ruijter, A.J., Van Gennip, A.H., Caron, H.N., Kemp, S. and Van Kuilenburg, A.B. (2003). Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J. 370, 737–749. Review.

    Article  PubMed  Google Scholar 

  • Deveraux, Q.L., Roy, N., Stennicke, H.R., VAN Arsdale, T., Zhou, Q., Srinivasula, S.M., Alnemri, E.S., Salvesen, G.S. and Reed, J.C. (1998). IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases. EMBO J. 17, 2215–2223.

    Article  PubMed  CAS  Google Scholar 

  • Deveraux, Q., Takahashi, R., Salvesen, G.S. and Reed, J.C. (1997). X-linked IAP is a direct inhibitor of cell death proteases. Nature. 388, 300–303.

    Article  PubMed  CAS  Google Scholar 

  • Devireddy, L.R. and Jones, C.J. (1999). Activation of caspases and p53 by bovine herpesvirus 1 infection results in programmed cell death and efficient virus release. J Virol. 73, 3778–3788.

    PubMed  CAS  Google Scholar 

  • Devita, V.T., Hellman, S. and Rosenberg, S.A. (2001). Cancer, Principles and Practice of Oncology (Lippincott-Raven, Philadelphia).

    Google Scholar 

  • Di Gioacchino, M., Petrarca, C., Perrone, A., Martino, S., Esposito, D., Lotti, L.V., Mariani-Costantini, R. (2008). Autophagy in hematopoietic stem/progenitor cells exposed to heavy metals: biological implications and toxicological relevance. Autophagy. 4, 537–539.

    PubMed  Google Scholar 

  • Dobner, T., Horikoshi, N., Rubenwolf, S. and Shenk, T. (1996). Blockage by adenovirus E4orf6 of transcriptional activation by the p53 tumour suppressor. Science. 272, 1470–1473.

    Article  PubMed  CAS  Google Scholar 

  • Donehower, L.A. and Bradley, A. (1993). The tumour suppressor p53. Biochim Biophys Acta. 23, 181–205.

    Google Scholar 

  • Downward, J. (1999). How BAD phosphorylation is good for survival. Nature Cell Biol. 1, E 33–35.

    Article  CAS  Google Scholar 

  • Dubrez, L., Savoy, I., Hamman, A. and Solary, E. (1996). Pivotal role of a DEVD-sensitive step in etoposide-induced and Fas-mediated apoptotic pathways. EMBO J. 15, 5504–551.

    PubMed  CAS  Google Scholar 

  • Duckett, C.S., Nava, V.E., Gedrich, R.W., Clem, R.J., Vandongen, J.L., Gilfillan, M.C., Shiels, H., Hardwick, J.M. and Thompson, C.B. (1996). A conserved family of cellular genes related to the baculovirus IAP gene and encoding apoptosis inhibitors. EMBO J. 15, 2685–2694.

    PubMed  CAS  Google Scholar 

  • Duke, R.C. and Cohen, J.J. (1986). IL-2 addiction: withdrawal of growth factor activates a suicide program in dependent T cells. Lymphokine Res. 5, 289–299.

    PubMed  CAS  Google Scholar 

  • Durrieu, F., Samejima, K., Fortune, J., Kandels-Lewis, S., Osheroff, N. and Earnshaw, W. (2000). DNA topoisomerase IIa interacts with CAD nuclease and is involved in chromatin condensation during apoptotic execution. Curr Biol. 10, 923–926.

    Article  PubMed  CAS  Google Scholar 

  • Earnshaw, W.C. (1995). Nuclear changes in apoptosis. Curr Opin Cell Biol. 7, 337–343.

    Article  PubMed  CAS  Google Scholar 

  • Eastman, A. (1994). Deoxyribonuclease II in apoptosis and the significance of intracellular acidification. Cell Death Differ. 1, 7–10.

    PubMed  CAS  Google Scholar 

  • Ejercito, M. and Wolfe, J. (2004). Caspase-like activity is required for programmed nuclear elimination during conjugation in Tetrahymena. J Eukaryot Microbiol. 50, 427–429.

    Article  Google Scholar 

  • El-Deiry, W., Kern, S.E., Pietenpol, J.A., Kinzler, K.W. and Vogelstein B. (1992). Definition of a consensus binding site for p53. Nat Genet. 1, 45–49, 1992.

    Article  PubMed  CAS  Google Scholar 

  • Ellis, H.M. and Horvitz, H.R. (1986). Genetic control of programmed cell death in the nematode C. elegans. Cell. 44, 817–829.

    Article  PubMed  CAS  Google Scholar 

  • Enari, M., Hug, H. and Nagata, S. (1995). Involvement of an ICE-like protease in Fas mediated apoptosis. Nature 375, 78–81.

    Article  PubMed  CAS  Google Scholar 

  • Enari, M., Sakahira, H., Yokoyama, H., Okawa, K., Iwamatsu, A. and Nagata, S. (1998). A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature. 391, 43–50.

    Article  PubMed  CAS  Google Scholar 

  • Enari, M., Talanian, R.V., Wong, W.W. and Nagata, S. (1996). Sequential activation of ICE-like and CPP32-like proteases during Fas-mediated apoptosis. Nature 380, 723–726.

    Article  PubMed  CAS  Google Scholar 

  • Evans, C.J. and Aguilera, R.J. (2003). DNase II: genes, enzymes and function. Gene. 322, 1–15.

    Article  PubMed  CAS  Google Scholar 

  • Fadok, V.A., Bratton, D.L., Rose, D.M., Pearson, A., Ezekewitz, R.A. and Henson, P.M. (2000). A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature. 405, 85–90.

    Article  PubMed  CAS  Google Scholar 

  • Fadok, V.A., Voelker, D.R., Campbell, P.A., Cohen, J.J., Bratton, D.L. and Henson, P.M. (1992). Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol. 148, 2207–2216.

    PubMed  CAS  Google Scholar 

  • Famulski, K.S., Macdonald, D., Paterson, M.C. and Sikora, E. (1999). Activation of a low pH-dependent nuclease by apoptotic agents. Cell Death Differ. 6, 281–289.

    Article  PubMed  CAS  Google Scholar 

  • Fan, Z., Beresford, P.J., Oh, D.Y., Zhang, D. and Lieberman, J. (2003). Tumour suppressor NM23-H1 is a granzyme A-activated DNase during CTL-mediated apoptosis, and the nucleosome assembly protein SET is its inhibitor. Cell. 112, 659–672.

    Article  PubMed  CAS  Google Scholar 

  • Fesus, L., Davies, P.J.A. and Piacentini, M. (1991). Apoptosis: molecular mechanisms in programmed cell death. Eur J Cell Biol. 56, 170–177.

    PubMed  CAS  Google Scholar 

  • Fesus, L., Madi, A., Balajthy, Z., Nemes, Z. and Szondy, Z. (1996). Transglutaminase induction by various cell death and apoptosis pathways. Experientia. 52, 942–949. Review.

    Article  PubMed  CAS  Google Scholar 

  • Ford, J.M., Baron, E.L. and Hanawalt, P.C. (1998). Human fibroblasts expressing the human papillomavirus E6 gene are deficient in global genomic nucleotide excision repair and sensitive to ultraviolet irradiation. Cancer Res. 58, 599–603.

    PubMed  CAS  Google Scholar 

  • Fridman, J.S. and Lowe, S.W. (2003). Control of apoptosis by p53. Oncogene. 22, 9030–9040.

    Article  PubMed  CAS  Google Scholar 

  • Friedberg, E.C., Walker, G.C., Siede, W., Wood, R.D., Schultz, R.A., Ellenberger, T. (2005). DNA Repair and Mutagenesis, 2nd edition. American Society for Microbiology Press, Washington DC, p. 1118.

    Google Scholar 

  • Fritz, G., Grösch, S., Tomicic, M. and Kaina, B. (2003). APE/Ref-1 and the mammalian response to genotoxic stress. Toxicology. 193, 67–78.

    Article  PubMed  CAS  Google Scholar 

  • Furukawa, Y., Nishimura, N., Furukawa, Y., Satoh, M., Endo, H., Iwase, S., Yamada, H., Matsuda, M., Kano, Y. and Nakamura, M. (2002). Apaf-1 is a mediator of E2F-1-induced apoptosis. J Biol Chem. 277, 39760–39768.

    Article  PubMed  CAS  Google Scholar 

  • Ganesh, L., Yoshimoto, T., Moorthy, N.C., Akahata, W., Boehm, M., Nabel, E.G., Nabel, G.J. (2006). Protein methyltransferase 2 inhibits NF-kappaB function and promotes apoptosis. Mol Cell Biol. 26, 3864–3874.

    Article  PubMed  CAS  Google Scholar 

  • Gannon, J.V., Greaves, R., Iggo, R. and Lane, D.P. (1990). Activating mutations in p53 produce a common conformational effect. A monoclonal antibody specific for the mutant form. EMBO J. 9, 1595–1602.

    CAS  Google Scholar 

  • Gannavaram, S., Vedvyas, C. and Debrabant, A. (2008). Conservation of the pro-apoptotic nuclease activity of endonuclease G in unicellular trypanosomatid parasites. J Cell Sci. 121, 99–109.

    Article  PubMed  CAS  Google Scholar 

  • Garattini, E., Gianni, M. and Terao, M. (2004). Retinoid related molecules an emerging class of apoptotic agents with promising therapeutic potential in oncology: pharmacological activity and mechanisms of action. Curr Pharm Des. 10, 433–448. Review.

    Article  PubMed  CAS  Google Scholar 

  • Garrido, C., Bruey, J.M., Fromentin, A., Hammann, A., Arrigo, A.P. and Solary, E. (1999). HSP27 inhibits cytochrome c-dependent activation of procaspase-9. FASEB J. 13, 2061–2070.

    Google Scholar 

  • Genini, D., Sheeter, D., Rought, S., Zaunders, J.J., Susin, S.A., Kroemer, G., Richman, D.D., Carson, D.A., Corbeil, J., Leoni, L.M. (2001). HIV induces lymphocyte apoptosis by a p53-initiated, mitochondrial-mediated mechanism. FASEB J. 15, 5–6.

    PubMed  CAS  Google Scholar 

  • Gerace, L. and Blobel, G. (1980). The nuclear envelope lamina is reversibly depolymerized during mitosis. Cell. 19, 277–287.

    Article  PubMed  CAS  Google Scholar 

  • Gil-Gómez, G. and Brady, H.J.M. (1998). Transgenic mice in apoptosis research. Apoptosis. 3, 215–228.

    Article  PubMed  Google Scholar 

  • Ginaldi, L., De Martinis, M., Monti, D., Franceschi, C. (2005). Chronic antigenic load and apoptosis in immunosenescence. Trend Immunol. 26, 79–84.

    Article  CAS  Google Scholar 

  • Glickman, M.H. and Ciechanover, A. (2002). The ubiquitin–proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev. 82, 373–428.

    PubMed  CAS  Google Scholar 

  • Glucksmann, A. (1951). Cell deaths inn normal vertebrate ontogeny. Biol Rev. 26, 59–86.

    Article  Google Scholar 

  • Green, D.R. and Reed, J.R. (1998). Mitochondria and apoptosis. Science 281, 1309–1312.

    Article  PubMed  CAS  Google Scholar 

  • Greenlund, L.J.S., Deckwerth, T.L. and Johnson, E.M.J. (1995). Superoxide dismutase delays neuronal apoptosis: a role for reactive oxygen species in programmed cell death. Neuron. 14, 303–315.

    Article  PubMed  CAS  Google Scholar 

  • Grether, M.E., Abrams, J.M., Agapite, J., White, K. and Steller, H. (1995). The head involution defective gene of Drosophila melanogaster functions in programmed cell death. Genes Dev. 9, 1694–1708.

    Article  PubMed  CAS  Google Scholar 

  • Grover, P.L. (1979). In vitro modification of nucleic acids by direct-acting chemical carcinogens. In: Chemical Carcinogenesis and DNA, P.L. Grover, (ed). CRC, Boca Raton. FL. Vol. I, p. 37.

    Google Scholar 

  • Hainaut, P. and Milner, J. (1992). Interaction of heat- shock protein 70 with p53 translated in vitro: evidence for interaction with dimeric p53 and for a role in the regulation of p53 conformation. EMBO J. 11, 3513–3520.

    PubMed  CAS  Google Scholar 

  • Halbert, D.N., Cutt, J.R. and Shenk, T. (1985). Adenovirus early region 4 encodes functions required for efficient DNA replication, late gene expression, and host cell shutoff. J Virol. 56, 250–257.

    PubMed  CAS  Google Scholar 

  • Halliwell, B. and Gutteridge, J.M. (1989). Free Radicals in Biology and Medicine (Clarendon Press, Oxford).

    Google Scholar 

  • Hampton, M.B., Zhivotovsky, B., Slater, A.F., Burgess, D.H. and Orrenius, S. (1998). Importance of the redox state of cytochrome c during caspase activation in cytosolic extracts. Biochem J. 329, 95–99.

    PubMed  CAS  Google Scholar 

  • Hanayama, R., Tanaka, M., Miyasaka, K., Aozasa, K., Koike, M. Uchiyama, Y. and Nagata, S. (2004). Autoimmune disease and impaired uptake of apoptotic cells in MFG-E8-deficient mice. Science. 304, 1147–1150.

    Article  PubMed  CAS  Google Scholar 

  • Harlow, E., Crawford, L.V., Pim, D.C. and Williamson, N.M. (1981). Monoclonal antibodies specific for simian virus 40 tumour antigen. J Virol. 39, 861–869.

    PubMed  CAS  Google Scholar 

  • Harris, C.C., (1996). P53 Tumour suppressor gene: from the basic research to laboratory to the clinican abridged historical perspective. Carcinogenesis 17, 1187–1198.

    Article  PubMed  CAS  Google Scholar 

  • Harris, C.C. and Hollstein, M. (1993). Clinical implications of the p53 tumour-suppressor gene. N Engl J Med. 329, 1318–1327.

    Article  PubMed  CAS  Google Scholar 

  • Harris, S.L. and Levine, A.J. (2005). The p53 pathway: positive and negative feedback loops. Oncogene. 24, 2899–2908.

    Article  PubMed  CAS  Google Scholar 

  • Haupt, Y., Maya, R., Kazaz, A. and Oren, M. (1997). Mdm2 promotes the rapid degradation of p53. Nature. 387, 296–299.

    Article  PubMed  CAS  Google Scholar 

  • Haupt, Y., Rowan, S., Shaulian, E., Vousden, K.H. and Oren, M. (1995). Induction of apoptosis in HeLa cells by transactivation-deficient p53. Genes Dev. 9, 2170–2133.

    Article  PubMed  CAS  Google Scholar 

  • Harvey, D.M. and Levine, A.J. (1991). p53 alteration is a common event in the spontaneous immortalization of primary BALB/c murine embryo fibroblasts. Genes Dev. 5, 2375–85.

    Article  PubMed  CAS  Google Scholar 

  • Havel, A., Durzan, D.J. Strnad, M., Pec, P. and Beck, E. (eds). (1999). Programmed cell death in plant development. In Advances in Regulation of Plant Growth and Development. Peres Publisher, Prague, pp. 119–212.

    Google Scholar 

  • Hawley-Nelson, P., Vousden, K.H., Hubbert, N.L., Lowy, D.R. and Schiller, J.T. (1989). HPV16 E6 and E7 proteins cooperate to immortalize human foreskin keratinocytes. EMBO J. 8,

    Google Scholar 

  • Hay, B.A., Wassarman, D.A. and Rubin, G.M. (1995). Drosophila homologs of baculovirus inhibitor of apoptosis proteins function to block cell death. Cell. 83, 1253–1262.

    Article  PubMed  CAS  Google Scholar 

  • He, X., Zhang, Q., Liu, Y. and He, P. (2005). Apoptin induces chromatin condensation in normal cells. Virus Genes. 31, 49–55.

    Article  PubMed  CAS  Google Scholar 

  • He, J., Tohyama, Y., Yamamoto, K., Kobayashi, M., Shi, Y., Takano, T., Noda, C., Tohyama, K. and Yamamura, H. (2005). Lysosome is a primary organelle in B cell receptor-mediated apoptosis: an indispensable role of Syk in lysosomal function. Genes Cells. 10, 23–35.

    Article  PubMed  CAS  Google Scholar 

  • Hedgecock, E.M., Sulston, J.E. and Thomson, J.N. (1983). Mutations affecting programmed cell deaths in the nematode Caenorhabditis elegans. Science 220, 1277–1279.

    CAS  Google Scholar 

  • Helt, A.-M. and Galloway, D.A. (2003). Mechanisms by which DNA tumour virus oncoproteins target the Rb family of pocket proteins. Carcinogenesis 24, 159–169.

    Article  PubMed  CAS  Google Scholar 

  • Hengartner, M.O. (2001). Apoptosis DNA destroyers. Nature. 412, 27–29.

    Article  PubMed  CAS  Google Scholar 

  • Hengartner, M.O., Ellis, R.E. and Horvitz, H.R. (1992). Caenorhabditis elegans gene ced-9 protects cells from programmed cell death. Nature 356, 494–499.

    Article  PubMed  CAS  Google Scholar 

  • Hetz, C.A., Hunn, M., Rohas, P., Torres, V., Leyton, L. and Quest, A.F.G. (2002). Caspase-dependent initiation of apoptosis and necrosis by the Fas receptor in lymphoid cells: onset of necrosis is associated with delayed ceramide increase. J Cell Sci. 115, 4671–4683.

    Article  PubMed  CAS  Google Scholar 

  • Hewish, D.R. and Burgoyne, L.A. (1973). Chromatin sub-structure. The digestion of chromatin DNA at regularly spaced sites by a nuclear deoxyribonuclease. Biochem Biophys Res Comm. 52, 504–510.

    Article  PubMed  CAS  Google Scholar 

  • Higami, Y., To, K., Ohtani, H., Masui, K., Iwasaki, K., Shiokawa, D. Tanuma, S. and Shimokawa, I. (2003). Involvement of DNase g in apoptotic DNA fragmentation in histiocytic necrotizing lymphadenitis. Virchows Arch. 443, 170–174.

    Article  PubMed  CAS  Google Scholar 

  • Hilt, W. and Wolf, D. H. (1996). Proteasomes: destruction as a programme. Trends Biochem Sci. 21, 96–102

    PubMed  CAS  Google Scholar 

  • Hinds, P.W., Finlay. C.A., Frey, A.B. and Levine, A.J. (1987). Immunological evidence for the association of p53 with a heat shock protein, hsc70, in p53-plus-ras-transformed cell lines. Mol Cell Biol. 7, 2863–2869.

    PubMed  CAS  Google Scholar 

  • Hirao, A., Kong, Y.Y., Matsuoka, S., Wakeham, A., Ruland, J., Yoshida, H., Liu, D., Elledge, S.J. and Mak, T.W. (2000). DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science. 287, 1824–1827.

    Article  PubMed  CAS  Google Scholar 

  • Hockenbery, D.M., Oltvai, Z.N., Yin, X.-M., Milliman, C.L. and Korsmeyer, S.J. (1993). Bcl-2 functions in an anti-oxidant pathway. Cell 75, 241–251.

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann, H., Högel, J. and Speit, G. (2005). The effect of smoking on DNA effects in the comet assay: a meta-analysis. Mutagenesis. 20, 455–466.

    Article  PubMed  CAS  Google Scholar 

  • Hofmann, K., Bucher, P. and Tschopp, J. (1997). The CARD domain – a new apoptotic signalling motif. Trends Biochem Sci. 22, 155–156.

    Article  PubMed  CAS  Google Scholar 

  • Holler, N., Zaru, R., Micheau, O., Thome, M., Attinger, A., Valitutti, S., Bodmer, J.L., Schneider, P., Seed, B. and Tschopp, J. (2000). Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol. 1, 489–495.

    Article  PubMed  CAS  Google Scholar 

  • Hollstein, M., Rice, K., Greenblatt, M.S., Soussi, T., Fuchs, R., Sorlie, T., Hovig, E., Smith-Sorensen, B., Montesano, R. and Harris, C.C. (1994). Database of p53 gene somatic mutations in human tumours and cell lines. Nucleic Acids Res. 22, 3551–3555.

    PubMed  CAS  Google Scholar 

  • Hong, M.Y., Chapkin, R.S., Wild, C.P., Morris, J.S., Wang, N., Carroll, R.J., Turner, N.D. and Lupton, J.R. (1999). Relationship between DNA adduct levels, repair enzyme, and apoptosis as a function of DNA methylation by azoxymethane. Cell Growth Differ. 10, 749–758.

    PubMed  CAS  Google Scholar 

  • Horvitz, H.R., Ellis, H.M. and Sternberg, P.W. (1982). Programmed cell death in nematode development. Neurosci Comment. 1, 56–65.

    Google Scholar 

  • Hotchkiss, R.S., Swanson, P.E., Knudson, C.M., Chang, K.C., Cobb, J.P., Osborne, D.F., Zollner, K.M., Buchman, T.G., Korsmeyer, S.J. and Karl, I.E. (1999). Overexpression of Bcl-2 in transgenic mice decreases apoptosis and improves survival in sepsis. J Immunol. 162, 4148–4156.

    PubMed  CAS  Google Scholar 

  • Huang, X., Tran, T., Zhang, L., Hatcher, R. and Zhang, P. (2005). DNA damage-induced mitotic catastrophe is mediated by the Chk1-dependent mitotic exit DNA damage checkpoint. Proc Natl Acad Sci. USA 102, 1065–1070.

    Article  PubMed  CAS  Google Scholar 

  • Hughes, F.M. Jr., Cidlowski, J.A. (1997). Utilization of an in vitro apoptosis assay to evaluate chromatin degradation by candidate apoptotic nucleases. Cell Death Differ. 4, 200–208.

    Article  PubMed  CAS  Google Scholar 

  • Hughes, F.M.JR1., Evans-Storms, R.B. and Cidlowski, J.A. (1998). Evidence that non-caspase proteases are required for chromatin degradation during apoptosis. Cell Death Differ. 5, 1017–1027.

    Google Scholar 

  • Hwang, B.J., Ford, J.M., Hanawalt, P.C. and Chu, G. (1999). Expression of the p48 xeroderma pigmentosum gene is p53-dependent and is involved in global genomic repair. Proc Natl Acad Sci USA 96, 424–428.

    Article  PubMed  CAS  Google Scholar 

  • Irmler, M., Hofmann, K., Vaux, D.L. and Tschopp, J. (1997). Direct physical interaction between the Caenorhabditis elegans death proteins CED-3 and CED-4. FEBS Lett. 406, 189–190.

    Article  PubMed  CAS  Google Scholar 

  • Isaacs, J.S., Hardman, R., Carman, T.A., Barrett, J.C. and Weissman, B.E. (1998). Differential subcellular p53 localization and function in N- and S-type neuroblastoma cell lines. Cell Growth Differ. 9, 545–555.

    PubMed  CAS  Google Scholar 

  • Itoh, N., Yonehara, S., Ishii, A., Yonehara, M., Mizushima, S., Sameshima, M., Hase, A., Seto, Y. and Nagata, S. (1991). The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell. 66, 233–243.

    Article  PubMed  CAS  Google Scholar 

  • Jacobs-Helber, S.M., Wickrema, A., Birrer, M.J. and Sawyer, S.T. (1998). AP1 regulation of proliferation and initiation of apoptosis in erythropoietin-dependent erythroid cells. Mol Cell Biol. 18, 3699–3707.

    PubMed  CAS  Google Scholar 

  • Jacobson, M.D., Burne, J.F., King, M.P., Miyashita, T., Reed, J.C. and Raff, M.C. (1993). Bcl-2 blocks apoptosis in cells lacking mitochondrial DNA. Nature. 361, 365–369.

    Article  PubMed  CAS  Google Scholar 

  • Jacobson, M.D., Weil, M. and Raff, M.C. (1996). Role of Ced-3/ICE-family of proteases in staurosporine-induced programmed cell death. J Cell Biol. 133, 1041–1051.

    Article  CAS  Google Scholar 

  • Jacobson, M.D., Weil, M. and Raff, MC. (1997). Programmed cell death in animal development. Cell.88, 347–54. Review.

    Article  PubMed  CAS  Google Scholar 

  • James, C., Gschmeissner, S., Fraser, A. and Evan, G.I. (1997). CED-4 induces chromatin condensation in Schizosaccharomyces pombe and is inhibited bydirect physical association with CED-9. Curr Biol. 7, 246–252.

    Article  PubMed  CAS  Google Scholar 

  • Jentsch, S. (1992). Ubiquitin-dependent protein degradation: a cellular perspective. Trends Cell Biol. 2, 93–103.

    Article  Google Scholar 

  • Jenuwein, T. and Allis, C.D. (2001). Translating the “histone code”. Science 293, 1074–1080.

    Article  PubMed  CAS  Google Scholar 

  • Jimenez, B., Volpert, O.V., Crawford, S.E., Febbraio, M., Silberstein, R.L. and Bouck, N. (2000). Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1. Nature Med. 6, 41–48.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, N.L., Gardner, A.M., Diener, KM., Lange-Carter, C.A., Gleavy, J., Jarpe, M.B., Minden, A., Karin, M., Zon, L.I. and Johnson, G.L. (1996). Signal transduction pathways regulated by mitogen-activated/extracellular response kinase kinase kinase induce cell death. J Biol Chem. 271, 3229–3237.

    Article  PubMed  CAS  Google Scholar 

  • Kagi, D., Ledermann, B., Burki, K., Seiler, P., Odermatt, B., Olsen, K.J., Podack, E.R., Zinkernagel, R.M. and Hengartner, H. (1994). Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature. 369, 1–37.

    Article  Google Scholar 

  • Kanai, Y. (2003). The role of non-chromosomal histones in the host defense system. Microbiol Immunol. 47, 553–556.

    PubMed  CAS  Google Scholar 

  • Kane, D.J., Sarafin, T.A., Anton, R., Hahn, H., Gralla, E.B., Valentine, J.S., Örd, T. and Bredesen, D.E. (1993). Bcl-2 inhibition of neuronal death: decreased generation of reactive oxygen species. Science. 262, 1274–1277.

    Article  PubMed  CAS  Google Scholar 

  • Karran, P. and Bignami, M. (1999). in DNA Recombination and Repair. Smith, P. J. and Jones, C. J. (eds) (Oxford Univ. Press, New York), pp. 66–159.

    Google Scholar 

  • Kaufmann, S.H. (1989). Induction of endonucleolytic DNA cleavage in human acute myelogenous leukemia cells by etoposide, camptothecin, and other cytotoxic anticancer drugs: a cautionary note. Cancer Res. 49, 5870–5878.

    PubMed  CAS  Google Scholar 

  • Kaufmann, S., Desnoyers, S., Ottaviano, Y., Davidson, N. and Poirier, G.G. (1993). Specific proteolytic cleavage of poly(ADP-ribose)polymerase: an early marker of chemotherapy-induced apoptosis. Cancer Res. 53, 3976–3985.

    PubMed  CAS  Google Scholar 

  • Kelekar, A. and Thompson, C.B. (1998). Bcl-2 family proteins: The role of the BH-3 domain in apoptosis. Trends Cell Biol. 8, 324–330.

    Article  PubMed  CAS  Google Scholar 

  • Kerr, J. (1965). A histochemical study of hypertrophy and ischaemic injury of ratliver with special reference to changes in lysosomes. J Pathol Bacteriol. 90, 419–435.

    Article  PubMed  CAS  Google Scholar 

  • Kerr, J.F.R. (1971). Shrinkage necrosis: a distinct mode of cellular death. J Pathol. 105, 13–20.

    Article  PubMed  CAS  Google Scholar 

  • Kerr, J.F., Wyllie, A.H. and Currie, A.R. (1972). Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 26, 239–257.

    PubMed  CAS  Google Scholar 

  • Kharbanda, S., Pandey, P., Schofield, L., Israels, S., Roncinske, R., Yoshida, K., Bharti, A. Yuan, Z.-M., Saxena, S., Weichselbaum, R., Nalin, C. and Kufe, D. (1997). Role for Bcl-xL as an inhibitor of cytosolic cytochrome c accumulation in DNA damage-induced apoptosis. Proc Natl Acad Sci USA. 94, 6939–6942.

    Article  PubMed  CAS  Google Scholar 

  • Khodarev, N.N. and Ashwell, J.D. (1996). An inducible lymphocyte nuclear Ca2+/Mg2+- dependent endonuclease associated with apoptosis. J Immunol. 156, 922–931.

    PubMed  CAS  Google Scholar 

  • Kihlmark, M., Imreh, G. and Hallberg, E. (2001). Sequential degradation of proteins from the nuclear envelope during apoptosis. J. Cell Sci. 114, 3643–3653.

    PubMed  CAS  Google Scholar 

  • Kim, B.E., Roh, S.R., Kim, J.W., Jeong, S.W. and Kim, I.K. (2003). Cytochrome c-dependent Fas-independent apoptotic pathway in HeLa cells induced by delta12-prostaglandin J2. Exp Mol Med. 35, 290–300.

    PubMed  Google Scholar 

  • Kim, C.N., Wang, X., Huang, Y., Ibrado, A.M., Liu, L., Fang, G. and Bhalla, K. (1997). Overexpression of Bcl-xL inhibits Ara-c-induced mitochondrial loss of cytochrome c and other perturbations that activate the molecular cascade of apoptosis. Cancer Res. 57, 3115–3120.

    PubMed  CAS  Google Scholar 

  • Kitson, J., Raven, T., Jiang, Y.-P., Goeddel, D.V., Giles, K.M., Pun, K.T., Grinham, C.J., Brown, R. and Farrow, S.N. (1996). A death-domain-containing receptor that mediates apoptosis. Nature. 384, 372–375.

    Article  PubMed  CAS  Google Scholar 

  • Klein, J.A., Longo-Guess, C.M., Rossmann, M.P., Seburn, K.L., Hurd, R.E., Frankel, W.N., Bronson, R.T. and Ackerman, S.L. (2002). The harlequin mouse mutation downregulates apoptosis-inducing factor. Nature. 419, 367–374.

    Article  PubMed  CAS  Google Scholar 

  • Kluck, R.M., Bossy-Wetzel, E., Green, D.R. and Newmeyer, D.D. (1997). The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275, 1132–1136,.

    Article  PubMed  CAS  Google Scholar 

  • Kluck, R.M., Martin, S.J., Hoffman, B.M., Zhou, J.S., Green, D.R. and Newmeyer, D.D. (1997). Cytochrome c activation of CPP32-like proteolysis plays a critical role in a Xenopus cell-free apoptosis system. EMBO J. 16, 4639–4649.

    Article  PubMed  CAS  Google Scholar 

  • Koken, M.H.M., Hoogerbrugge, J.M., Jaspers-Dekker, L., De Wit, J., Willemsen, R., Roest, H.P., Grootegoed, J.A. and Hoeijmakers, J.H.J. (1996). Expression of ubiquitin-conjugation DNA repair enzyme HHR6A and B suggests a role in spermatogenesis and chromatin modification. Dev Biol. 173, 119–132.

    Article  PubMed  CAS  Google Scholar 

  • Konat, G.W. (2003). $H2O2$-induced higher order chromatin degradation: A novel mechanism of oxidative genotoxicity. J Biosci. 28, 57–60.

    Article  PubMed  CAS  Google Scholar 

  • Kolter, R. (2007). Deadly priming. Science. 318, 578–579.

    Article  PubMed  CAS  Google Scholar 

  • Koumenis, C., Alarcon, R., Hammond, E., Sutphin, P., Hoffman, W., Murphy, M., Derr, J., Taya, Y., Lowe, S.W., Kastan, M. and Giaccia, A. (2001). Regulation of p53 by hypoxia: dissociation of transcriptional repression and apoptosis from p53-dependent transactivation. Mol Cell Biol. 21, 1297–1310.

    Article  PubMed  CAS  Google Scholar 

  • Kouzarides, T. (2007). Chromatin modifications and their function. Cell 128, 693–705.

    Article  PubMed  CAS  Google Scholar 

  • Kreuder, V., Dieckhoff, J., Sittig, M. and Mannherz, H.G. (1984). Isolation, characterization and crystallization of deoxyribonuclease I from bovine and rat parotid gland and its interaction with rabbit skeletal muscle actin. Eur J Biochem. 139, 389–400.

    Article  PubMed  CAS  Google Scholar 

  • Krieser, R.J. and Eastman, A. (1998). The cloning and expression of human deoxyribonuclease II. A possible role in apoptosis. J Biol Chem. 273, 30909–30914.

    Article  PubMed  CAS  Google Scholar 

  • Kroemer, G. and Martin, S.J. (2005). Caspase-independent cell death. Nat Med. 11, 725–730.

    Article  PubMed  CAS  Google Scholar 

  • Kubbutat, M.H., Jones, S.N. and Vousden, K.H. (1997). Regulation of p53 stability by Mdm2. Nature. 387, 299–303.

    Article  PubMed  CAS  Google Scholar 

  • Lagarkova, M.A., Iarovaia, O.V. and Razin, S.V. (1995). Large scale fragmentation of mammalian DNA in the course of apoptosis procedes via excision of chromosomal DNA loops and their oligomers. J Biol Chem. 270, 20239–20245.

    Article  PubMed  CAS  Google Scholar 

  • Lane, D.P. (1984). Cell immortalization and transformation by the p53 gene. Nature. 312, 596–597.

    Article  PubMed  CAS  Google Scholar 

  • Lane, D.P. (1992). Cancer p53, guardian of the genome. Nature. 358, 15–16.

    Article  PubMed  CAS  Google Scholar 

  • Laster, S.M., Wood, J.G. and Gooding, L.R. (1988). Tumour necrosis factor can induce both apoptotic and necrotic cell lysis. J Immunol. 141, 2629–2634.

    PubMed  CAS  Google Scholar 

  • Lazebnik, Y.A., Takahasi, A., Poirier, G.G., Kaufmann, S.H. and Earnshaw, W.C. (1995). Characterization of the execution phase of apoptosis in vitro using extracts from condemned-phase cells. J Cell Sci Suppl. 19, 41M9.

    Google Scholar 

  • Lee, J.H. and Paull, T.T. (2004). Direct activation of the ATM protein kinase by the Mre11/Rad50/Nbs1 complex. Science. 304, 93–96.

    Article  PubMed  CAS  Google Scholar 

  • Lee, J.H. and Paull, T.T. (2005). ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science. 308, 551–554.

    Article  PubMed  CAS  Google Scholar 

  • Lee, Y. S. Jang, M. S. Lee, J. S. Choi, E. J. and Kim, E. (2005). SUMO-1 represses apoptosis signal-regulating kinase 1 activation through physical interaction and not through covalent modification. EMBO Rep. 6, 949–955.

    Article  PubMed  CAS  Google Scholar 

  • Leist, M. and Jaattela, M. (2001). Four death and a funeral: From caspases to alternative mechanisms. Nat Rev Mol Cell Biol. 2, 589–598.

    Article  PubMed  CAS  Google Scholar 

  • Letai, A., Bassik, M.C., Walensky, L.D., Sorcinelli, M.D., Weiler, S. and Korsmeyer, S.J. (2002). Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell. 2, 183–192.

    Article  PubMed  CAS  Google Scholar 

  • Levine, A.J. (1997). p53, the cellular gatekeeper for growth and division. Cell. 88, 323–331.

    Article  PubMed  CAS  Google Scholar 

  • Li, F., Srinivasan, A., Wang, Y., Armstrong, R.C., Tomaselli, K.J. and Fritz, L.C. (1997). Cell-specific induction of apoptosis by microinjection of cytochrome c. J Biol Chem. 272, 30299–30305.

    Article  PubMed  CAS  Google Scholar 

  • Li, H., Zhu, H., Xu, C.J. and Yuan, J. (1998). Cleavage of BID by Caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell. 94, 491–501.

    Article  PubMed  CAS  Google Scholar 

  • Li, L.Y., Luo, X. and Wang, X. (2001). Endonuclease G is an apoptotic DNase when released from mitochondria. Nature. 412, 95–99.

    Article  PubMed  CAS  Google Scholar 

  • Liebermann, D.A., Hoffman, B. and Steinman, R.A. (1995). Molecular controls of growth arrest and apoptosis: p53-dependent and independent pathways. Oncogene. 11, 199–210.

    PubMed  CAS  Google Scholar 

  • Liedberg, B., Nylander, C.I. and Lundstrom, L. (1983). Surface plasmon resonance for gas detection and biosensing. Sens Actuators B Chem. 4, 299–304.

    Article  CAS  Google Scholar 

  • Linzer, D.I. and Levin, A.J. (1979). Characterization of a 54K dalton cellular SV40 tumour antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell. 17, 43–52.

    Article  PubMed  CAS  Google Scholar 

  • Lyon, C.J., Evans, C.J., Bill, B.R., Otsuka, A.J. and Aguilera, R.J. (2000). The C. elegans apoptotic nuclease NUC-1 is related in sequence and activity to mammalian DNase II. Gene. 252,

    Google Scholar 

  • Lipton, S.A. and Bossy-Wetzel, E. (2002). Dueling activities of AIF in cell death versus survival: DNA binding and redox activity. Cell. 111, 147–150.

    Article  PubMed  CAS  Google Scholar 

  • Liston, P., Roy, N., Tamai, K., Lefebvre, C., Baird, S., Chertonhorvat, G., Farahani, R., Mclean, M., Ikeda, J.E., Mackenzie, A. and Korneluk, R.G. (1996). Suppression of apoptosis inmammalian cells by NAIP and a related family of IAP genes. Nature 379, 349–353.

    Article  PubMed  CAS  Google Scholar 

  • Liu, X., Li, P., Widlak, P., Zou, H., Luo, X., Garrard, W.T. and Wang, X. (1998). The 40-kDa subunit of DNA fragmentation factor induces DNA fragmentation and chromatin condensation during apoptosis. Proc Natl Acad Sci USA 95, 8461–8466.

    Article  PubMed  CAS  Google Scholar 

  • Liu, X., Kim, C.N., Yang, J., Jemmerson, R. and Wang, X. (1996). Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell. 86, 147–157.

    Article  PubMed  CAS  Google Scholar 

  • Liu, X., Zou, H., Slaughter, C. and Wang, X. (1997). DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell. 89, 175–184.

    Article  PubMed  CAS  Google Scholar 

  • Liu, X., Zou, H., Widlak, P., Garrard, W. and Wang, X. (1999). Activation of the apoptotic endonuclease DFF40 (caspase-activated DNase or nuclease). Oligomerization and direct interaction with histone H1. J Biol Chem. 274, 13836–13840.

    Article  PubMed  CAS  Google Scholar 

  • Lloyd, D.R. and Hanawalt, P.C. (2000). p53-dependent global genomic repair of benzo[a]pyrene-7,8-diol-9,10-epoxide adducts in human cells. Cancer Res. 60, 517–521.

    PubMed  CAS  Google Scholar 

  • Lockshin, R.A. and Williams, C.M. (1964). Programmed cell death. II. Endocrine potentiation of the breakdown of the intersegmental muscles of silkmoths. J Insect Physiol. 10, 643–649.

    Article  CAS  Google Scholar 

  • Lotem, J. and Sachs, L. (1998). Different mechanisms for suppression of apoptosis by cytokines and calcium mobilizing compounds. Proc Natl Acad Sci USA. 95, 4601–4606.

    Google Scholar 

  • Lotem, J. and Sachs, L. (1999). Cytokines as suppressors of apoptosis. Apoptosis 4, 187–196.

    Article  PubMed  CAS  Google Scholar 

  • Lynch, D.H., Ramsdell, F. and Alderson, M.R. (1995). Fas and FasL in thehomeostatic regulation of immune responses. Immunol Today. 16, 569–574.

    Article  PubMed  CAS  Google Scholar 

  • Majno, G., Joris, I. (1995). Apoptosis, oncosis and necrosis: An overview of cell death. Am J Pathol. 146, 3–15.

    PubMed  CAS  Google Scholar 

  • Marsters, S.A., Pitti, R.M., Donahue, C.J., Ruppert, S., Bauer, K.D. and Ashkenazi, A. (1996a). Activation of apoptosis by Apo-2 ligand is independent of FADD but blocked by CrmA. Curr Biol. 6, 750–752.

    Article  CAS  Google Scholar 

  • Marsters, S.A., Sheridan, J.P., Donahue, C.J., Pitti, R.M., Gray, C.L., Goddard, A.D., Bauer, K.D. and Ashkenazi, A. (1996b). Apo-3, a new member of tumour necrosis factor receptor family, contains a death domain and activates apoptosis and NF-kB. Curr Biol. 6, 1669–1676.

    Google Scholar 

  • Marsters, S.A., Sheridan, J.P., Pitti, R.M., Brush, J., Goddard, A. and Ashkenazi, A. (1998). Identification of a ligand for the death-domain containing receptor Apo3. Curr Biol. 8, 525–528.

    Article  PubMed  CAS  Google Scholar 

  • Martinou, I., Desagher, S., Eskes, R., Antonsson, B., Andre, E., Fakan, S. and Martinou, J-C. (1999). The release of cytochrome c from mitochondria during apoptosis of NGF-deprived sympathetic neurons is a reversible event. J Biol Chem. 144, 883–889.

    CAS  Google Scholar 

  • Martins, L.M. and Earnshaw, W.C. (1997). Apoptosis: alive and kicking in 1997. Trends Cell Biol. 7, 111–14.

    Article  CAS  Google Scholar 

  • Matwee, C., Betts, D.H. and King, W.A. (2000). Apoptosis in the early bovine embryo. Zygote. 8, 57–68.

    Article  PubMed  CAS  Google Scholar 

  • Mccarthy, S.A., Symonds, H.S. and Van Dyke, T. (1994). Regulation of apoptosis in transgenic mice by simian virus 40 T antigen-mediated inactivation of p53. Proc Natl Acad Sci USA. 91, 3979–3983.

    Article  PubMed  CAS  Google Scholar 

  • Mccarthy, S. and Ward, W.S. (1999). Functional aspects of mammalian sperm chromatin. Hum Fertil (Camb). 2, 56–60.

    Article  Google Scholar 

  • Metz, T., Harris, A.W. and Adams, J.M. (1995). Absence of p53 allows direct immortalization of hematopoietic cells by the myc and raf oncogenes. Cell. 82, 29–36.

    Article  PubMed  CAS  Google Scholar 

  • Mihara, M., Erster, S., Zaika, A., Petrenko, O., Chittenden, T., Pancoska, P. and Moll, U.M. (2003). p53 has a direct apoptotic role at the mitochondria. Mol Cell. 11, 577–590.

    Article  PubMed  CAS  Google Scholar 

  • Miura, M., Zhu, H., Rotello, R., Hartweige, A. and Yuan, J. (1993). Induction of apoptosis in fibroblasts by IL-1 beta-converting enzyme, a mammalian homolog of the C. elegans cell death gene ced-3. Cell. 75, 653–660.

    Article  PubMed  CAS  Google Scholar 

  • Miura, O., D’andrea, A., Kabat, D. and Ihle, J.N. (1991). Induction of tyrosine phosphorylation by the erythropoietin receptor correlates with mitogenesis. Mol Cell Biol. 11, 4895–4902.

    PubMed  CAS  Google Scholar 

  • Moll, U.M., Riou, G. and Levine, A.J. (1992). Two distinct mechanisms alter p53 in breast cancer: mutation and nuclear exclusion. Proc Natl Acad Sci USA. 89, 7262–7266.

    Article  PubMed  CAS  Google Scholar 

  • Moller, P., Knudsen, L.E., Loft, S. and Wallin, H. (2000). The comet assay as a rapid test in biomonitoring occupational exposure to DNA-damaging agents and effect of confounding factors. Cancer Epidem Biomar Prevent 9, 1005–1015.

    CAS  Google Scholar 

  • Montague, J.W., Hughes, F.M. Jr. and Cidlowski, J.A. (1997). Native recombinant cyclophilins A, B, and C degrade DNA independently of peptidylprolyl cis-trans isomerase activity: Potential roles of cyclophilins in apoptosis. J Biol Chem. 272, 6677–6684.

    Article  PubMed  CAS  Google Scholar 

  • Moore, M., Horikoshi, N. and Shenk, T. (1996). Oncogenic potential of the adenovirus E4orf6 protein. Proc Natl Acad Sci USA. 93, 11295–11301.

    Article  PubMed  CAS  Google Scholar 

  • Moore, R.M., Silver, R.J. and Moore, J.J. (2003). Physiological apoptotic agents have different effects upon human amnion epithelial and mesenchymal cells. Placenta. 24, 173–180.

    Article  PubMed  CAS  Google Scholar 

  • Moos, P.J., Edes, K. and Fitzpatrick, F.A. (2000). Inactivation of wild-type p53 tumour suppressor by electrophilic prostaglandins. Proc Natl Acad Sci USA. 97, 9215–9220.

    Article  PubMed  CAS  Google Scholar 

  • Mora, P.T.K., Chandrashekaran, K., Hoffman, J.C. and Mcfarland, V.W. (1982). Quantitation of 55K cellular protein: similar amount and instability in normal and malignant mouse cells. Mol Cell Biol. 2, 763–771.

    PubMed  CAS  Google Scholar 

  • Motyl, T., Grzelkowska, K., Zimowska, W., Skierski, J., Wareski, P., Płoszaj, T. and Trzeciak, L. (1998). Expression of bcl-2 and bax in TGF-beta 1-induced apoptosis of L1210 leukemic cells. Eur J Cell Biol. 75, 367–74.

    PubMed  CAS  Google Scholar 

  • Muchmore, S.W., Sattler, M., Liang, H., Meadows, R.P., Harlan, J.E., Yoon, H.S., Nettesheim, D., Chang, B.S., Thompson, C.B., Wong, S.L., Ng, S.-C. and Fesik, S.W. (1996). X-ray and NMR structure of human Bcl-x(1), an inhibitor of programmed cell death. Nature 381, 335–341.

    Article  PubMed  CAS  Google Scholar 

  • Mukhopadhyay, T. and Roth, J.A. (1997). Induction of apoptosis in human lung cancer cells after wild-type p53 activation by methoxyestradiol. Oncogene. 14, 379–384.

    Article  PubMed  CAS  Google Scholar 

  • Muzio, M., Chinnaiyan, A.M., Kischkel, F.C., O’rourke, K., Shevchenko, A., Ni, J., Scaffidi, C., Bretz, J.D., Zhang, M., Ni, R.J., Gentz, R., Mann, M., Krammer, P.H., Peter, M.E. and Dixit, V.M. (1996). FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death–inducing signaling complex. Cell. 85, 817–827.

    Article  PubMed  CAS  Google Scholar 

  • Nagata, S. and Golstein, P. (1995). The Fas death factor. Science. 267, 1449–1456.

    Article  PubMed  CAS  Google Scholar 

  • Neame, S.J., Rubin, L.L. and Philpott, K.L. (1998). Blocking cytochrome c activity within intact neurons inhibits apoptosis. J Cell Biol. 142, 1583–1593.

    Article  PubMed  CAS  Google Scholar 

  • Nevels, M., Rubenwolf, S., Spruss, T., Wolf, H. and Dobner, T. (1997.). The adenovirus E4orf6 protein can promote E1A/E1B-induced focus formation by interfering with p53 tumour suppressor function. Proc Natl Acad Sci USA. 94, 1206–1211.

    Article  PubMed  CAS  Google Scholar 

  • Nezis, I.P., Stravopodis, D.J., Papassideri, I., ROBERT-Nicoud, M. and Margaritis, L.H. (2000). Stage-specific apoptotic patterns during Drosophila oogenesis. Eur J Cell Biol. 79, 610–620.

    Article  PubMed  CAS  Google Scholar 

  • Nicholson, D.W. (1996). ICE/CED3-like proteases as therapeutic targets for the control of inappropriate apoptosis. Nat Biotechnol. 14, 297–301. Review.

    Article  PubMed  CAS  Google Scholar 

  • Nicholson, D. W. (1999). Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ. 6, 1028–1042.

    Article  PubMed  CAS  Google Scholar 

  • Nicholson, D.W., Ali, A., Thornberry, N.A., Vaillancourt, J.P., Ding, C.K., Gallant, M., Gareau, Y., Griffin, P.R., Labelle, M., Lazebnik, Y.A., Munday, N.A., Raju, S.M., Smulson, M.E., Yamin, T.-T., Yu, V.L. and Miller, D.K. (1995). Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature. 376, 37–43.

    Article  PubMed  CAS  Google Scholar 

  • Nijhawan, D., Honarpour, N. and Wang, X. (2000). Apoptosis in neural development and disease. Annu Rev Neurosci. 23, 73–87. Review.

    Article  PubMed  CAS  Google Scholar 

  • Nishimura, K., Tsumagari, H., Morioka, A., Yamauchi, Y., Miyashita, K., Lu, S., Jisaka, M., Nagaya, T. and Yokota, K. (2002). Regulation of apoptosis through arachidonate cascade in mammalian cells. Appl Biochem Biotechnol. 102–103, 239–250.

    Google Scholar 

  • Norbury, C.J. and Zhivotovsky, B. (2004). DNA damage-induced apoptosis. Oncogene. 23, 2797–2808.

    Article  PubMed  CAS  Google Scholar 

  • Nurse, P. (1990). Universal control mechanism regulating onset of M-phase. Nature. 344, 503–508.

    Article  PubMed  CAS  Google Scholar 

  • Oberhammer, F., Fritsch, G., Schmied, M., Pavelka, M., Printz, D., Purchio, T., Lassmann, H. and Schulte-Hermann, R. (1993). Condensation of the chromatin at the nuclear membrane o fan apoptotic nucleus is not associated with activation o fan endonuclease. J Cell Sci. 104, 317–326.

    PubMed  CAS  Google Scholar 

  • Oberhammer, F., Wilson, J.W., Dive, C., Morris, I.D., Hickman, J.A., Wakeling, A.E., Walker, P.R. and Sikorska, M. (1993). Apoptotic death in epithelial cells: cleavage of DNA to 300 and/or 50 kb fragments prior to or in the absence of internucleosomal fragmentation; EMBO J. 12, 3679–3684.

    PubMed  CAS  Google Scholar 

  • Odake, S., Kam, C.M., Narasimhan, L., Poe, M., Blake, J.T., Krahenbuhl, O., Tschopp, J. and Powers, J.C. (1991). Human and murine cytotoxic T lymphocyte serine proteases: subsite mapping with peptide thioester substrates and inhibition of enzyme activity and cytolysis by isocoumarins. Biochemistry 30, 2217–2227.

    Article  PubMed  CAS  Google Scholar 

  • Offer, H., Zurer, I., Bánfalvi, G., Rehak, M., Falcovitz, A., Milyavsky, M., Goldfinger, N. and Rotter, V. (2001). p53 modulates base excision activity in a cell cycle-specific manner after genotoxic stress. Cancer Res. 61, 88–96.

    PubMed  CAS  Google Scholar 

  • Ogawara, Y., Kishishita, S., Obata, T., Isazawa, Y., Suzuki, T., Tanaka, K., Masuyama, N. and Gotoh, Y. (2002). Akt enhances Mdm2-mediated ubiquitination and degradation of p53. J Biol Chem. 277, 21843–21850.

    Article  PubMed  CAS  Google Scholar 

  • Okuno, S., Shimizu, S., Ito, T., Nomura, M., Hamada, E., Tsujimoto, Y. and Matsuda, H. (1998). Bcl-2 prevents caspase-independent cell death. J Biol Chem. 273, 34272–34277.

    Article  PubMed  CAS  Google Scholar 

  • Oliverio, S., Amendola, A., DI Sano, F., Farrace, M.G., Fesus, L., Nemes, Z., Piredda, L., Spinedi, A. and Piacentini, M. (1997). Tissue transglutaminase-dependent posttranslational modification of the retinoblastoma gene product in promonocytic cells undergoing apoptosis. Mol Cell Biol. 17, 6040–6048.

    PubMed  CAS  Google Scholar 

  • Oltvai, Z.N., Milliman, C.L. and Korsmeyer, S.J. (1993). Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell. 74, 609–619.

    Article  PubMed  CAS  Google Scholar 

  • Opitz, O.G., Suliman, Y., Hahn, W.C., Harada, H., Blum, H.E., Rustgi, A.K. (2001). Cyclin D1 overexpression and p53 inactivation immortalize primary oral keratinocytes by a telomerase-independent mechanism. J Clin Invest. 108, 725–732.

    PubMed  CAS  Google Scholar 

  • Oppermann, M., Geilen, C.C., Fecker, L.F., Gillissen, B., Daniel, P.T. and Eberle, J. (2005). Caspase-independent induction of apoptosis in human melanoma cells by the proapoptotic Bcl-2-related protein Nbk / Bik. Oncogene.24, 7369–7380.

    Article  PubMed  CAS  Google Scholar 

  • Oren, M., Maltzman, W. and Levine, A.J. (1981). Post-translational regulation of the 54K cellular tumour antigen in normal and transformed cells. Mol Cell Biol. 1, 101–110.

    PubMed  CAS  Google Scholar 

  • Oren, M. and Rotter, V.(1999). Introduction: p53 – the first twenty years. Cell Mol Life Sci. 55, 9–11.

    Article  PubMed  CAS  Google Scholar 

  • Ottilie, S., Wang, Y., Banks, S., Chang, J., Vigna, N.J., Weeks, S., Armstrong, R.C., Fritz, L.C. and Oltersdorf, T. (1997). Mutational analysis of the interacting cell death regulators CED-9 and CED-4. Cell Death Differ. 4, 526–533.

    Article  PubMed  CAS  Google Scholar 

  • Pandey, S., Smith, B., Walker, P.R. and Sikorska, M. (2000). Caspase-dependent and independent cell death in rat hepatoma 5123tc cells. Apoptosis.5, 265–75.

    Article  PubMed  CAS  Google Scholar 

  • Pandey, S., Walker, P.R. and Sikorska, M. (1994). Separate pools of endonuclease activity are responsible for internucleosomal and high molecular mass DNA fragmentation during apoptosis. Biochem Cell Biol. 72, 625–629.

    Article  PubMed  CAS  Google Scholar 

  • Pandey, S., Walker, P.R. and Sikorska, M. (1997). Identification of a novel 97 kDa endonuclease capable of internucleosomal DNA cleavage. Biochem. 36, 711–720.

    Article  CAS  Google Scholar 

  • Parant, J.M. and Lozano, G. (2003). Disrupting TP53 in mouse models of human cancers. Hum Mutat. 21, 321–326.

    Article  PubMed  CAS  Google Scholar 

  • Parrish, J., Li, L., Klotz, K., Ledwich, D., Wang, X. and Xue, D. (2001). Mitochondrial endonuclease G is important for apoptosis in C. elegans. Nature 412, 90–94.

    Article  PubMed  CAS  Google Scholar 

  • Peitsch, M.C., Polzar, B., Stephan, H., Crompton, T., Macdonald, H.R., Mannherz, H.G. and Tschoop, J. (1993). Characterization of the endogenous deoxyribonuclease involved in nuclear DNA degradation during apoptosis (programmed cell death). EMBO J. 12, 371–377.

    PubMed  CAS  Google Scholar 

  • Peitsch, M.C., Polzar, B., Tschopp, J. and Mannherz, H.G. (1994). About the involvement of deoxyribonuclease I in apoptosis. Cell Death Differ. 1, 1–6.

    PubMed  CAS  Google Scholar 

  • Peter, M., Nakagawa, J., Doree, M., Labbe, C. and Nigg, E.A. (1990). In vitro disassembly of nuclear lamina by cdc2 kinase. Cell. 61, 591–602.

    Article  PubMed  CAS  Google Scholar 

  • Petit, P.X., Lecoeur, H., Zorn, E., Dauguet, C., Mignotte, B. and Gougeon, M.-L. (1995). Alterations in mitochondrial structure and function are early events of dexamethasone-induced thymocyte apoptosis. J Cell Biol. 130, 157–167.

    Article  PubMed  CAS  Google Scholar 

  • Petit, P.X., Susin, S-A., Zamzami, N., Mignotte, B. and Kroemer, G. (1996). Mitochondria and programmed cell death: back to the future. FEBS Lett. 396, 7–13.

    Article  PubMed  CAS  Google Scholar 

  • Philpott, K.L., Mccarthy, M.J., Becker, D., Gatchalian, C. and Rubin, L.L. (1996). Morphological and biochemical changes in neurons: apoptosis versus mitosis. Eur J Neurosci. 8(9), 1906–15.

    Article  PubMed  CAS  Google Scholar 

  • Pilder, S., Moore, M., Logan, J. and Shenk, T. (1986). The adenovirus E1B-55K transforming polypeptide modulates transport or cytoplasmic stabilization of viral and host cell mRNAs. Mol Cell Biol. 6, 470–476

    PubMed  CAS  Google Scholar 

  • Pitti, R.M., Marsters, S.A., Ruppert, S., Donahue, C.J., Moore, A. and Ashkenazi, A. (1996). Induction of apoptosis by Apo-2 ligand, a new member of the tumour necrosis factor cytokine family. J Biol Chem. 271, 12687–12690.

    Article  PubMed  CAS  Google Scholar 

  • Plymale, D.R., Tang, D.S., Comardelle, A.M., Fermin, C.D., Lewis, D.E. and Garry, R.F. (1999). Both necrosis and apoptosis contribute to HIV-1-induced killing of CD4 cells. AIDS. 13, 1827–1839.

    Article  PubMed  CAS  Google Scholar 

  • Poe, M., Blake, J.T., Boulton, D.A., Gammon, M., Sigal, N.H., Wu, J.K. and Zweerink, H.J. (1991). Human cytotoxic lymphocyte granzyme B. Its purification from granules and the characterization of substrate and inhibitor specificity. J Biol Chem. 266, 98–103.

    PubMed  CAS  Google Scholar 

  • Polyak, K., Xia, Y., Zweier, J.L., Kinzler, K.W. and Vogestein, B. (1997). A model for p53-induced apoptosis. Nature. 389, 300–305.

    Article  PubMed  CAS  Google Scholar 

  • Polzar, B., Zanotti, S., Stephan, H., Rauch, E., Peitsch, M.C., Irlmer, M., Tschopp, J. and Mannherz, H.G. (1994). Distribution of deoxyribonuclease I in rat tissues and its correlation to cellular turnover and apoptosis (programmed cell death). Eur J Cell Biol. 64, 200–210.

    PubMed  CAS  Google Scholar 

  • Portis, T., Grossman, W.J., Harding, J.C., Hess, J.L. and Ratner, L. (2001). Analysis of p53 inactivation in a human T-cell leukemia virus type 1 Tax transgenic mouse model. J Virol. 75, 2185–2193.

    Article  PubMed  CAS  Google Scholar 

  • Punyiczki, M. and Fésüs, L. (1998). Heat shock and apoptosis. The two defense systems of the organism may have overlapping molecular elements. Ann N Y Acad Sci. 85, 67–74. Review.

    Article  Google Scholar 

  • Puthalakath, H., Huang, D.C., O’reilly, L.A., King, S.M. and Strasser, A. (1999). The proapoptotic activity of the Bcl-2 family member Bim is regulated by interaction with the dynein motor complex. Mol Cell. 3, 287–296.

    Article  PubMed  CAS  Google Scholar 

  • Querido, E.R., Marcellus, C., Lai, A., Charbonneau, R., Teodoro, J.G., Ketner, G. and Branton, P.E. (1997). Regulation of p53 levels by the E1B 55-kilodalton protein and E4orf6 in adenovirus-infected cells. J Virol. 71, 3788–3798.

    PubMed  CAS  Google Scholar 

  • Rabbani, A., Finn, R.M., Ausió, J. (2005). The anthracycline antibiotics: antitumor drugs that alter chromatin structure. BioEssays. 27, 50–56.

    Article  PubMed  CAS  Google Scholar 

  • Rathmell, J.C. and Thompson, C.B. (1999). The central effectors of cell death in the immune system. Annu Rev Immunol. 17, 781–828.

    Article  PubMed  CAS  Google Scholar 

  • Reed, J.C. (1997). Cytochrome c: can’t live with it—can’t live without it. Cell. 91, 559–562.

    Article  PubMed  CAS  Google Scholar 

  • Rehak, M., Csuka, I., Szepessy, E. and Bánfalvi, G. (2000). Subphases of DNA replication in Drosophila cells. DNA Cell Biol. 19, 607–612.

    Article  CAS  Google Scholar 

  • Rhim, J.A., Connor, W., Dixon, G.H., Harendza, C.J., Evenson, D.P., Palmiter, R.D. and Brinster, R.L. (1995). Expression of an avian protamine in transgenic mice disrupts chromatin structure in spermatozoa. Biol Reprod. 52, 20–32.

    Article  PubMed  CAS  Google Scholar 

  • Roest, H.P., Van Klaveren, J., De Wit, J., Van Gurp, C.G., Koken, M.H.M., Vermey, M., Van Roijen, J.H., Hoogerbrugge, W., Vreeburg, J.T.M., Baarends, W.M., Bootsma, D., Grootegoed, J.A. and J. H. J. Hoeijmakers, J.H.J. (1996). Inactivation of the HR6B ubiquitin-conjugating DNA repair enzyme in mice causes male sterility associated with chromatin modification cell. 86, 799–810.

    Google Scholar 

  • Rothe, M., Pan, M.G., Henzel, W.J., Ayres, T.M. and Goeddel, D.V. (1995). The TNFR2-TRAF signaling complex contains two novel proteins related to baculoviral inhibitor of apoptosis proteins. Cell. 83, 1243–1252.

    Article  PubMed  CAS  Google Scholar 

  • Roth, J., Dobbelstein, M., Freedman, D.A., Shenk, T. and Levine, A.J. (1998). Nucleo-cytoplasmic shuttling of the hdm2 oncoprotein regulates the levels of the p53 protein via a pathway used by the human immunodeficiency virus rev protein. EMBO J. 17, 554–564.

    Article  PubMed  CAS  Google Scholar 

  • Roth, J., König, C., Wienzek, S., Weigel, S., Ristea, S. and Dobbelstein, M. (1998). Inactivation of p53 but not p73 by adenovirus type 5 E1B 55-kilodalton and E4 34-kilodalton oncoproteins. J Virol. 72, 8510–8516.

    PubMed  CAS  Google Scholar 

  • Rössler, U., Hornhardt, S., Seidl, C., Müller-Laue, E., Walsh, L., Panzer, W., Schmid, E., Senekowitsch-Schmidtke, R. and Gomolka, M. (2006). The sensitivity of the alkaline comet assay in detecting DNA lesions induced by X rays, gamma rays and alpha particles. Radiat Prot Dosimetry. 122, 154–159.

    Article  PubMed  CAS  Google Scholar 

  • Rotter, V. (1983). p53, a transformation-related cellular-encoded protein, can be used as a biochemical marker for the detection of primary mouse tumour cells. Proc Natl Acad Sci USA. 80, 2613–2617.

    Article  PubMed  CAS  Google Scholar 

  • Rotter, V., Wolf, D. and Nicolson, G.L. (1984). The expression of transformation-related protein p53 and p53-containing mRNA in murine RAW117 large cell lymphoma cells of differing metastatic potential. Clin Exp Metastasis. 2, 199–204.

    Article  PubMed  CAS  Google Scholar 

  • Roy, N., Mahadevan, M.S., Mclean, M., Shutler, G., Yaraghi, Z., Farahani, R., Baird, S.,Besnerjohnston, A., Lefebvre, C., Kang, X.L., Salih, M., Aubry, H., Tamai, K., Guan, X.P., Ioannou, P., Crawford, T.O., Dejong, P.J., Surh, L., Ikeda, J.E., Korneluk, R.G. and Mackenzie, A.(1995). Thegene for neuronal apoptosis inhibitory protein is partially deleted in individuals with spinal muscular atrophy. Cell. 80, 167–178.

    Article  PubMed  CAS  Google Scholar 

  • Ruttan, C.C. and Glickman, B.W. (2002). Coding variants in human double-strand break DNA repair genes. Mutat Res. 509, 175–200.

    PubMed  CAS  Google Scholar 

  • Salvesen, G.S. and Dixit, V.M. (1997). Caspases: intracellular signaling by proteolysis. Cell. 91, 443–446.

    Article  PubMed  CAS  Google Scholar 

  • Sarafin, T.A. and Bredesen, D.E. (1994). Is apoptosis mediated by reactive oxygen species? Free Radical Res. 21, 1–8.

    Article  Google Scholar 

  • Sarnow, P., Ho, Y.S., Williams, J. and Levine, A.J. (1982). Adenovirus E1b-58kd tumour antigen and SV40 large tumour antigen are physically associated with the same 54 kd cellular protein in transformed cells. Cell. 28, 387–394.

    Article  PubMed  CAS  Google Scholar 

  • Sastre, J., Borrás, C., GARCIA-Sala, D., Lloret, A., Pallardo, F.V. and Vina, J. (2002). Mitochondrial damage in aging and apoptosis. Ann N Y Acad Sci. 959, 448–451.

    Article  PubMed  CAS  Google Scholar 

  • Sattler, M., Liang, H., Nettesheim, D., Meadows, R.P., Harlan, J.E., Eberstadt, M., Yoon, H.S., Shuker, S.B., Chang, B.S., Minn, A.J., Thompson, C.B., Fesik, S.W. (1997). Structure of Bcl-x(l)-Bak peptide complex recognition between regulators of apoptosis. Science. 275, 983–986.

    Article  PubMed  CAS  Google Scholar 

  • Sauter, B., Albert, M.L., Francisco, L., Larsson, M., Somersan, S. and Bhardwaj, N. (2000). Consequences of cell death: exposure to necrotic tumour cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells. J Exp Med. 191, 423–433.

    Article  PubMed  CAS  Google Scholar 

  • Scaffidi, C., Fulda, S., Srinivasan, A., Friesen, C., Li, F., Tomaselli, K.J., Debatin, K.M., Krammer, P.H. and Peter, M.E. (1998). Two CD95 (APO-1/Fas) signaling pathways. EMBO J. 17, 1675–1687.

    Article  PubMed  CAS  Google Scholar 

  • Scheffner, M., Werness, B.A., Huibregtse, J.M., Levine, A.J. and Howley, P.M. (1990). The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell. 63, 1129–1136.

    Article  PubMed  CAS  Google Scholar 

  • Schou, K.B., Schneider, L., Christensen, S.T. and Hoffmann, E.K. (2007). Early-stage apoptosis is associated with DNA-damage-independent ATM phosphorylation and chromatin decondensation in NIH3T3 fibroblasts. Cell Biol Int. 2007 Sep 7; [Epub ahead of print].

    Google Scholar 

  • Schwartz, L.M., Smith, S.W., Jones, M.E.E. and Osborne, B.A. (1993). Do All programmed cell deaths occur via apoptosis? Proc Natl Acad Sci USA. 90, 980–984.

    Article  PubMed  CAS  Google Scholar 

  • Schwartzman, R.A. and Cidlowski, J.A. (1993). Mechanism of tissue-specific induction of internucleosomal deoxyribonucleic acid cleavage activity and apoptosis by glucocorticoids. Endocrinology 133, 591–599.

    Article  PubMed  CAS  Google Scholar 

  • Shaman, J.A., Prisztoka, R., Ward, S.W. (2006). Topoisomerase IIB and an extracellular nuclease interact to digest sperm DNA in an apoptotic-like manner. Biol Reprod. 75, 741-748.

    Article  PubMed  CAS  Google Scholar 

  • Shapiro, H.M. (2003). Practical flow cytometry 4th edn. (Hoboken, Wiley-Liss).

    Google Scholar 

  • Shiokawa, D., Ohyama, H., Yamada, T., Takahashi, K. and Tanuma, S-I. (1994). Identification of an endonuclease responsible for apoptosis in rat thymocytes. Eur J Biochem. 226, 23–30.

    Article  PubMed  CAS  Google Scholar 

  • Seshagiri, S. and Miller, L.K. (1997). Caenorhabditis elegans CED-4 stimulates CED-3 processing and CED-3-induced apoptosis. Curr Biol. 7, 455–460.

    Article  PubMed  CAS  Google Scholar 

  • Sherman, M.A., Powell, D.R. and Brown, M.A. (2002). IL-4 induces the proteolytic processing of mast cell STAT6. J Immunol. 169, 3811–3818.

    PubMed  CAS  Google Scholar 

  • Sigal, A. and Rotter, V. (2000). Oncogenic mutations of the p53 tumour suppressor: the demons of the guardian of the genome. Cancer Res. 60, 6788–6793.

    PubMed  CAS  Google Scholar 

  • Smith, C.A., Farrah, T. and Goodwin, R.G. (1994). The TNF receptor superfamily of cellular and viral proteins: activation, costimulation, and death. Cell. 76, 959–962.

    Article  PubMed  CAS  Google Scholar 

  • Spector, M.S., Desnoyers, S., Hoeppner, D.J. and Hengartner, M.O. (1997). Interaction between the C. elegans cell-death regulators CED-9 and CED-4. Nature 385, 6553–656.

    Article  Google Scholar 

  • Sperandio, S., D.E. Belle, I. and Bredesen, D.E. (2000). An alternative, nonapoptotic form of programmed cell death. Proc Natl Acad Sci USA. 97, 14376–14381.

    Article  PubMed  CAS  Google Scholar 

  • Šrám, R.J., Podrazilová, K., Dejmek, D., Mračková, G. and Pilčìk, T. (1998). Single cell gel electrophoresis assay: sensitivity of peripheral white blood cells in human population studies. Mutagenesis. 13, 99–103.

    PubMed  Google Scholar 

  • Srinivasula, S.M., Hegder, S., Aleh, A., Datta, P., Shiozaki, E., Chai, J.J., Lee, R.A., Robbins, P.D., Fernandes-Alnemri, T., Shi, Y.G. and Alnemri, E.S. (2001). A conserved XIAPinteractionmotif in caspase-9 and Smac/DIABLOregulates caspase activity and apoptosis. Nature 410, 112–116.

    Article  PubMed  CAS  Google Scholar 

  • Steegenga, W.T., Riteco, N., Jochemsen, A.G., Fallaux, F.J. and Bos, J.L. (1998). The large E1B protein together with the E4orf6 protein target p53 for active degradation in adenovirus infected cells. Oncogene. 16, 349–357.

    Article  PubMed  CAS  Google Scholar 

  • Strahl, B.D. and Allis, C.D. (2000). The language of covalent histone modifications. Nature. 403, 41–45.

    Article  PubMed  CAS  Google Scholar 

  • Strasser, A., Whittingham, S., Vaux, D.L., Bath, M.L., Adams, J.M., Cory, S. and Harris, A.W. (1991). Enforced BCL2 expression in B-lymphoid cells prolongs antibody responses and elicits autoimmune disease. Proc Natl Acad Sci USA. 88, 8661–8665.

    Article  PubMed  CAS  Google Scholar 

  • Suda, T., Takahashi, T., Golstein, P. and Nagata, S. (1993). Molecular cloning and expression of the Fas ligand, a novel member of the tumour necrosis factor family. Cell. 75, 1169–1178.

    Article  PubMed  CAS  Google Scholar 

  • Sugito, K., Yamane, M., Hattori, H., Hayashi, Y., Tohnai, I., Ueda, M., Tsuchida, N. and Ohtsuka, K. (1995). Interaction between hsp70 and hsp40, eukaryotic homologues of DnaK and DnaJ, in human cells expressing mutant-type p53. FEBS Lett. 358, 161–164.

    Article  PubMed  CAS  Google Scholar 

  • Sulston, J.E. (1976). Post-embryonic development in the ventral cord of Caenorhabditis elegans. Philosoph Trans Roy Soc Lond. Series B: Biol Sci. 275, 287–297.

    Article  CAS  Google Scholar 

  • Sun, X.M., Snowden, R.T., Dinsdale, D., Ormerod, M.G. and Cohen, G.M. (1993). Changes in nuclear chromatin precede internucleosomal DNA cleavage in the induction of apoptosis by etoposide. Biochem Pharmacol. 2, 187–195.

    Google Scholar 

  • Susin, S.A., Daugas, E., Ravagnan, L., Samejima, K., Zamzami, N., Loeffler, M., Costantini, P., Ferri, K.F., Irinopoulou, T., Prevost, M.C., Brothers, G., Mak, T.W., Penninger, J., Earnshaw, W.C. and Kroemer, G. (2000). Two distinct pathways leading to nuclear apoptosis. J Exp Med. 192, 571–580.

    Article  PubMed  CAS  Google Scholar 

  • Susin, S.A., Zamzami, N., Castedo, M., Hirsch, T., Marchetti, P., Macho, A., Daugas, E., Geuskens, M. and Kroemer, G. (1996). Bcl-2 inhibits the mitochondrial release of an apoptogenic protease. J Exp Med. 184, 1331–1341.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, H., Tomida, A. and Tsuruo, T. (2001). Dephosphorylated hypoxia-inducible factor 1alpha as a mediator of p53-dependent apoptosis during hypoxia. Oncogene. 20, 5779–5788.

    Article  PubMed  CAS  Google Scholar 

  • Szepessy, E., Nagy, G., Jenei Z., Serfozo, Z., Csuka, I., James, J. and Bánfalvi, G. (2003). Multiple subphases of DNA repair and poly(ADP-ribose) synthesis in Chinese hamster ovary (CHO-K1) cells. Eur J Cell Biol. 82, 201–207.

    Article  PubMed  CAS  Google Scholar 

  • Szondy, Z., Reichert, U., Bernardon, J.M., Michel, S., Tòth, R., Ancian, P., Ajzner, E. and Fesus, L. (1997). Induction of apoptosis by retinoids and retinoic acid receptor gamma-selective compounds in mouse thymocytes through a novel apoptosis pathway. Mol Pharmacol. 51, 972–982.

    PubMed  CAS  Google Scholar 

  • Tamm, I., Wang, Y., Sausville, E., Scudiero, D.A., Vigna, N., Oltersdorf, T. and Reed, J.C. (1998). IAP-family protein survivin inhibits caspase activity and apoptosis induced by Fas (CD95), Bax, caspases, and anticancer drugs. Cancer Res. 58, 5315–5320.

    PubMed  CAS  Google Scholar 

  • Tang, D. and Kidd, V.J. (1998). Cleavage of DFF-45/ICAD by multiple caspases is essential for its function during apoptosis. Biochem. J. 273, 28549–52.

    CAS  Google Scholar 

  • Tang, J.Y., Hwang, B.J., Ford, J.M., Hanawalt, P.C., Chu, G. (2000). Xeroderma pigmentosum p48 gene enhances global genomic repair and suppresses UV-induced mutagenesis. Mol Cell. 5, 737–744.

    Article  PubMed  CAS  Google Scholar 

  • Tarachand, U. and D’souza, S.J. (1999). Apoptosis of rat decidual cells: site specific initiation and related biochemical changes. Ind J Exp Biol 37, 758–761.

    CAS  Google Scholar 

  • Tata, J.R. (1966). Requirement for RNA and protein synthesis for induced regression of the tadpole tail in organ culture. Dev Biol 13, 77–94.

    Article  PubMed  CAS  Google Scholar 

  • Tewari, M. and Dixit, V.M. (1995). Fas- and tumour necrosis factor-induced apoptosis is inhibited by the poxvirus crmA gene product. J Biol Chem270, 3255–3260.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, C.B. (1995). Apoptosis in the pathogenesis and treatment of disease. Science 267, 1456–1462.

    Article  PubMed  CAS  Google Scholar 

  • Thornberry, N.A. and Lazebnik, Y. (1998). CASPASES: enemies within. Science. 281, 1312–1316.

    Article  PubMed  CAS  Google Scholar 

  • Tominaga, O., Hamelin, R., Trouvat, V., Salmon, R.J., Lesec, G., Thomas, G. and Remvikos, Y. (1993). Frequently elevated content of immunochemically defined wild-type p53 protein in colorectal adenomas. Oncogene. 8, 2653–2658.

    PubMed  CAS  Google Scholar 

  • Trauth, B.C., Klas, C., Peters, A.M., Matzku, S., Moller, P., Falk, W., Debatin, K.M. and Krammer, P.H. (1989). Monoclonal antibody-mediated tumour regression by induction of apoptosis. Science 245, 301–305.

    Article  PubMed  CAS  Google Scholar 

  • Tsujimoto, Y. and Croce, C.M. (1986). Analysis of the structure, transcripts, and protein products of bcl-2, the gene involved in human follicular lymphoma. Proc Natl Acad Sci USA. 83, 5214–5218.

    Article  PubMed  CAS  Google Scholar 

  • Uddin, S., Kottegoda, S., Stigger, D., Platanias, L.C. and Wickrema, A. (2000). Activation of the Akt/FKHRL1 pathway mediates the antiapoptotic effects of erythropoietin in primary human erythroid progenitors. Biochem Biophys Res Com. 275, 16–19.

    Article  PubMed  CAS  Google Scholar 

  • Ura, S., Masuyama, N., Graves, J.D. and Gotoh, Y. (2001). MST1-JNK promotes apoptosis via caspase-dependent and independent pathways. Genes Cells. 6, 519–30.

    Article  PubMed  CAS  Google Scholar 

  • Uren, A.G., Pakusch, M., Hawkins, C.J., Puls, K.L. and Vaux, D.L. (1996). Cloning and expression of apoptosis inhibitory protein homologs that function to inhibit apoptosis and/or bind tumour necrosis factor receptor-associated factors. Proc Natl Acad Sci USA. 93, 4974–4978.

    Article  PubMed  CAS  Google Scholar 

  • Uren, A., O’rourke, K., Aravind, L., Pisabarro, M., Seshagiri, S., Koonin, E. and DIXIT, V. (2000). Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol Cell 6, 961–967.

    PubMed  CAS  Google Scholar 

  • Van Cruchten, S. and Van Den Broeck, W. (2002). Morphological and biochemical aspects of apoptosis, oncosis and necrosis. Anat Histol Embryol. 31, 214–23. Review.

    Article  PubMed  Google Scholar 

  • Van Loo, G., Schotte, P., Van Gurp, M., Demol, H., Hoorelbeke, B., Gevaert, K., Rodriguez, I., Ruiz-Carrillo, A., Vandekerckhove, J., Declercq, W., Beyaert, R. and Vandenabeele, P. (2001). Endonuclease G: a mitochondrial protein released in apoptosis and involved in caspase-independent DNA degradation. Cell Death Differ. 8, 1136–1142.

    Article  PubMed  CAS  Google Scholar 

  • Van Parijs, L. and Abbas, A.K. (1996). Role of Fas-mediated cell death in the regulation of immune responses. Curr Opin Immunol. 8, 355–361.

    Article  PubMed  Google Scholar 

  • Vaux, D.L., Cory, S. and Adams, J.M. (1988). Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 335, 440–442.

    Article  PubMed  CAS  Google Scholar 

  • Vaux, D.L., Haecker, G. and Strasser, A. (1994). An evolutionary perspective on apoptosis. Cell. 76, 777–779.

    Article  PubMed  CAS  Google Scholar 

  • Vaux, D. L. and Korsmeyer, S.J. (1999). Cell death in development. Cell. 96, 245–254.

    Article  PubMed  CAS  Google Scholar 

  • Vaux, D.L., Weissman, I.L. and KIM, S.K. (1992). Prevention of programmed cell death in Caenorhabditis elegans by human bcl-2. Science. 258, 1955–1957.

    CAS  Google Scholar 

  • Vercammen, D., Beyaert, R., Denecker, G., Goossens, V., Van Loo, G., Declercq, W., Grooten, J., Fiers, W. and Vandenabeele, P. (1998a). Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumour necrosis factor. J Exp Med. 187, 1477–1485.

    Article  CAS  Google Scholar 

  • Vercammen, D., Brouckaert, G., Denecker, G., Van de Craen, M., Declercq, W., Fiers, W. and Vandenabeele, P. (1998b). Dual signaling of the Fas receptor: initiation of both apoptotic and necrotic cell death pathways. J Exp Med. 188, 919–930.

    Article  CAS  Google Scholar 

  • Verheij, M., Bose, R., Lin, X.H., Yao, B., Jarvis, W.D., Grant, S., Birrer, M.J., Szabo, E., Zon, L.I. and Kyriakis, J.M. (1996). Requirement for ceramide-initiated SAPK/JNK signalling in stress-induced apoptosis. Nature. 380, 75–79.

    Article  PubMed  CAS  Google Scholar 

  • Vogelstein, B., Lane, D. and Levine, A.J. (2000). Surfing the p53 network. Nature. 408, 307–310.

    Article  PubMed  CAS  Google Scholar 

  • Voges, D., Zwickl, P. and Baumeister, W. (1999). The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu Rev Biochem. 68, 1015–1068.

    Article  PubMed  CAS  Google Scholar 

  • Vogt, C. (1842). Untersuchungen uber die Entwicklungsgeschichte der Geburtshelerkroete (Alytes obstetricians). (Solothurn, Jent und Gassman), p. 130.

    Google Scholar 

  • Walker, N.P.C., Talanian, R.V., Brady, K.D., Dang, L.C., Ferenz, C.R., Franklin, S., Ghayur, T., Hackett, M.C., Hamill, L.D., Herzog, L., Hugunin, M., Houy, W., Mankovich, J.A., Mcguiness, L., Orlewicz, E., Paskind, M., Pratt, C.A., Reis, P., Summani, A., Terranova, M., Welch, J.P., Xiong, L., Moéller, A., Tracey, D.E., Kamen, R. and Wong, W.W. (1994). Cystal structure of the cysteine protease interleukin-1-b-converting enzyme: A (p20/p10)2 homodimer. Cell. 78, 343–352.

    Article  PubMed  CAS  Google Scholar 

  • Walker, P.R., Leblanc, J. and Sikorska, M. (1997). Evidence that DNA fragmentation in apoptosis is initiated and propagated by single-strand breaks. Cell Death Differ. 4, 506–515.

    Article  PubMed  CAS  Google Scholar 

  • Wang, G.G., Allis, C.D. and Chi, P. (2007). Chromatin remodeling and cancer, part I: covalent histone modifications. Trends Mol Med. 13, 363–372.

    Article  PubMed  CAS  Google Scholar 

  • Wang, C., Ivanov, A., Chen, L., Fredericks, W.J., Seto, E. and Rauscher, F.J. III, Chen J. (2005). MDM2 interaction with nuclear corepressor KAP1 contributes to p53 inactivation. EMBO J. 24, 3279–3290.

    Article  PubMed  CAS  Google Scholar 

  • Widlak, P., Garrard, W.T. (2006). Discovery, regulation, and action of the major apoptotic nucleases DFF40/CAD and endonuclease G. J Cell Biochem. 94, 1078–1087.

    Article  CAS  Google Scholar 

  • Wilson, K.P., Black, J., Thomson, J.A., Kim, E.E., Griffith, J.P., Navia, M.A., Murcko, M.A., Chambers, S.P., Aldape, R.A., Raybuck, S.A. and Livingston, D.J. (1994). Structure and mechanism of interleukin-1-beta converting enzyme. Nature. 370, 270–275.

    Article  PubMed  CAS  Google Scholar 

  • White, K., Grether, M.E., Abrams, J.M., Young, L., Farrell, K. and Steller, H. (1994). Genetic control of programmed cell death in Drosophila. Science 264, 677–683.

    Article  PubMed  CAS  Google Scholar 

  • Whitten, J.M. (1969). Cell death during early morphogenesis: parallels between insect limb and vertebrate limb development. Science 163, 1456–1457.

    Article  PubMed  CAS  Google Scholar 

  • Wiley, S.R., Schooley, K., Smolak, P.J., Din, W.S., Huang, C.-P., Nicholl, J.K., Sutherland, G.R., Davis Smith, T., Rauch, C., Smith, C. A. and Goodwin, R.G. (1995). Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity. 3, 673–682.

    Article  PubMed  CAS  Google Scholar 

  • Williams, J.R., Little, J.B. and Shipley, W.U. (1974). Association of mammalian cell death with a specific endonucleolytic degradation of DNA. Nature. 252, 754–755.

    Article  PubMed  CAS  Google Scholar 

  • Woo, E.J., Kim, Y.G., Kim, M.S., Han, W.D., Shin, S., Robinson, H., Park, S.Y. and Oh, B.H. (2004). Structural mechanism for inactivation and activation of CAD/DFF40 in the apoptotic pathway. Mol Cell. 14, 531–539.

    Article  PubMed  CAS  Google Scholar 

  • Woods, D.B. and Vousden, K.H. (2001). Regulation of p53 function. Exp Cell Res. 264, 56–66.

    Article  PubMed  CAS  Google Scholar 

  • Wright, W.E., Pereira-Smith, O.M. and Shay, J.W. (1989). Reversible cellular senescence: implications for immortalization of normal human diploid fibroblasts. Mol Cell Biol. 9, 3088–3092.

    PubMed  CAS  Google Scholar 

  • Wu, Y.-C., Stanfield, G.M., Horvitz, H.R. (2000). NUC-1, a Caenorhabditis elegans DNase II homolog, functions in an intermediate step of DNA degradation during apoptosis. Genes Dev. 14, 536–548.

    PubMed  CAS  Google Scholar 

  • Wu, D.Y., Wallen, H.D. and Nunez, G. (1997). Interaction and regulation of subcellular localization of CED-4 by CED-9. Science. 275, 1126–1129.

    Article  PubMed  CAS  Google Scholar 

  • Wyllie, A.H. (1980). Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature. 284, 555–556.

    Article  PubMed  CAS  Google Scholar 

  • Wyllie, A.H. (1981). Cell death: a new classification separating apoptosis from necrosis. In: Bowen, I. and Lochshin, R.A. (eds). Cell Death in Biology and Pathology. Chapman and Hall, London. pp 9–23.

    Google Scholar 

  • Wyllie, A.H. and Golstein, P. (2001). More than one way to go. Proc Natl Acad Sci USA. 98, 11–13.

    Article  PubMed  CAS  Google Scholar 

  • Wyllie, A.H., Kerr, J.F.R. and Currie, A.C. (1980). Cell death: the significance of apoptosis. Int Rev Cytol. 68, 251–305.

    Article  PubMed  CAS  Google Scholar 

  • Wynford-Thomas, D. (1996). Telomeres, p53 and cellular senescence. Oncology Res. 8, 387–398.

    CAS  Google Scholar 

  • Xue, D. and Horvitz, H.R. (1995). Inhibition of the Caenorhabditis elegans celldeath protease CED-3 by a CED-3 cleavage site in baculovirus p35 protein. Nature. 377, 248–251.

    Article  PubMed  CAS  Google Scholar 

  • Yang, J., Liu, X., Bhalla, K., Kim, C.N., Ibrado, A.M., Cai, J., Peng, T.I., Jones, D.P. and Wang, X. (1997). Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science. 275, 1129–1132.

    Article  PubMed  CAS  Google Scholar 

  • Yee, K.S. and Vousden, K.H. (2005). Complicating the complexity of p53. Carcinogenesis 26, 1317–1322.

    Article  PubMed  CAS  Google Scholar 

  • Ye, H., Cande, C., Stephanou, N.C., Jiang, S., Gurbuxani, S., Larochette, N., Daugas, E., Garrido, C., Kroemer, G. and Wu, H. (2002). DNA binding is required for the apoptogenic action of apoptosis inducing factor. Nat Struct Biol. 9, 680–684.

    Article  PubMed  CAS  Google Scholar 

  • Yin, X.M., Wang, K., Gross, A., Zhao, Y., Zinkel, S., Klocke, B., Roth, K.A. and Korsmeyer, S.J. (1999). Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis. Nature. 400, 886–891.

    Article  PubMed  CAS  Google Scholar 

  • Yonehara, S., Ishii, A. and Yonehara, M. (1989). A cell-killing monoclonal antibody (anti-Fas) to a cell surface antigen co-downregulated with the receptor of tumour necrosis factor. J Exp Med. 169, 1747–1756.

    Article  PubMed  CAS  Google Scholar 

  • Yonish, R.E., Resnitzky, D., Lotem, J., Sachs, L., Kimchi, A. and Oren, M. (1991). Wildtype p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature. 353, 345–347.

    Article  Google Scholar 

  • Yonish-Rouach, E., Resnitzky, D., Lotem, J., Sachs, L., Kimchi, A. and Oren, M. (1993). p53-mediated cell death: relationship to cell cycle control. Mol Cell Biol. 13, 1415–1423.

    PubMed  CAS  Google Scholar 

  • Yu, J., Zhang, L., Hwang, P.M., Rago, C., Kinzler, K.W. and Vogelstein, B. (1999). Identification and classification of p53 regulated genes. Proc Natl Acad Sci USA. 96, 14517–14522.

    Article  PubMed  CAS  Google Scholar 

  • Yuan, J. and Horvitz, H.R. (1992). The Caenorhabditis elegans cell death gene ced-4 encodes a novel protein and is expressed during the period of extensive programmed cell death. Development. 116, 309–320.

    PubMed  CAS  Google Scholar 

  • Yuan, J., Shaham, S., Ledoux, S., Ellis, H.M. and Horvitz, H.R. (1993). The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1b-converting enzyme. Cell. 75, 641–6452.

    Article  PubMed  CAS  Google Scholar 

  • Yuyama, K., Yamamoto, H., Nishizaki, I., Kato, T., Sora, I. and Yamamoto, T. (2003). Caspase-independent cell death by low concentrations of nitric oxide in PC12 cells: involvement of cytochrome c oxidase inhibition and the production of reactive oxygen species in mitochondria. J Neurosci Res. 73, 351–363.

    Article  PubMed  CAS  Google Scholar 

  • Yung, H.W., Bal-Price, A.K., Brown, G.C. and Tolkovsky, A.M. (2004). Nitric oxide-induced cell death of cerebrocortical murine astrocytes is mediated through p53- and Bax-dependent pathways. J Neurochem. 89, 812–821.

    Article  PubMed  CAS  Google Scholar 

  • Zamora-Avila, D.E., Franco-Molina, M.A., Trejo-Avila, L.M., Rodrìguez-Padilla, C., Reséndez-Pérez, D. and Zapata-Benavides, P. (2007). RNAi silencing of the WT1 gene inhibits cell proliferation and induces apoptosis in the B16F10 murine melanoma cell line. Melanoma Res. 17, 341–8.

    Article  PubMed  CAS  Google Scholar 

  • Zamzami, N., Marchetti, P., Castedo, M., Zanin, C., Vayssiere, J.-L., Petit, P.X. and Kroemer, G. (1995). Reduction in mitochondrial potential constitutes an early irreversible step of programmed lymphocyte death in vivo. J Exp Med. 374, 1661–1672.

    Article  Google Scholar 

  • Zhang, D., Pasternack, M.S., Beresford, P.J., Wagner, L., Greenberg, A.H. and Lieberman, J. (2001). Induction of rapid histone degradation by the cytotoxic T lymphocyte protease Granzyme A. J Biol Chem. 276, 3683–3690.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, J. and Xu, M. (2002). Apoptotic DNA fragmentation and tissue homeostasis. Trends Cell Biol. 12, 84–89.

    Article  PubMed  CAS  Google Scholar 

  • Zhivotovsky, B., Cederall, B., Jiang, S., Nicotera, P. and Orrenius, S. (1994). Involvement of Ca$2+$ in the formation of high molecular weight DNA fragments in thymocyte apoptosis; Biophys Biochem Res Commun. 202, 120–127.

    Article  CAS  Google Scholar 

  • Zhivotovsky, B., Orrenius, S., Brustugun, O.T. and Doskeland, S.O. (1998). Injected cytochrome c induces apoptosis. Nature. 391, 449–450.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, J., Ahn, J., Wilson, S.H. and Prives, C. (2001). A role for p53 in base excision repair. EMBO J. 20, 914–923.

    Article  PubMed  CAS  Google Scholar 

  • Zou, H., Henzel, W.J., Liu, X.S., Lutsch, G.A. and Wang, X.D. (1997). Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c dependent activation of caspase-3. Cell. 90, 405–413.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Bánfalvi, G. (2009). Apoptosis. In: Apoptotic Chromatin Changes. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9561-0_4

Download citation

Publish with us

Policies and ethics