Skip to main content

Summary

Different functions of ribonucleotides provide additional arguments that RNA preceded DNA. It is proposed that the DNA Empire came into being after photosynthesizing algae provided an oxygen rich environment. Oxygen the “by-product” of photolyis contributed to the RNA ⇒ DNA transition. The reductive power generated by the photolyis produced more carbohydrates than the photosynthesizing algae needed and provided a carbohydrate rich environment for microbial symbiotic communities in the “local primordial soup”. The discovery of the structure of the double stranded DNA led to the recognition of several basic principles of modern biology. Based on these rules the informational processes belonging to the DNA Empire have been compiled into a comprehensive hierarchically arranged system consisting of at least twelve processes known as the transfer of genetic information or genetic communication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bánfalvi, G. (1991). Evolution of osmolyte systems. Biochem Educ. 19, 136–139.

    Article  Google Scholar 

  • Bánfalvi, G. (2006). Why ribose was selected as the sugar component of nucleic acids. DNA Cell Biol. 25, 189–196 (2006).

    Article  PubMed  Google Scholar 

  • Bánfalvi, G. (2008). Cell cycle synchronization of animal cells and nuclei by centrifugal elutriation. Nature Protocols. 3, 663–673.

    Article  PubMed  Google Scholar 

  • Beadle, G.W. and Tatum, E.L. (1941). Genetic control of biochemical reactions in Neurospora. Proc Natl Acad Sci U S A. 27, 499–506.

    Article  PubMed  CAS  Google Scholar 

  • Bekker, A., Holland, H.D., Wang, P.L., Rumble III, D., Stein, H.J., Hannah, J.L., Coetzee, L.L. and Beukes, N.J. (2004). Dating the rise of atmospheric oxygen. Nature. 427, 117–120.

    Article  PubMed  CAS  Google Scholar 

  • Bell, S.D. and Jackson, S.P. (2001). Mechanism and regulation of transcription in archaea. Curr Opin Microbiol. 4, 208–213.

    Article  PubMed  CAS  Google Scholar 

  • Benzer, S. (1957). The elementary units of heredity. In The Chemical Basis of Heredity. Johns Hopkins University Press, Baltimore MD. pp. 70–93.

    Google Scholar 

  • Bird, A. (2007). Perceptions of epigenetics. Nature. 447, 396–398.

    Article  PubMed  CAS  Google Scholar 

  • Brocks, J.J., Logan, G.A., Buick, R. and Summons, R.E. (1999). Archean molecular fossils and the early rise of eukaryotes. Science. 285, 1033–1036.

    Article  PubMed  CAS  Google Scholar 

  • Cech, T.R. (1986). A model for the RNA-catalysed replication of RNA. Proc Nat Acad Sci USA. 83, 4360–4363.

    Article  PubMed  CAS  Google Scholar 

  • Crick, F.H.C. (1968). The origin of the genetic code. J Mol Biol. 38, 367–397.

    Article  PubMed  CAS  Google Scholar 

  • Crick, F.H.C. (1970). Central dogma of molecular biology. Nature. 227, 561–563.

    Article  PubMed  CAS  Google Scholar 

  • Crick, F.H.C. (1993). In The RNA World. Gesteland, R.F. and Atkins, J.F. eds. Cold Spring Harbor Laboratory Press, p. xiv.

    Google Scholar 

  • Crick, F.H.C., Barnett, L., Brenner, S. and Watts-Tobin, R.J. (1961). General nature of the genetic code for proteins. Nature. 192, 1227–1232.

    Article  PubMed  CAS  Google Scholar 

  • Fiers, W., Beyaert, R., Declercq, W. and Wandenabeele, P. (1999). More than one way to die: Apoptosis, necrosis and reactive oxygen damage. Oncogene. 18, 7719–7730.

    Article  PubMed  CAS  Google Scholar 

  • Forterre, P. (2006). The origin of viruses and their possible roles in major evolutionary transitions. Virus Research. 117, 5–16.

    Article  PubMed  CAS  Google Scholar 

  • Forterre, P., Filèe, J. and Myllykallio, H. (2003). The Genetic Code and the Origin of Life. Ribas de Pouplana, L. ed. Springer Verlag, New York. p. 24.

    Google Scholar 

  • Forterre, P., Gribaldo, S. and Brochier, C. (2005). Luca: The last universal common ancestor. Mèd Sci, Paris. 21, 860–865.

    Google Scholar 

  • Gilbert, W. (1986). The RNA World. Nature. 319, 616–618.

    Article  Google Scholar 

  • Gould, S.J. (1989). In Wonderful Life: The Burgess Shale and the Nature of History. W.W. Norton and Company. p. 58.

    Google Scholar 

  • Gregory, E., Goscin, S. and Fridovich, I. (1974). Superoxide dismutase and oxygen toxicity in a eukaryote. J Appl Bacteriol. 117, 456–460.

    CAS  Google Scholar 

  • Guha, M., Kumar, S., Choubey, V., Maity, P. and Bandyopadhyay, U. (2006). Apoptosis in liver during malaria: Role of oxidative stress and implication of mitochondrial pathway. FASEB J. 20, 1224–1226.

    Article  PubMed  CAS  Google Scholar 

  • Hartwell, L.H. and Weinert, T. A. (1989). Checkpoints: Controls that ensure the order of cell cycle events. Science 246, 629–634.

    Article  PubMed  CAS  Google Scholar 

  • Hewitt, J. and Morris, J. (1975). Superoxide dismutase in some obligately anaerobic bacteria. FEBS Letts. 50, 315–318.

    CAS  Google Scholar 

  • Hunt, T., Prentis, S. and Tooze, J. (1983). In DNA Makes RNA Makes Protein. Elsevier Press, Amsterdam. 226–232.

    Google Scholar 

  • Joyce, G.F. (1991). The rise and fall of the RNA World. New Biologist. 3, 339–407.

    Google Scholar 

  • Kelman, L.M. and Kelman, Z. (2003). Archaea: An archetype for replication initiation studies? Mol Microbiol. 48, 605–615.

    Article  PubMed  CAS  Google Scholar 

  • Koonin, E.V. and Martin, W. (2005). On the origin of genomes and cells within inorganic compartments. Trends in Genet. 21, 647–654.

    Article  CAS  Google Scholar 

  • Larralde, R., Robertson, M.P. and Miller, S.L. (1995). Rates of decomposition of ribose and other sugars: Implications for chemical evolution. Proc Natl Acad Sci U S A. 92, 8158–8160.

    Article  PubMed  CAS  Google Scholar 

  • Matthaei, J.H., Jones, O.W., Martin, R.G. and Nirenberg, M.W. (1962). Characteristics and composition of RNA coding units. Proc Natl Acad Sci U S A. 48, 666–677.

    Article  PubMed  CAS  Google Scholar 

  • Mojzis, S.J., Arrhenius, G., Mckeegan, K.D., Harrison, T.M., Nutman, A.P. and Friend, R.L. (1996). Evidence for life on Earth before 3,800 million years ago. Nature. 384, 55–59.

    Article  Google Scholar 

  • Moore, P.B., Gesteland, R.F. and Atkins, J.F. (1993). In The RNA World. Cold Spring Harbor Laboratory Press. p. 131.

    Google Scholar 

  • Mulliez, E., Meier, C., Cremonini, M., Luchinat, C., Trautwein, A.X. and Fontecave, M. (1999). Iron-sulfur interconversions in the anaerobic ribonucleotide reductase from Escherichia coli. J Biol Inorg Chem. 4, 614–620.

    Article  PubMed  CAS  Google Scholar 

  • Murray, A.W. (1992). Creative blocks: Cell-cycle checkpoints and feedback controls. Nature. 359, 599–604.

    Article  PubMed  CAS  Google Scholar 

  • Murray, J.B. and Arnold, R.P. (1996). Antibiotic interactions with the hammerhead ribozyme: Tetracyclines as a new class of hammerhead inhibitor. Biochem J, Great Britain. 317, 855–860.

    CAS  Google Scholar 

  • Nicholls, D.G. and Budd, S.L. (2000). Mitochondria and neuronal survival. Physiological Reviews. 80, 315–360.

    PubMed  CAS  Google Scholar 

  • Offer, H., Wolkowicz, R., Matas, D., Blumenstein, S., Livneh, Z. and Rotter, V. (1999). Direct involvement of p53 in the base excision repair pathway of the DNA repair machinery. FEBS Lett. 450, 197–204.

    Article  PubMed  CAS  Google Scholar 

  • Offer, H., Zurer, I., Bánfalvi, G., Rehak, M., Falcovitz, A., Milyavsky, M., Goldfinger, N. and Rotter, V. (2001). p53 modulates base excision repair activity in a cell cycle specific manner following genotoxic stress. Cancer Res. 61, 88–96.

    PubMed  CAS  Google Scholar 

  • Parker, M.W., Blake, C.C., Barra, D., Bossa, F., Schinina, M.E., Bannister, W.H. and Bannister, J.V. (1987). Mitochondria and neuronal survival. Protein Eng. 1, 393–397.

    Article  PubMed  CAS  Google Scholar 

  • Parker, P.W. and Blake, C.C. (1988). Iron- and manganese-containing superoxide dismutases can be distinguished by analysis of their primary structures. FEBS Lett. 229, 377–382.

    Article  PubMed  CAS  Google Scholar 

  • Pley, H.W., Flaherty, K.M. and Mckay, D.B. (1994). Three-dimensional structure of a hammerhead ribozyme. Nature. 372, 68–74.

    Article  PubMed  CAS  Google Scholar 

  • Reichard, P. (1993). The anaerobic ribonucleotide reductase from Escherichia coli. J Biol Chem. 268, 8383–8386.

    PubMed  CAS  Google Scholar 

  • Reichard, P. (1997). The evolution of ribonucleotide reduction. Trends Biochem Sci. 22, 81–85.

    Article  PubMed  CAS  Google Scholar 

  • Reichard, P. and Ehrenberg, A. (1983). Ribonucleotide reductase-a radical enzyme. Science. 221, 514–519.

    Article  PubMed  CAS  Google Scholar 

  • Russel, M.J. and Hall, A.J. (1997). The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front. J Geol Soc London. 154, 377–402.

    Article  Google Scholar 

  • Sarabhai, A.S., Stretton, A.O.W., Brenner, S. and Bolle, A. (1964). Co-linearity of the gene with the polypeptide chain. Nature. 201, 13–17.

    Article  PubMed  CAS  Google Scholar 

  • Schleiden, M.J. (1938). Beitrage zue Phytogenesis. Arch. Anat. Physiol. Wiss. Med. 13, 137–176.

    Google Scholar 

  • Schmidt-Nielsen, K.S. (1997). Respiration in water. In Animal Physiology. Cambridge University Press. pp. 16–17.

    Google Scholar 

  • Schwann, T. (1939). Mikroskopische Untersuchungen über die Übereinstimmung in der Struktur und dem Wachstum der Tiere und Pflanzen, Sander’schen Buchhandlung, Berlin.

    Google Scholar 

  • Schweighoffer, T., Schweighoffer, E., Apati, A., Antoni, F., Molnar, G., Lapis, K. and Bánfalvi, G. (1991). Cytometric analysis of DNA replication inhibited by emetine and cyclosporin A. Histochemistry. 96, 93–97.

    Article  PubMed  CAS  Google Scholar 

  • Smith, D., Muscatine, L. and Lewis, D. (1969). Carbohydrate movement from autotrophs to heterotrophs in parasitic and mutualistic symbiosis. Biol Rev Camb Phil Soc. 44, 17–90.

    Article  CAS  Google Scholar 

  • Stubbe, J. (2000). Ribonucleotide reductases the link between an RNA and a DNA world? Curr Opin Struct Biol. 10, 731–736.

    Article  PubMed  CAS  Google Scholar 

  • Stubbe, J., Ge, J. and Yee, C.S. (2001). The evolution of ribonucleotide reduction revisited. Trends Biochem Sci. 26, 93–99.

    Article  PubMed  CAS  Google Scholar 

  • Temin, H.M. and Baltimore, D. (1972). RNA-directed DNA synthesis and RNA tumour viruses. Adv Virus Res. 17, 129–86. Review.

    Article  PubMed  CAS  Google Scholar 

  • Thelander, L. and Reichard, P. (1979). Reduction of ribonucleotides. Annu Rev Biochem. 48, 133–158.

    Article  PubMed  CAS  Google Scholar 

  • Valduga, G., Bertoloni, G., Reddi, E. and Jori, G. (1993). Effect of extracellularly generated singlet oxygen on gram-positive and gram-negative bacteria. Journal Photochem Photobiol. B. 21, 81–86.

    Article  CAS  Google Scholar 

  • Watson, J.D. and Crick, F.H.C. (1953). Molecular structure of nucleic acids, a structure for deoxyribose nucleic acid. Nature. 171, 737–738.

    Article  PubMed  CAS  Google Scholar 

  • Yanofsky, C., Carlton, B.C., Guest, J.R., Helinski, D.R. and Henning, U. (1964). On the colinearity of gene structure and protein structure. Proc Natl Acad Sci U S A. 51, 266–271.

    Article  PubMed  CAS  Google Scholar 

  • Yashuda, K. (2004). Biotecnology approach to determination of genetic and epigenetic control in cells. J. Nanobiotechnol. 2, 11.

    Article  Google Scholar 

  • Zaug, A.J. and Cech, T.R. (1980). In vitro splicing of the ribosomal RNA precursor in nuclei of Tetrahymena. Cell. 19, 331–338.

    Article  PubMed  CAS  Google Scholar 

  • Zuckerkandl, E. and Pauling, L. (1965). Molecules as documents of evolutionary history. J Theor Biol. 8, 357–366.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Bánfalvi, G. (2009). DNA Empire. In: Apoptotic Chromatin Changes. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9561-0_1

Download citation

Publish with us

Policies and ethics