Skip to main content

Looking beyond Limitations of Diffraction Methods of Structural Analysis of Nanocrystalline Materials

  • Conference paper
IUTAM Symposium on Modelling Nanomaterials and Nanosystems

Part of the book series: IUTAM Bookseries ((IUTAMBOOK,volume 13))

Abstract

In this work we discuss how to learn about the real atomic structure of nanocrystalline materials without misinterpreting the results of powder diffraction experiments. We discuss implications of nano-size on powder diffractograms based on some theoretical models of nanograins. Examples of experimental studies on nanocrystalline diamond and SiC are demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Suryanarayana (Ed.), Non-equilibrium Processing of Materials, Pergamon, 1999.

    Google Scholar 

  2. H. Gleiter, Nanostructured materials: Basic concepts and microstructure, Acta Mater. 48 (2000) 1–29.

    Article  CAS  Google Scholar 

  3. A.P. Alivisatos, Nanocrystals: Building blocks for modern materials design, Endeavour 21 (1997) 56–60.

    Article  CAS  Google Scholar 

  4. Z.L. Wang, Characterization of Nanophase Materials, Wiley-VCH, 2000.

    Google Scholar 

  5. J.T. Lue, A review of characterization and physical property studies of metallic nanoparticles, J. Phys. Chem. Solids 62 (2001) 1599–1612.

    Article  ADS  CAS  Google Scholar 

  6. B. Palosz, S. Stelmakh, E. Grzanka, S. Gierlotka, and W. Palosz, Application of the apparent lattice parameter to determination of the core-shell structure of nanocrystals, Nanocrystallog raphy, Z. Krist. 222 (2007) 580–594.

    Article  CAS  Google Scholar 

  7. D.L. Bish and J.E. Post, Modern powder diffraction, Rev. Mineral. Geochem. 20 (1989).

    Google Scholar 

  8. R.A. Young, The Rietveld Method, International Union of Crystallography, Oxford University Press, 1993.

    Google Scholar 

  9. T. Egami and S.J.L. Billinge, Underneath the Bragg Peaks: Structural Analysis of Complex Materials, Pergamon, 2003.

    Google Scholar 

  10. S.J.L. Billinge and M.F. Thorpe, Local Structure from Diffraction, Plenum Press, New York, 1998.

    Google Scholar 

  11. Th. Proffen and S.J.L. Billinge, PDTFIT, a program for full profile structural refinement of the Atomic Pair Distribution function, J. Appl. Cryst. 32 (1999) 572–575.

    Article  CAS  Google Scholar 

  12. Th. Proffen, S.J.L. Billinge, T. Egami, and D. Louca, Structural analysis of complex materials using the atomic pair distribution function — A practical guide, Z. Krist. 218 (2003) 132–143.

    Article  CAS  Google Scholar 

  13. V. Petkov, S.J.L. Billinge, P. Larson, S.D. Mahanti, T. Vogt, K.K. Rangan, and M.G. Kanatzidis, Structure of nanocrystalline materials using atomic pair distribution function analysis: Study of LiMoS2, Phys. Rev. B65 (2002) 092105.

    ADS  Google Scholar 

  14. B. Palosz, E. Grzanka, S. Gierlotka, S. Stelmakh, R. Pielaszek, U. Bismayer, J. Neuefeind, H.-P. Weber, Th. Proffen, R. Von Dreele, and W. Palosz, Analysis of short and long range atomic order in nanocrystalline diamonds with application of powder diffractometry, Z. Krist. 217 (2002) 497–509.

    Article  CAS  Google Scholar 

  15. B. Palosz, C. Pantea, E. Grzanka, S. Stelmakh, Th. Proffen, T.W. Zerda, and W. Palosz, Investigation of relaxation of nano-diamond surface in real and reciprocal spaces, Diamond and Related Materials 15 (2006) 1813–1817.

    Article  CAS  Google Scholar 

  16. I. Petrov, O. Shenderova, V. Grishko, V. Grichko, T. Tyler, G. Cunningham, and G. McGuire, Detonation nanodiamonds simultaneously purified and modified by gas treatment, Diamond and Related Materials 16 (2007) 2098–2103.

    Article  CAS  Google Scholar 

  17. L. Sun and F. Banhart, Graphitic onions as reaction cells on the nanoscale, Appl. Phys. Lett. 88 (2006) 193121.

    Article  ADS  CAS  Google Scholar 

  18. I.K. Robinson and I.A. Vartanyants, Use of coherent X-ray diffraction to map strain fields in nanocrystals, Appl. Surface Sci. 182 (2001) 186–191.

    Article  ADS  CAS  Google Scholar 

  19. W.J. Huang, R. Sun, J. Tao, L.D. Menard, R.G. Nuzzo, and J.M. Zuo, Coordination-dependent surface atomic contraction in nanocrystals revealed by coherent diffraction, Nature Mater. 7 (2008) 308–313.

    Article  CAS  Google Scholar 

  20. B. Gilbert, H. Zhang, F. Huang, J.F. Banfield, Y. Ren, D. Haskel, J.C. Lang, G. Srajer, A. Jür gensen, and G. Waychunas, Analysis and simulation of structure of nanoparticles that undergo a surface-driven structural transformation, J. Chem. Phys. 120 (2004) 11785–11795.

    Article  PubMed  ADS  CAS  Google Scholar 

  21. M. Kohyama, Computational studies of grain boundaries in covalent materials, Modeling Simul. Mater. Sci. Eng. 10 (2002) R31–R59.

    Article  ADS  CAS  Google Scholar 

  22. H. Svygenhoven, D. Farkas, and A. Caro, Grain-boundary structure in polycrystalline metals at the nanoscale, Phys. Rev. B62 (2000) 831–838.

    ADS  Google Scholar 

  23. S.H. Svygenhoven, P.M. Derlet, and A. Hasnaoui, Atomistic modeling of strength of nanocrys talline metals, Adv. Engrg. Mater. 5 (2003) 345–350.

    Article  CAS  Google Scholar 

  24. J. Schitz, F.D. DiTolla, and K.W. Jacobsen, Softening of nanocrystalline metals at very small grain sizes, Nature 391 (1998) 561–563.

    Article  ADS  Google Scholar 

  25. J. Schitz, T. Vegge, F.D. DiTolla, and K.W. Jacobsen, Atomic-scale simulations of the mechanical deformation of nanocrystalline materials, Phys. Rev. B60 (1999) 11971–11983.

    ADS  Google Scholar 

  26. S.R. Phillpot, D. Wolf, and H. Gleiter, Molecular-dynamic study of the synthesis and characterization of a fully dense, three-dimensional nanocrystalline material, J. Appl. Phys. 78 (1995) 847–861.

    Article  ADS  CAS  Google Scholar 

  27. I. Szlufarska, A. Nakano, and P. Vashishta, A crossover in the mechanical response of nanocrystalline ceramics, Science 309 (2005) 911.

    Article  PubMed  ADS  CAS  Google Scholar 

  28. I. Szlufarska, R.K. Kalia, A. Nakano A., et al., Atomistic mechanisms of amorphization during nanoindentation of SiC: A molecular dynamics study, Phys. Rev. B71 (2005) 174113.

    ADS  Google Scholar 

  29. B. Palosz, S. Stelmakh, E. Grzanka, S. Gierlotka, S. Nauyoks, T.W. Zerda, and W. Palosz, Origin of macro- and micro-strains in diamond-SiC nanocomposites based on the core-shell model, J. Appl. Phys. 102 (2007) 074303.

    Article  ADS  CAS  Google Scholar 

  30. M.C. Righi, C.A. Pignedoli, G. Borghi, R.Di Felice, and C.M.Bertoni, Surface-induced stacking transition at SiC(0001), Phys. Rev. B66 (2002) 045320

    ADS  Google Scholar 

  31. A.S. Masadeh, E.S. Bozin, C.L. Farrow, G. Paglia, P. Juhas, S.J.L. Billinge, A. Karkamkar, and M.G. Kanatzidis, Quantitative size-dependent structure and strain determination of CdSe nanoparticles using atomic pair distribution function analysis, Phys. Rev. B76 (2007) 115413.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, B.V.

About this paper

Cite this paper

Palosz, B. et al. (2009). Looking beyond Limitations of Diffraction Methods of Structural Analysis of Nanocrystalline Materials. In: Pyrz, R., Rauhe, J.C. (eds) IUTAM Symposium on Modelling Nanomaterials and Nanosystems. IUTAM Bookseries, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9557-3_9

Download citation

Publish with us

Policies and ethics