Skip to main content

Use of Reptation Dynamics in Modelling Molecular Interphase in Polymer Nano-Composite

  • Conference paper
IUTAM Symposium on Modelling Nanomaterials and Nanosystems

Part of the book series: IUTAM Bookseries ((IUTAMBOOK,volume 13))

  • 1829 Accesses

Abstract

In polymer matrix composites, exhibiting heterogeneous structure at multiple length scales, the interphase phenomena at various length scales were shown to be of pivotal importance for the control of the performance and reliability of such structures. At the micro-scale, the interphase is modelled as a 3D continuum with some average properties most commonly resulting from data fitting procedures. Number of continuum mechanics models was derived over the last 50 years to describe the stress transfer between matrix and an individual fiber, considering the interphase with various chemical structure and thickness the third component of the model composite characterized by some average shear strength, τa, with realtively good success. The observed strong thickness dependence of the elastic modulus of the interphase with thickness smaller than 500 nm suggested presence of its underlying nano-scale molecular sub-structure. On the nano-scale, the discrete molecular structure of the polymer has to be considered. At this length scale, the continuum mechanics can only be used for materials with characteristic length scale greater than approximately 20 nm. Below 20 nm, continuum mechanics becomes not valid and gradient-strain elasticity along with molecular dynamics approach has to be used. The segmental immobilization seems to be the primary mechanism controlling the behavior of nano—scale “interphase”. Modified reptation model was used to describe the dynamics of chains near a solid nano-particles and to explain the peculiarities in the viscoleastic response of polymer nanocomposites. These results reflecting the discrete molecular nature of the nano-scale interphase can be used in gradient-strain elasticity models. Experimental results obtained for model nanocomposites were used to support theoretical predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jancar J (2008), Review of the role of the interphase in the control of composite performance on micro- and nano-length scales, J. Mater. Sci., in print.

    Google Scholar 

  2. DiBenedetto AT (2001), Tailoring of interfaces in glass fiber reinforced polymer composites: A review, Materials Science and Engineering A 302, 74–82.

    Article  Google Scholar 

  3. Jancar J (2006), Effect of interfacial shear strength on the mechanical response of polycarbonate and PP reinforced with basalt fibers, Comp. Interfaces 13, 853–864.

    Article  CAS  Google Scholar 

  4. Jancar J (2006), Hydrolytic stability of PC/GF composites with engineered interphase of varying elastic modulus, Comp. Sci. Technol. 66, 3144–3152.

    Article  CAS  Google Scholar 

  5. Kalfus J, Jancar J (2007), realxation processes in PVAc-HA nanocomposites, J. Polym. Sci.: PartB : Polym. Phys. 45, 1380–1388.

    Article  CAS  Google Scholar 

  6. Kalfus J, Jancar J (2007), Viscoelastic response of nanocomposite poly(vynil acetate) hydroxyapatite with varying particle shape — Dynamic strain softening and modulus recovery, Polym. Compos. 28, 743–747.

    Article  CAS  Google Scholar 

  7. Vacatello M (2002), Chain dimensions in filled polymers: An intriguing problem, Macromolecules 35, 8191–8193.

    Article  CAS  Google Scholar 

  8. Vacatello M (2002), Molecular arrangements in polymer-based nanocomposites, Macromol. Theory Simul. 11, 757–765.

    Article  CAS  Google Scholar 

  9. Vacatello M (2003), Phantom chain simulations of polymer-nanofiller systems, Macromole-cules 36, 3411–3416.

    Article  CAS  Google Scholar 

  10. Vacatello M (2003), Predicting the molecular arrangements in polymer-based nanocomposites, Macromol. Theory Simul. 12, 86–91.

    Article  CAS  Google Scholar 

  11. Starr FW, Schröder TB, Glotzer SC (2002), Molecular dynamics simulation of a polymer melt with a nanoscopic particle, Macromolecules 35, 4481–4492.

    Article  CAS  Google Scholar 

  12. Cosoli P, Scocchi G, Pricl S, Fermeglia M (2008), Many-scale molecular simulation for ABS— MMT nanocomposites: Upgrading of industrial scraps, Micropor. Mesopor. Mater. 107 169– 179.

    Article  CAS  Google Scholar 

  13. Maranganti R, Sharma P (2007), A novel atomistic approach to determine strain-gradient elasticity constants: Tabulation and comparison for various metals, semiconductors, silica, polymers and the (Ir) relevance for nanotechnologies, J. Mech. Phys. Solids 55, 1823–1852.

    Article  ADS  CAS  Google Scholar 

  14. Park SK, Gao X-L (2006), Bernoulli-Euler beam model based on a modified couple stress theory, J. Micromech. Microengrg. 16, 2355–2359.

    Article  ADS  Google Scholar 

  15. Sharma P, Ganti S (2004), Size-dependent Eshelby's tensor for embedded nano-inclusions incorporating surface/interface energies, J. Appl. Mech. 71: 663–671.

    Article  MATH  Google Scholar 

  16. Sharma P, Ganti S, Bhate N (2003), Effect of surfaces on the size-dependent elastic state of nano-inhomogeneties, Appl. Phys. Lett. 82, 535–537.

    Article  ADS  CAS  Google Scholar 

  17. Nikolov S., Han C.S., Rabbe D (2007), On the origin of size effects in small-strain elasticity of solid polymers, Int. J. Solids Struct. 44, 1582–1592.

    Article  MATH  CAS  Google Scholar 

  18. Hashin Z (2002), Thin interphase/imperfekt interface in elasticity with application to coated fiber composites, J. Mech. Phys. Solids 50, 2509–2537.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Nairn JA (2007), Numerical implementation of imperfect interfaces, Comput. Mat. Sci. 40, 525–536.

    Article  CAS  Google Scholar 

  20. Droste DH, DiBenedetto AT (1969), The glass transition temperature of filled polymers and its effect on their physical properties, J. Appl. Polym. Sci. 13, 2149–2168.

    Article  CAS  Google Scholar 

  21. Cave NG, Kinloch AJ (1992), Self-assembling monolayer silane films as adhesion promoters, Polymer 33, 1162–1170.

    Article  CAS  Google Scholar 

  22. Zinc P., Wagner HD, Salmon L, Gerard J-F (2001), Are microcomposites realistic models of the fiber/matrix interface? II. Physico-chemical approach, Polymer 42, 6641–6650.

    Article  Google Scholar 

  23. John A. Nairn (1997), On the use of shear-lag methods for analysis of stress transfer in unidirectional composites, Mech. Mater. 26, 63–80.

    Article  Google Scholar 

  24. Johnson AC, Hayes SA, Jones FR (2005), An improved model including plasticity for the prediction of the stress in fibres with an interface/interphase region, Composites: Part A 36, 263–271.

    Google Scholar 

  25. Duan HL, Yi X, Huang ZP, Wang J (2007), A unified scheme for prediction of effective moduli of multiphase composites with interface effects: Part I. Theoretical framework, Mech. Mater. 39, 81–93.

    Article  Google Scholar 

  26. Duan HL, Yi X, Huang ZP, Wang J (2007), A unified scheme for prediction of effective moduli of multiphase composites with interface effects: Part II. Application and scaling laws, Mech. Mater. 39, 94–103.

    Article  Google Scholar 

  27. Wetherhold RC, Corjon M, Das PK (2007), Multiscale considerations for interface engineering to improve fracture toughness of ductile fiber/thermoset matrix composites, Comp. Sci. Technol. 67, 2428–2437.

    Article  CAS  Google Scholar 

  28. Wu ZJ, Ye JQ, Cabrera JG (2000), 3D analysis of stress transfer in the micromechanics of fiber reinforced composites by using an eigen-function expansion method, J. Mech. Phys. Solids 48, 1037–1063.

    Article  MATH  ADS  CAS  Google Scholar 

  29. Pisanova E, Zhandarov S, Mader E (2001), How can adhesion be determined from micromechanical tests–, Composites: Part A 32, 425–434.

    Article  Google Scholar 

  30. Xia Z, Okabe T, Curtin WA (2002), Shear-lag versus finite element models for stress transfer in fiber-reinforced composites, Comp. Sci. Technol. 62, 1141–1149.

    Article  CAS  Google Scholar 

  31. Goh KL, Aspden RL, Hukins DWL (2004), Review: Finite element analysis of stress transfer in short-fibre composite materials, Comp. Sci. Technol. 64, 1091–1100.

    Article  CAS  Google Scholar 

  32. Xie X-Q, Ranade SV, DiBenedetto AT (1999), A solid state NMR study of polycarbonate oligomer grafted onto the surface of amorphous silica, Polymer 40, 6297–6306.

    Article  CAS  Google Scholar 

  33. Kim J-K, Mai Y-W (1998), Micromechanics of stress transfer across the interface, in Engineered Interfaces in Fiber Reinforced Composites, Elsevier, Amsterdam, Ch. 4, pp. 93–164.

    Chapter  Google Scholar 

  34. DiAnselmo A, Jancar J, DiBenedetto AT, Kenny JM (1992), Finite element analysis of the effect of an interphase on the mechanical properties of polymeric composite materials, in Composite Materials, A.T. DiBenedetto, L. Nicolais, R Watanabe (Eds.), Elsevier Science Publ., pp. 49–59.

    Google Scholar 

  35. Cammarata RC (1997), Surface and interface stress effects on interfacial and nanostructured materials, Mater. Sci. Engrg. A 237, 180–184.

    Article  Google Scholar 

  36. Kalfus J, Jancar J (2007), Immobilization of polyvinylacetate macromolecules on hydroxyapatite nanoparticles, Polymer 48, 3935–3938.

    Article  CAS  Google Scholar 

  37. Sternstein SS, Zhu AJ (2002), Reinforcement mechanism of nanofilled polymer melts as elucidated by nonlinear viscoelastic behavior, Macromolecules 35, 7262–7273.

    Article  CAS  Google Scholar 

  38. Kalfus J, Jancar J (2007), Elastic response of nanocomposite poly(vinylacetate)/ hydroxyapatite with varying particle shape, Polym. Compos. 28, 365–371.

    Article  CAS  Google Scholar 

  39. Zhu AJ, Sternstein SS (2003), Nonlinear viscoelasticity of nanofilled polymers: Interfaces, chain statistics and properties recovery kinetics, Comp. Sci. Technol. 63, 1113–1126.

    Article  CAS  Google Scholar 

  40. Ozmusul MS, Picu CR, Sternstein SS, Kumar SK (2005), Lattice Monte Carlo simulations of chain conformations in polymer nanocomposites, Macromolecules 38, 4495–4500.

    Article  CAS  Google Scholar 

  41. Liu ZH, Li Y, Kowk KW (2001), Mean interparticle distances between hard particles in one to three dimensions, Polymer42, 2701–2706.

    Article  CAS  Google Scholar 

  42. Sargsyan A, Tonoyan A, Davtyan S, Schick C (2007), The amount of immobilized polymer in PMMA/SiO2 nanocomposites determined from calorimetric data, Eur. Polymer J. 43 3113– 3127.

    Article  CAS  Google Scholar 

  43. Doi M, Edwards SF (2003), Theory of Polymer Dynamics, Oxford University Press, London.

    Google Scholar 

  44. Lin, Y-H (1985), Comparison of the pure reptational times calculated from linear viscoelasticity and diffusion motion data of nearly monodisperse polymers, Macromolecules 18, 2779– 2781.

    Article  CAS  Google Scholar 

  45. Zheng, X, Sauer BB, van Alsten JG, Schwarz SA, Rafailovich MH, Sokolov J, Rubinstein M (1995), Repatation dynamics of a polymer melt near an attractive solid interface, Phys. Rev. Lett. 74, 407–415.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, B.V.

About this paper

Cite this paper

Jancar, J. (2009). Use of Reptation Dynamics in Modelling Molecular Interphase in Polymer Nano-Composite. In: Pyrz, R., Rauhe, J.C. (eds) IUTAM Symposium on Modelling Nanomaterials and Nanosystems. IUTAM Bookseries, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9557-3_30

Download citation

Publish with us

Policies and ethics