Skip to main content

Chromatin Condensation

(How Rope is Made from String)

  • Chapter
Apoptotic Chromatin Changes

Summary

The controversy of chromatin condensation resulted in several models for chromosome condensation. However, microscopic methods failed to distinguish among predicted structural motifs. To briefly summarize these developments, the structural organization of chromatin below the metaphase chromosome and beyond the nucleosomal fibril remained unknown. Nucleosomes condense into higher order structures, the nature of which is not elucidated. Due to the stickiness of the nuclear material, decondensed chromatin could not be separated in the interphase nucleus; consequently, the fibrillar chromatin structure could not be analysed. To avoid the stickiness reversible permeabilization was introduced which not only allows the survival of cells, but also permits to open the nucleus any time during the cell cycle. This chapter summarizes general mechanisms that modulate chromatin function, covalent modification of nucleosomal histones, and ATP-dependent remodeling and describes the analysis of chromatin structures in a cell cycle-dependent manner in mammalian and Drosophila cells using high resolution of centrifugal elutriation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abney, J.R., Cutler, B., Fillbach, M.L., Axelrod, D. and Scalettar, B.A. (1997). Chromatin dynamics in interphase nuclei and its implications for nuclear structure. J Cell Sci. 137, 1459–1468.

    CAS  Google Scholar 

  • Aasland, T., Gibson, T.J. and Stewart, A.F. (1995). The PHD-finger: implications for chromatin-mediated transcriptional regulation. Trends Biochem Sci. 20, 56–59.

    Article  PubMed  CAS  Google Scholar 

  • Balczon, R. (1993). Autoantibodies as probes in cell and molecular biology. Proc Soc Exp Biol Med. 204, 138–154.

    PubMed  CAS  Google Scholar 

  • Bánfalvi, G. Fluorescent analysis of replication and intermediates of chromatin folding in nuclei of mammalian cells. (1993). In: Bach, P., Reynolds, C.H., Clark, J.M., Mottley, J., Poole, P.L. (eds). Biotechnology applications of microinjection, microscopic imaging, and fluorescence. New York and London, Plenum Press pp. 111–119.

    Google Scholar 

  • Bánfalvi, G. (2006a). Linear connection of condensing chromosomes in nuclei of synchronized CHO cells. DNA Cell Biol. 25, 541–545.

    Article  Google Scholar 

  • Bánfalvi, G. (2006b). Structure of interphase chromosomes in the nuclei of Drosophila cells. DNA Cell Biol. 25, 547–553.

    Article  Google Scholar 

  • Bánfalvi, G. (2006c). Condensation of interphase chromosomes in nuclei of synchronized CHO cells. DNA Cell Biol. 25, 641–645.

    Article  Google Scholar 

  • Bánfalvi, G. (2008). Cell cycle synchronization of animal cells and nuclei by centrifugal elutriation. Nature Protocols 3, 663–673.

    Article  PubMed  CAS  Google Scholar 

  • Bánfalvi, G, Mikhailova, M., Poirier, L-A. and Chou, M.W. (1997a). Multiple subphases of DNA replication in Chinese hamster ovary (CHO-K1) cells. DNA and Cell Biol. 16, 1493–1498.

    Article  Google Scholar 

  • Bánfalvi, G., Nagy, G., Gacsi, M., Roszer, T. and Basnakian, A.G. (2006). Common pathway of chromosome condensation in mammalian cells. DNA Cell Biol. 25, 295–301.

    Article  PubMed  Google Scholar 

  • Bánfalvi, G., Poirier, L.A., Mikhailova, M. and Chou, M.W. (1997b). Relationship of repair and replicative DNA synthesis to cell cycle in Chinese hamster ovary (CHO-K1) cells. DNA Cell Biol. 16, 1155–1160.

    Google Scholar 

  • Bánfalvi, G., Sooki-Toth, A., Sarkar, N., Csuzi, S. and Antoni, F. (1984). Nascent DNA chains synthesized in reversibly permeable cells of mouse thymocytes. Eur J Biochem. 139, 553–559.

    Article  PubMed  Google Scholar 

  • Bánfalvi, G., Wiegant, J., Sarkar, N. and van Duijn, P. (1989). Immunofluorescent visualization of DNA replication sites within nuclei of Chinese hamster ovary cells. Histochemistry. 93, 81–86.

    Article  PubMed  Google Scholar 

  • Basnakian, A., Bánfalvi, G. and Sarkar, N. (1989). Contribution of DNA polymerase delta to DNA replication in permeable cells synchronized in S phase. Nucleic Acids Res. 17, 4757–4767.

    Article  PubMed  CAS  Google Scholar 

  • Brehm, A., Tufteland, K.R., Aasland, R. and Becker, P.B. (2004). The many colours of chromodomains. Bioessays. 26, 133–40. Review.

    Article  PubMed  CAS  Google Scholar 

  • Beaudouin, J., Mora-Bermudez, F., Klee, T., Daigle, N. and Ellenberg, J. (2006). Dissecting the contribution of diffusion and interactions to the mobility of nuclear proteins. Biophys J. 90, 1878–1894.

    Article  PubMed  CAS  Google Scholar 

  • Becker, P.B. (2002). Nucleosome sliding: facts and fiction. EMBO J. 21, 4749–4753.

    Article  PubMed  CAS  Google Scholar 

  • Becker, P.B. and Horz, W. (2002). ATP-dependent nucleosome remodeling. Annu Rev Biochem. 71, 247–273.

    Article  PubMed  CAS  Google Scholar 

  • Bednar, J., Horowitz, R.A., Grigoryev, S.A., Carruthers, L.M., Hansen, J.C., Koster, A.J. and Woodcock, C.L. (1998). Nucleosomes, linker DNA, and linker histone form a unique structural motif that directs the higher-order folding and compaction of chromatin. Proc Natl Acad Sci USA. 95, 14173–14178.

    Article  PubMed  CAS  Google Scholar 

  • Belmont, A.S. (1998). Nuclear ultrastructure: transmission electron microscopy and image analysis. Methods Cell Biol. 53, 99–124.

    Article  PubMed  CAS  Google Scholar 

  • Belmont, A.S. (2001). Visualizing chromosome dynamics with GFP. Trends Cell Biol. 11, 250–257.

    Article  PubMed  CAS  Google Scholar 

  • Belmont, A.S. and Bruce, K. (1994). Visualization of G1 chromosomes: a folded, twisted, supercoiled chromonema model of interphase chromatid structure. J Cell Biol. 127, 287–302.

    Article  PubMed  CAS  Google Scholar 

  • Belmont, A.S., Sedat, J.W. and Agard, D.A. (1987). A threedimensional approach to mitotic chromosome structure: Evidence for a complex hierarchical organization. J Cell Biol. 105(1), 77–92.

    Article  PubMed  CAS  Google Scholar 

  • Berezney, R., Mortillaro, M.J., Ma, H., Wei, X. and Samarabandu, J. (1995). The nuclear matrix: a structural milieu for genomic function. Int J Cytol. 162A, 1–65.

    CAS  Google Scholar 

  • Bernstein, E. and Hake, S.B. (2006). The nucleosome: a little variation goes a long way. Biochem Cell Biol. 84, 505–517.

    Article  PubMed  CAS  Google Scholar 

  • Bickmore, W. (1999). Fluorescence in situ hybridization analysis of chromosome and chromatin structure. Methods Enzymol. 304, 650662.

    Google Scholar 

  • Bjorkroth, B., Ericsson, C., Lamb, M.M. and Daneholt, B. (1988). Structure of the chromatin axis during transcription. Chromosoma (Bert.). 96, 333–340.

    Article  Google Scholar 

  • Blow, J.J. and Watson, J.V. (1987). Nuclei act as independent units of replication in Xenopus cell-free DNA replication system. EMBO J. 6, 1997–2002.

    PubMed  CAS  Google Scholar 

  • Bordas, J., Perez-Grau, L., Koch, M.H.J., Vega, M.C. and Nave, C. (1986). The superstructure of chromatin and its condensation mechanism. I. Synchrotron radiation X-ray scattering results. Eur Biophys J Biophys Lett. 13, 175–185.

    CAS  Google Scholar 

  • Boveri, T. (1907) Zellenstudien VI. Die Entwicklung dispermer Seeigelier. Ein Beitrag zur Befruchtungslehre und zur Theory des Kernes. Jena Zeit Natur. 43, 1–292.

    Google Scholar 

  • Boy De La Tour, E. and Laemmli, U.K. (1988). The metaphase scaffold is helically folded: sister chromatids have predominately opposite helical handedness. Cell. 55, 937–944.

    Article  PubMed  CAS  Google Scholar 

  • Chiodi, I., Biggiogera, M., Denegri, M., Corioni, M., Weighardt, F., Cobianchi, F., Riva, S. and Biamonti, G. (2000). Structure and dynamics of hnRNP-labelled nuclear bodies induced by stress treatments. J Cell Sci. 113, 4043–4053.

    PubMed  CAS  Google Scholar 

  • Clark, J.M., Mottley, J. and Poole, P.L. (eds). Plenum. Press/New York, London. pp. 111–119.

    Google Scholar 

  • Cleveland, L.R. (1949). The whole life cycle of chromosomes and their coiling systems. Trans Am Philosophical Soc. 39, 1–97.

    Article  Google Scholar 

  • Cremer, T. and Cremer, C. (2001). Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet. 2, 292–301.

    Article  PubMed  CAS  Google Scholar 

  • Cremer, T, Cremer, M., Dietzel, S., Müller, S., Solovei, I. and Fakan, S. (2006). Chromosome territories-a functional nuclear landscape. Curr Opin Cell Biol. 18, 307–316.

    Article  PubMed  CAS  Google Scholar 

  • Cremer, C., Cremer, T., Zorn, C. and Cioreanu, V. (1979). Partial irradiation of Chinese hamster cell nuclei and detection of unscheduled DNA synthesis in interphase and metaphase. A tool to investigate the arrangement of interphase chromosomes in mammalian cells. Hoppe Seyler’s Z Physiol Chem. 360, 244–245.

    Google Scholar 

  • Cremer, T., Kurz, A., Zirbel, R., Dietzel, S., Rinke, B., Schnock, E., Speicher, M. R., Mathieu, U., Jauch, A., Emmerich, P., Scherthan, H., Ried, T., Cremer, C. and Lichter, P. (1993). Role of chromosome territories in the functional compartmentalization of the cell nucleus. Cold Spring Harbor Symp Quant Biol. LVIII, 777–792.

    Google Scholar 

  • Comings, D.E. (1980). Arrangement of chromatin in the nucleus. Hum Genet. 53, 131–143.

    Article  PubMed  CAS  Google Scholar 

  • Davey, C.A. and Richmond, T.J. (2002). DNA-dependent divalent cation binding in the nucleosome core particle. Proc Natl Acad Sci USA. 99, 11169–11174.

    Article  PubMed  CAS  Google Scholar 

  • Davey, C.A., Sargent, D.F., Luger, K., Maeder, A.W. and Richmond, T.J. (2002). Solvent mediated interactions int he structure of the nucleosome core particles at 1.9 Å resolution. J Mol Biol. 319, 1097–1113.

    Article  PubMed  CAS  Google Scholar 

  • De Campos Vidal, B., Russo, J. and Mello, M.L. (1998). DNA content and chromatin texture of benzo[a]pyrene-transformed human breast epithelial cells as assessed by image analysis. Exp Cell Res. 244, 77–82.

    Article  PubMed  Google Scholar 

  • Diehl, A.M. and Rai, R. (1996). Review: regulation of liver regeneration by pro-inflammatory cytokines. J Gastroenterol Hepatol. 111, 466–470.

    Article  Google Scholar 

  • Dietzel, S. and Belmont, A.S. (2001). Reproducible but dynamic positioning of DNA within chromosomes during mitosis. Nat Cell Biol. 3, 767–770.

    Article  PubMed  CAS  Google Scholar 

  • Dingwall, C., Lomonossoff, G.P. and Laskey, R.A. (1981). High sequence specificity of micrococcal nuclease. Nucl Acids Res. 9, 2659–2673.

    Article  PubMed  CAS  Google Scholar 

  • Dorigo, B., Schalch, T., Kulangara, A., Duda, S., Schroeder, R.R. and Richmond, T.J. (2004). Nucleosome arrays reveal the two-start organization of the chromatin fiber. Science. 306, 1571–1573.

    Google Scholar 

  • Downes, M., Ordentlich, P., Kao, H.Y, Alvarez-Jacqueline, G.A. and Evans, R.M. (2000). Identification of a nuclear domain with deacetylase activity. Proc Natl Acad Sci USA. 97, 10330–10335.

    Article  PubMed  CAS  Google Scholar 

  • Earnshaw, W.C. and Laemmli, U.K. (1983). Architecture of metaphase chromosomes and chromosome scaffolds. J Cell Biol. 96, 84–93.

    Article  PubMed  CAS  Google Scholar 

  • Easwaran, H.P., Leonhardt, H.A. and Cardoso, M.C. (2007). Distribution of DNA replication proteins in Drosophila cells. BMC Cell Biol. 8, 42.

    Article  PubMed  CAS  Google Scholar 

  • Fausto, N. and Webber, E.M. (1994). Liver regeneration. In Arias, I., Boyer, J. and Fausto, N., (eds). The Liver Biology and Pathology. Raven Press, New York. pp. 1059–1084.

    Google Scholar 

  • Finch, J.T. and Klug, A. (1976). Solenoidal model for superstructure in chromatin. Proc Natl Acad Sci USA. 73,1897–1901.

    Google Scholar 

  • Flemming, W. (1879). Beitrage zur Kenntniss der Zelle und ihrer Lebenserscheinungen. Arch Mikroskop Anat. 16, 302–436.

    Article  Google Scholar 

  • Flemming, W. (1882). Zellsubstanz, Kern und Zelltheilung. Verlag von F.C.W. Vogel. Leizig.

    Google Scholar 

  • Fox, A.H, Lam, Y.W., Leung-Anthony, K.L., Lyon, C.E., Andersen, J., Mann, M. and Lamond, A.I. (2002). Paraspeckles: a novel nuclear domain. Curr Biol. 12, 13–25.

    Article  PubMed  CAS  Google Scholar 

  • Gacsi, M., Nagy, G., Pinter, G., Basnakian, A.G. and Bánfalvi, G. (2005). Condensation of interphase chromatin in nuclei of synchronized Chinese hamster ovary (CGO-K1) cells. DNA Cell Biol. 24, 43–53.

    Article  PubMed  CAS  Google Scholar 

  • Gassmann, R., Vagnarelli, P., Hudson, D. and Earnshaw, W.C. (2004). Mitotic chromosome formation and the condensin paradox. Exp Cell Res. 296, 35–42.

    Article  PubMed  CAS  Google Scholar 

  • Gottesfeld, J.M. and Bloomer, L.S. (1980). Nonrandom alignment of nucleosomes on 5S RNA genes of X. laevis. Cell 21, 751–760.

    Article  CAS  Google Scholar 

  • Grechman, S.E. and Ramakrishnan, V. (1987). Chromatin higher-order structure studied by neutron-scattering and scanning transmission electron microscopy. Proc Natl Acad Sci USA. 84, 7802–7806.

    Article  Google Scholar 

  • Grigoryev, S.A. (2004). Keeping fingers crossed: heterochromatin spreading through interdigitation of nucleosome arrays. FEBS Lett. 254, 4–8.

    Article  CAS  Google Scholar 

  • Hansen, J.C. (2002). Conformational dynamics of the chromatin fiber in solution: determinants, mechanisms and functions. Annu Rev Biophys Biomol Struct. 31, 361–392.

    Article  PubMed  CAS  Google Scholar 

  • Harp, J.M., Hanson, B.L., Timm, D.E. and Bunick, G.J. (2000). Asymetries int he nucleosome core particle at 2.5 Å resolution. Acta Crystalogr D Biol Crystalogy. 56, 1523–1534.

    Google Scholar 

  • Henegariu, O., Heerema, N.A., Lowe Wright, L., Bray-Ward, P., Ward, D.C. and Vanve, G.H. (2001). Improvements in cytogenic slide preparation: Controlled chromosome spreading, chemical aging and gradual denaturing. Cytometry. 43, 101–109.

    Article  PubMed  CAS  Google Scholar 

  • Heslop-Harrison, J.S., Huelskamp, M., Wendroth, S., Atkinson, M.D., Leicht, A.R. and Benett, M.D. (1988). Chromatin and centromeric structures in interphase nuclei. In Kew chromosome conference III. Brandham, P.E. (ed.), Allan & Unwin/London, pp. 209–217.

    Google Scholar 

  • Hirano, T. (2000). Chromosome cohesion, condensation, and separation. Annu Rev Biochem. 69, 115–144.

    Article  PubMed  CAS  Google Scholar 

  • Hiraoka, Y., Minden, J.S., Swedlow, J.R., Sedat, J.W. and Agard, D.A. (1989). Focal points for chromosome condensation and decondensation revealed by three-dimensional in vivo time-lapse microscopy. Nature. 342, 293–296.

    Article  PubMed  CAS  Google Scholar 

  • Hiriyanna, K.T., Varkey, J., Beer, M. and Benbow, R.M. (1988). Electron microscopic visualization of sites of nascent DNA synthesis by streptavidin-gold binding to biotinylated nucleotides incorporated in vivo. J Cell Biol. 107, 33–44.

    Article  PubMed  CAS  Google Scholar 

  • Hochstrasser, M., Mathog, D., Gruenbaum, Y., Schwaumweber, H. and Sedat, J.W. (1986). Spatial organization of chromosomes in the salivaty gland nuclei of Drosophila melanogaster. J Cell Biol. 102, 112–123.

    Article  PubMed  CAS  Google Scholar 

  • Horn, P.J. (2002). Chromatin higher order folding–wrapping up transcription. Science 297, 1824–1827.

    Article  PubMed  CAS  Google Scholar 

  • Horowitz, R.A., Agard, D.A., Sedat, J.W. and Woodcock, C.L. (1994). The three-dimensional architecture of chromatin in situ: electron tomography reveals fibers composed of a continuously variable zig-zag nucleosomal ribbon. J Cell Biol. 125, 1–10.

    Article  PubMed  CAS  Google Scholar 

  • Hozak, P. and Fakan, S. (2006) Functional structure of the cell nucleus. Histochem Cell Biol. 125, 1–2.

    Article  PubMed  CAS  Google Scholar 

  • Igo-Kemenes T., Omori, A. and Zachau, H.G. (1980). Different repeat lengths in rat satellite I DNA containing chromatin and bulk chromatin. Nucl Acids Res. 22, 5377–5390.

    Article  Google Scholar 

  • Iwano, M., Fukui, K., Tkaichi, S. and Isogai, A. (1997). Globular and fibrous structure in barley chromosomes revealed by high-resolution scanning electron microscopy. Chromosome Res. 5, 341–349.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, A.A. (1991) Structure$±$function relationships in eukaryotic nuclei. Bioessays 13, 1–10.

    Article  PubMed  CAS  Google Scholar 

  • Jacobs, S.A. and Khorasanizadeh, S. (2002). Structure of HP1 chromodomain bound to a lysine 9-methylated histone H3 tail. Science. 295, 2080–2083.

    Article  PubMed  CAS  Google Scholar 

  • Juan, G., Traganos, F., James, W.M., Ray, J.M., Roberge, M., Sauve, D.M., Anderson, H. and Darzynkiewicz, Z. (1998). Histone H3 phosphorylation and expression of cyclins A and B1 measured in individual cells during their progression through G2 and mitosis. Cytometry. 32, 71–77.

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann, W.K., William, J., Bodell, W.J. and Cleaver, J.E. (1983). DNA excision repair in permeable human fibroblasts. Carcinogenesis. 4, 179–184.

    Article  PubMed  CAS  Google Scholar 

  • Kireeva, N., Lakonishok, M., Kireev, I., Hirano, T. and Belmont, A.S. (2004). Visualization of early chromosome condensation: a hierarchical folding, axial glue model of chromosome structure. J Cell Biol. 166, 775–785.

    Article  PubMed  CAS  Google Scholar 

  • Kosak, S.T. and Groudine, M. (2004). Form follows function: The genomic organization of cellular differentiation. Genes Dev. 18, 1371–1384.

    Article  PubMed  CAS  Google Scholar 

  • Koshland, D. and Strunnikov, A.V. (1995). Mitotic chromosome condensation. Annu Rev Cell Dev Biol. 12, 305–333.

    Article  Google Scholar 

  • Kostriken, R. and Weeden, C.J. (2001). Engineered interphase chromosome loops guide intrachromosomal recombination. EMBO J. 20, 29072913.

    Article  Google Scholar 

  • Kouzarides, T. (2007). Chromatin modifications and their function. Cell. 128, 693–705.

    Article  PubMed  CAS  Google Scholar 

  • Kubista, M., Hagmar, P., Nielsen, P.E. and Nordèn, B. (1990). Reinterpretation of linear dichroism of chromatin supports a perpendicular linker orientation in the folded state. J Biomol Struct Dyn. 8, 37–54.

    PubMed  CAS  Google Scholar 

  • Laemmli, U.K., Cheng, S.M., Adolph, K.W., Paulson, J.R., Brown, J.A and Baumbach, W.R. (1978). Metaphase chromosome structure: the role of nonhistone proteins. Cold Spring Harb Symp Quant Biol. 42, 351–360.

    PubMed  CAS  Google Scholar 

  • Lamond, A.I. and Earnshaw, W.C. (1998). Structure and function in the nucleus. Science. 280, 547–553.

    Article  PubMed  CAS  Google Scholar 

  • Lemke, J., Claussen, J., Michel, S., Chudoba, I., Muhlig, P., Westermann, M., Sperling, K., Rubtsov, N., Grummt, U.W., Ullmann, P., Kromeyer-Hauschild, K., Liehr, T. and Claussen, U. (2002). The DNA-based structure of human chromosome 5 in interphase. Am J Hum Genet. 71, 1051–1059.

    Article  PubMed  CAS  Google Scholar 

  • Levy, A. and Noll, M. (1980). Multiple phases of nucleosomes in the hsp 70 genes of Drosophila melanogaster. Nucl Acids Res. 8, 6059–6097.

    Article  PubMed  CAS  Google Scholar 

  • Li, B., Carey, M. and Workman, J.L. (2007). The role of chromatin during transcription. Cell. 128, 707–719.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, C.D., Lebkowski, J.S., Daly, A.K. and Laemmli, U.K. (1984). Interphase nuclear matrix and metaphase scaffolding structures. J Cell Sci Suppl. 1, 103–122.

    PubMed  CAS  Google Scholar 

  • Lilley, D.M. (1980). The inverted repeat as a recognizable structural feature in supercoiled DNA molecules. Proc Natl Acad Sci USA. 77, 6468–6472.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Q. and Dreyfuss, G. (2000). A novel nuclear structure containing the survival of motor neurons protein. EMBO J. 15, 3555–3565.

    Google Scholar 

  • Louis, C., Schedl, P., Samal, B. and Worzel, S. (1980). Chromatin structure of the 5S RNA genes of D. melanogaster. Cell. 22, 387–392.

    Article  PubMed  CAS  Google Scholar 

  • Luger, K. (2003). Structure and dynamic behavior of nucleosomes. Curr Opin Genet Dev. 13, 127–135.

    Article  PubMed  CAS  Google Scholar 

  • Luger, K. and Hansen, J.C. (2005). Nucleosome and chromatin fiber dynamics. Curr Opin Struct Biol. 15, 188–196.

    Article  PubMed  CAS  Google Scholar 

  • Luger, K., Mader, A.W., Richmond, R.K., Sargent, D.F. and Richmond, T.J. (1997). Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature. 389, 251–260.

    Article  PubMed  CAS  Google Scholar 

  • Maddox, P.S., Portier, N., Desai, A. and Oegema, K. (2006). Molecular analysis of mitotic chromosome condensation using a quantitative time-resolved fluorescence microscopy assay. Proc Natl Acad Sci USA. 103, 15097–15102.

    Article  PubMed  CAS  Google Scholar 

  • Maeshima, K. and Laemmli, U.K. (2003). A two-step scaffolding model for mitotic chromosome assembly. Dev Cell. 4, 467–480.

    Article  PubMed  CAS  Google Scholar 

  • Manuelidis, L. (1990). A view of interphase chromosomes. Science. 250, 1533–1540.

    Article  PubMed  CAS  Google Scholar 

  • Marsden, M.P.F. and Laemmli, U.K. (1979). Metaphase chromosome structure: evidence for a radial loop model. Cell. 17, 849–858.

    Article  PubMed  CAS  Google Scholar 

  • Marshall, W.F., Dernburg, A.F., Harmon, B., Agard, D.A. and Sedat, J.W. (1996). Specific interactions of chromatin with the nuclear envelope: Positional determination within the nucleus in Drosophila melanogaster. Mol Biol Cell. 7, 825–842.

    PubMed  CAS  Google Scholar 

  • Matera, A.G. (1999). Nuclear bodies: multifaceted subdomains of the interchromatin space. Trends Cell Biol. 9, 302–309.

    Article  PubMed  CAS  Google Scholar 

  • Mathog, D. and Sedat, J.W. (1989). The three-dimensional organization of polytene nuclei in male Drosophila melanogaster with compound XY or ring X chromosomes. Genetics. 121, 293–311.

    PubMed  CAS  Google Scholar 

  • Mohrmann, L., Langenberg, K., Krijgsveld, J., Kal, A.J., Heck, A.J.R. and Verrijzer, C.P. (2004). Differential targeting of two distinct SWI/SNF-related Drosophila chromatin-remodeling complexes. Mol Cell Biol. 24, 3077–3088.

    Article  PubMed  CAS  Google Scholar 

  • Mora-Bermùdez, F. and Ellenberg, J. (2007). Measuring structural dynamics of chromosomes in living cells by fluorescence microscopy. Method Cell Cycle Res. 41, 158–167.

    Google Scholar 

  • Michalopoulos, G.K. and Defrances, M.C. (1997). Liver regeneration. Science. 276, 60–66.

    Article  PubMed  CAS  Google Scholar 

  • Misteli, T. (2001). Protein dynamics: implications for nuclear architecture and gene expression. Science. 2001; 291, 843–847.

    CAS  Google Scholar 

  • Misteli, T. and Spector D.L. (1998). The cellular organization of gene expression. Curr Opin Cell Biol. 10, 323–331.

    Article  PubMed  CAS  Google Scholar 

  • Mora-Bermùdez, F., Gerlich, D. and Ellenberg, J. (2007). Maximal chromosome compaction occurs by axial shortening in anaphase and depends on Aurora kinase. Nat Cell Biol. 9, 822–831.

    Article  CAS  Google Scholar 

  • Moses, R.E. and Richardson, C.C. (1970). Replication and repair of DNA in cells of Escherichia coli treated with toluene. Proc Natl Acad Sci USA. 67, 674–681.

    Article  PubMed  CAS  Google Scholar 

  • Nagl, W. (1985). Chromatin organization and the control of gene activity. Int Rev Cytol. 94, 21–56. Review.

    Article  PubMed  CAS  Google Scholar 

  • Narlikar, G.J. and Kingston, R.-E. (2002). Cooperation between complexes that regulate chromatin structure and transcription. Cell. 108, 475–487.

    Article  PubMed  CAS  Google Scholar 

  • Olins, D.E. and Olins, A.L. (2003). Chromatin history: our view from the bridge. Nature Rev Mol Cell Biol. 4, 809–814.

    CAS  Google Scholar 

  • Panayotatos, N. and Wells, R.D. (1981). Cruciform structures in supercoiled DNA. Nature. 289, 466–470.

    Article  PubMed  CAS  Google Scholar 

  • Parada, L.A., Mcqueen, P. and Misteli, T. (2004). Tissue-specific spatial organization of genomes. Genome Biol. 5, R44.

    Article  PubMed  Google Scholar 

  • Paragh, G., Foris, G., Paragh, G. Jr., Seres, I., Karanyi, Z., Fulop, P., Balogh, Z., Kosztaczky, B., Teichmann, F. and Kertai, P. (2005). Different anticancer effects of fluvastatin on primary hepatocellular tumours and metastases in rats. Cancer Lett. 222, 17–22.

    Article  PubMed  CAS  Google Scholar 

  • Paulson, J.R. and Laemmli, U.K. (1977). The structure of histone depleted chromosomes. Cell. 12, 817–828.

    Article  PubMed  CAS  Google Scholar 

  • Pederson, T. (2004). The spatial organization of the genome in mammalian cells. Curr Opin Genet Dev. 14, 203–209.

    Article  PubMed  CAS  Google Scholar 

  • Pennings, S., Meersseman, G. and Bradbury, E.M. (1991). Mobility of nucleosomes on 5S rDNA. J Mol Biol. 220, 101–110.

    Article  PubMed  CAS  Google Scholar 

  • Phair, R.D., Gorski, S.A. and Misteli, T. (2004). Measurement of dynamic protein binding to chromatin in vivo, using photobleaching microscopy. Methods Enzymol. 375, 393–414.

    Article  PubMed  CAS  Google Scholar 

  • Poirier, M.G. and Marko, J.F. (2002). Mitotic chromosomes are chromatin networkswithout a mechanically contiguous protein scaffold. Proc Natl Acad Sci USA. 99, 15393–15397.

    Article  PubMed  CAS  Google Scholar 

  • Poirier, M., Eroglu, S., Chatenay, D. and Marko, J.F. (2000). Reversible and irreversible unfolding of mitotic new chromosomes by applied force. Mol Biol Cell. 11, 269–276.

    PubMed  CAS  Google Scholar 

  • Rattner, J.B. and Lin, C.C. (1985). Radial loops and helical coils coexist in metaphase chromosomes. Cell. 42, 291–296.

    Article  PubMed  CAS  Google Scholar 

  • Razin, S.V. (1996). Functional architecture of chromosomal DNA domains. Crit Rev Eukaryot Gene Expr. 6, 247–269.

    PubMed  CAS  Google Scholar 

  • Rehak, M., Csuka, I., Szepessy, E. and Bánfalvi, G. (2000). Subphases of DNA replication in Drosophila cells. DNA Cell Biol. 19, 607–612.

    Article  PubMed  CAS  Google Scholar 

  • Richmond, T.J. and Davey, C.A. (2003). The structure of DNA in the nucleosome core. Nature.423, 145–150.

    Article  PubMed  CAS  Google Scholar 

  • Robinett, C.C., Straight, A., Li, G., Willhelm, C., Sudlow, G., Murray, A. and Belmont, A.S. (1996). In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition. J Cell Biol. 135, 1685–700.

    Article  PubMed  CAS  Google Scholar 

  • Rydberg, B., Holley, W.R, Mian, I.S. and Chatterjee, A. (1998). Chromatin conformation in living cells: support for a zig-zag model of the 30 nm chromatin fibril. J Mol Biol. 284, 71–84.

    Google Scholar 

  • Saha, A., Wittmeyer, J., Cairns, B.R. (2002). Chromatin remodeling by RSC involves ATP-dependent DNA translocation. Genes Dev. 16, 2120–2134.

    Article  PubMed  CAS  Google Scholar 

  • Salomoni, P. and Pandolfi, P.P. (2002). The role of PML in tumour suppression. Cell. 108, 165–170.

    Article  PubMed  CAS  Google Scholar 

  • Sarkar, A., Eroglu, S., Poirier, M.G., Gupta, P., Nemani, A. and Marko, J.F. (2002). Dynamics of chromosome compaction during mitosis. Exp Cell Res. 277, 48–56.

    Article  PubMed  CAS  Google Scholar 

  • Schalch, T, Duda, S., Sargent, D.F. and Richmond, T.J. (2005). X-ray structure of a tetranucleosome and its implications for the chromatin fibre. Nature. 436, 138–141.

    Article  PubMed  CAS  Google Scholar 

  • Sedat, J. and Manuelidis, L. (1978). A direct approach to the structure of eukaryotic chromosomes. Cold Spring Harb Symp Quant Biol. 42, 331–350.

    PubMed  CAS  Google Scholar 

  • Seki, S., Mori, S. and Oda, T. (1986). Deoxyribonuclease I sensitivity of DNA replicated i permeable mouse sarcoma cells. Acta Med Okayama. 40, 183–188.

    PubMed  CAS  Google Scholar 

  • Seki, S. and Oda, T. (1986). DNA repair synthesis in bleomycin-pretreated permeable HeLa cells. Carcinogenesis. 7, 77–82.

    Article  PubMed  CAS  Google Scholar 

  • Sheinin, R. and Humbert, J. (1978). Some aspects of eukaryotic DNA replication. Annu Rev Biochem. 47, 277–316. Review.

    Article  PubMed  CAS  Google Scholar 

  • Simon, J.A. and Tamkun, J.W. (2002). Programming off and on states in chromatin: mechanisms of Polycomb and trithorax group complexes. Curr Opin Genet Dev. 12, 210–218.

    Article  PubMed  CAS  Google Scholar 

  • Sleeman, J.E. and Lamond, A.I. (1999). Nuclear organization of pre-mRN splicing factors. Curr Opin Cell Biol. 11, 372–377. Review.

    Article  PubMed  CAS  Google Scholar 

  • Sperling, K. and Luedtke, E.-K. (1981). Arrangement of prematurely condensed chromosomes in cultured cells and lymphocytes of the Indian muntjac. Chromosoma. 83, 541–553.

    Article  PubMed  CAS  Google Scholar 

  • Starzl, T.E., Porter, K., Francavilla, J.A., Benichou, J. and Putnam, C.W. (1977). A hundred years of the hepatotrophic controversy. Ciba Found Symp. 55, 111–129.

    PubMed  Google Scholar 

  • Strukov, Y.G., Wang, Y. and Belmont, A.S. (2003). Engineered chromosome regions with altered sequence composition demonstrate hierarchical large-scale folding within metaphase chromosomes. J Cell Biol. 162, 23–35.

    Article  PubMed  CAS  Google Scholar 

  • Strunnikov, A.V. (1998). SMC proteins and chromosome structure. Trends Cell Biol. 8, 454–459.

    Article  PubMed  CAS  Google Scholar 

  • Sun, F-L., Cuaycong, M.H. and Elgin, S.C.R. (2001). Long-range nucleosome ordering is associated with gene silencing in Drosophila melanogaster pericentric heterochromatin. Mol Cell Biol. 21, 2867–2879.

    Article  PubMed  CAS  Google Scholar 

  • Sun, J., Zhang, Q. and Schlick, T. (2005). Electrostatic mechanism of nucleosomal array folding revealed by computer simulation Proc Natl Acad Sci USA. 102, 8180–8185.

    Article  PubMed  CAS  Google Scholar 

  • Swedlow, J.R., and T. Hirano. (2003). The making of the mitotic chromosome: modern insights into classical questions. Mol Cell. 11, 557–569.

    Article  PubMed  CAS  Google Scholar 

  • Tamkun, J.W., Deuring, R., Scott, M.P., Kissinger, M., Pattatucci, A.M., Kaufman, T.C. and Kennison, J.A. (1992). Brahma: a regulator of Drosophila homeotic genes structurally related to the yeast transcriptional activator SNF2/SWI2. Cell. 68, 561–572.

    Article  PubMed  CAS  Google Scholar 

  • Trencsenyi, G., Kertai, P., Somogyi, C., Nagy, G., Dombradi, Z., Gacsi, M. and Bánfalvi, G. (2007a). Chemically induced carcinogenesis affecting chromatin structure in rat hepatocarcinoma cells. DNA Cell Biol. 26, 649–655.

    Article  CAS  Google Scholar 

  • Trencsenyi, G., Ujvarosi, K., Nagy, G. and Bánfalvi, G. (2007b). Transition from chromatin bodies to linear chromosomes in nuclei of murine preB cells synchronized in S phase. DNA Cell Biol. 26, 549–556.

    Article  CAS  Google Scholar 

  • Uzbekov, R.E. (2004). Analysis of the cell cycle and a method employing synchronized cells for study of protein expression at various stages of the cell cycle. Biochemistry. 69, 485–496.

    PubMed  CAS  Google Scholar 

  • White, C.L., Suto, R.K. and Luger, K. (2001). Structure of the yeast nucleosome core particle reveals fundamental changes in nucleosome interactions. EMBO J. 20, 5207–5218.

    Article  PubMed  CAS  Google Scholar 

  • Van Driel, R., Fransz, P.F. and Verschure, P.J. (2003). The eukaryotic genome: A system regulated at different hierarchical levels. J Cell Sci. 116, 4067–4075.

    Article  CAS  Google Scholar 

  • Van Holde, K. and Zlatanova, J. (1996). What determines the folding of the chromatin fiber? Proc Natl Acad Sci USA. 93, 10548–10555.

    Article  PubMed  Google Scholar 

  • Wan, K.M., Nickerson, J.A., Krockmalnic, G. and Penman, S. (1999). The nuclear matrix prepared by amine modification. Proc Natl Acad Sci U S A. 96, 933–938.

    Article  PubMed  CAS  Google Scholar 

  • Wang, G.G., Allis, C.D. and Chi, P. (2007). Chromatin remodeling and cancer, part I: covalent histone modifications. Trends Mol Med. 13, 363–372.

    Article  PubMed  CAS  Google Scholar 

  • Wang, I.F., Reddy, N.M. and Shen, C.K. (2002). Higher order arrangement of the eukaryotic nuclear bodies. Proc Natl Acad Sci USA. 99, 13583–13588.

    Article  PubMed  CAS  Google Scholar 

  • Widom, J. (1998). Structure, dynamics, and function of chromatin in vitro. Annu Rev Biophys Biomol Struct. 27, 285–327.

    Article  PubMed  CAS  Google Scholar 

  • Williams, S.P., Athey, B.D., Muglia, L.J., Schappe, R.S., Gough, A.H. and Langmore, J.P. (1986). Chromatin fibers are left-handed double helices with diameter and mass per unit length that depend on linker length. Biophys J. 49, 233–248.

    Article  PubMed  CAS  Google Scholar 

  • Wittig, B. and Wittig, S. (1979). A phase relationship associates tRNA structural gene sequences with nucleosome cores. Cell. 18, 1173–1183.

    Article  PubMed  CAS  Google Scholar 

  • Wolffe, A.P. (1995). “Chromatin,” 2nd ed. Sect. 2.4, Academic Press, New York.

    Google Scholar 

  • Yokota, H., Van Den Engh, G., Hearst, J.E., Sachs, R. and Trask, B.J. (1995). Evidence for the organization of chromatin in megabase pair-sized loops arranged along a random walk path in the human G0/G1 interphase nucleus. J Cell Biol. 130, 1239–1249.

    Article  PubMed  CAS  Google Scholar 

  • Woodcock, C.L., Frado, L.L. and Rattner, J.B. (1984). The higher-order structure of chromatin: evidence for a helical ribbon arrangement. J Cell Biol. 99, 42–52.

    Article  PubMed  CAS  Google Scholar 

  • Woodcock, C.L., Grigoryev, S.A., Horowitz, R.A. and Whitaker, N. (1993). A chromatin folding model that incorporates linker variability generates fibers resembling the native structures. Proc Natl Acad Sci. USA. 90, 9021–9025.

    Article  PubMed  CAS  Google Scholar 

  • Woodcock, C.L. and Horowitz, R.A. (1995). Chromatin organization re-viewed. Trends Cell Biol. 5, 272–277.

    Article  PubMed  CAS  Google Scholar 

  • Worzel, A., Strogatz, A. and Riley, D. (1981). Structure of chromatin and the linking number of DNA. Pro Natl Acad Sci USA. 78, 1461–1465.

    Article  Google Scholar 

  • Xue, Y., Wong, J., Moreno, G.T., Young, M.K., Côtè, J. and Wang, W. (1998). NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities. Mol Cell. 2, 851–861.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Bánfalvi, G. (2009). Chromatin Condensation. In: Apoptotic Chromatin Changes. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9561-0_3

Download citation

Publish with us

Policies and ethics