Advertisement

Modelling Transient Heat Conduction at Multiple Length and Time Scales: A Coupled Non-Equilibrium Molecular Dynamics/Continuum Approach

  • Kenny Jolley
  • Simon P.A. Gill
Part of the IUTAM Bookseries book series (IUTAMBOOK, volume 13)

Abstract

A method for controlling the thermal boundary conditions of non-equilibrium molecular dynamics simulations by concurrent coupling with a continuum far field region is presented. The method is simple to implement into a conventional molecular dynamics code and independent of the atomistic model employed. It regulates the temperature in a thermostatted boundary region by feedback control to achieve the desired temperature at the edge of an inner region where the true atomistic dynamics are retained. This is necessary to avoid intrinsic boundary effects in non-equilibrium molecular dynamics simulations. A stadium damping thermostat is employed to avoid the adverse reflection of phonons that occurs at an MD interface. The effectiveness of the algorithm is demonstrated for the example of transient heat flow down a three-dimensional atomistic composite rod.

Keywords

Steady State Temperature Transient Heat Conduction Equilibrium Molecular Dynamic Langevin Thermostat Steady State Temperature Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Broughton, J.Q., Abrahams, F.F., Bernstein, N., Kaxiras, E.: Concurrent coupling of length scales: Methodology and application, Phys. Rev. B 60, 2391 (1999).CrossRefADSGoogle Scholar
  2. 2.
    Curtin, W.A., Miller, R.E: Atomistic/continuum coupling in computational materials science, Modelling Simul. Mater. Sci. Eng. 11 R33–R68 (2003).CrossRefADSGoogle Scholar
  3. 3.
    Gill, S.P.A., Jia, Z., Leimkuhler, B., Cocks, A.C.F.: Rapid thermal equilibration in coarsegrained molecular dynamics, Phys. Rev. B 73 184304 (2006).CrossRefADSGoogle Scholar
  4. 4.
    Li, X., Weinan, E.: Multiscale modelling of the dynamics of solids at finite temperature, J. Mech. Phys. Solids 53 1650–1685 (2005).MATHCrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Liu, W.K., Park, H.S., Qian, D., Karpov, E.G., Kadowaki, H., Wagner, G.J.: Bridging scale methods for nanomechanics and materials, Comput. Methods Appl. Mech. Engrg. 195 1407– 1421 (2006).MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Park, H.S., Karpov, E.G., Liu, W.K.: A temperature equation for coupled atomistic/continuum simulations, Comput. Methods Appl. Mech. Engrg. 193 1713–1732 (2004).MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Qu, S., Shastry, V., Curtin, W.A., Miller, R.E.: A finite temperature dynamic coupled atomistic/discrete dislocation method, Modelling Simul. Mater. Sci. 13 1101 (2005).CrossRefADSGoogle Scholar
  8. 8.
    Rudd, R.E., Broughton, J.Q.: Concurrent coupling of length scales in solid state systems, Phys. Stat. Sol. B 217, 5893 (2000).CrossRefGoogle Scholar
  9. 9.
    Shilkrot, L.E., Miller, R.E., Curtin, W.E.: Multiscale plasticity modelling: coupled atomistic and discrete dislocation mechanics, J. Mech. Phys. Solids 52 755–787 (2004).MATHCrossRefADSMathSciNetGoogle Scholar
  10. 10.
    Xiao, S.P., Belytschko, T.: A bridging domain method for coupling continua with molecular dynamics, Comput. Methods Appl. Mech. Engrg. 193 1645–1669 (2004).MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Dupuy, L.M., Tadmor, E.B., Miller, R.E., Phillips, R.: Finite-temperature quasicontinuum: Molecular dynamics without all the atoms, Phys. Rev. Lett. 95 060202 (2005).PubMedCrossRefADSGoogle Scholar
  12. 12.
    Bhowmick, S., Shenoy, V.B.: Effect of strain on the thermal conductivity of solids, J. Chem. Phys. 125 164513 (2006).PubMedCrossRefADSGoogle Scholar
  13. 13.
    Heino, P.: Thermal conductivity and temperature in solid argon by nonequilibrium molecular dynamics simulations, Phys. Rev. B 71 144302 (2005).CrossRefADSGoogle Scholar
  14. 14.
    Huang, Z., Tang, Z.: Evaluation of momentum conservation influence in non-equilibrium molecular dynamics methods to compute thermal conductivity, Physica B 373 291–296 (2006).CrossRefADSGoogle Scholar
  15. 15.
    Lepri, S., Livi, R., Politi, A,: Energy transport in anharmonic lattices close to and far from equilibrium, Physica D 119 140–147 (1998).CrossRefADSGoogle Scholar
  16. 16.
    Lepri, S., Livi, R., Politi, A.: Thermal conduction in classical low-dimensional lattices, Physics Rep. 377(1) 1–80 (2003).CrossRefADSMathSciNetGoogle Scholar
  17. 17.
    Prasher, R.: Diffraction limited phonon thermal conductance of nanoconstrictions, Appl. Phys. Lett. 91 143119 (2007).CrossRefADSGoogle Scholar
  18. 18.
    Schelling, P.K., Phillpot, S.R., Keblinski, P.: Comparison of atomic-level simulation methods for computing thermal conductivity, Phys. Rev. B 65 144306 (2002).CrossRefADSGoogle Scholar
  19. 19.
    Segal, D., Nitzan, A.: Thermal conductance through molecular wires, J. Chem. Phys. 119 13 6840 (2003).CrossRefGoogle Scholar
  20. 20.
    Watanabe, T., Ni, B., Phillpot, S.R.: Thermal conductance across grain boundaries in diamond from molecular dynamics simulation, J. Appl. Phys. 102 063503 (2007).CrossRefADSGoogle Scholar
  21. 21.
    Terao, T., Muller—Plathe, F.: A nonequilibrium molecular dynamics method for thermal conductivities based on thermal noise, J. Chem. Phys. 122 081103 (2005).CrossRefADSGoogle Scholar
  22. 22.
    Holian, B.L., Ravelo, R.: Fracture simulations using large-scale molecular-dynamics, Phys. Rev. B 51 11275–11288 (1995).CrossRefADSGoogle Scholar
  23. 23.
    Huang, W., Huang, G., Wang, L., Huang, B.: Phonon-cavity-enhanced low temperature thermal conductance of a semiconductor nanowire with narrow constrictions, Phys. Rev. B 75 233415 (2007).CrossRefADSGoogle Scholar
  24. 24.
    Tian, W., Yang, R.: Effect of interface scattering on phonon thermal conductivity percolation in random nanowire composites, Appl. Phys. Lett. 90 263105 (2007).CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, B.V. 2009

Authors and Affiliations

  • Kenny Jolley
    • 1
  • Simon P.A. Gill
    • 1
  1. 1.Department of EngineeringUniversity of LeicesterLeicesterUK

Personalised recommendations