Advertisement

Modeling Electrospinning of Nanofibers

  • T. A. Kowalewski
  • S. Barral
  • T. Kowalczyk
Conference paper
Part of the IUTAM Bookseries book series (IUTAMBOOK, volume 13)

Abstract

A fast discrete model for the simulations of thin charged jets produced during the electrospinning process is derived, based on an efficient implementation of the boundary element method for the computation of electrostatic interactions of the jet with itself and with the electrodes. Short-range electrostatic forces are evaluated with slender-body analytical approximations, whereas a hierarchical force evaluation algorithm is used for long-range interactions. Qualitative comparisons with experiments is discussed.

Keywords

Boundary Element Method Electrospinning Process Solution Conductivity Fast Multipole Method Straight Part 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arayanarakul, K., Choktaweesap, N., Aht-ong, D., Meechaisue, C., Supaphol, P.: Effects of poly(ethylene glycol), inorganic salt, sodium dodecyl sulfate, and solvent system on electro-spinning of poly(ethylene oxide). Macromol. Mater. Eng. 291, 581 (2006).CrossRefGoogle Scholar
  2. 2.
    Arumuganathar, S., Jayashinghe, S.N.: Living scaffolds (specialized and unspecialized) for regenerative and therapeutic medicine. Biomacromolecules 9, 759 (2008).PubMedCrossRefGoogle Scholar
  3. 3.
    Barnes, J., Hut, P.: A hierarchical O(NlogN) force-calculation algorithm. Nature 324, 446 (1986).CrossRefADSGoogle Scholar
  4. 4.
    Bhattarai, S.R., Bhattarai, N., Yi, H.K., Hwang, P.H., Kim, H.Y.: Novel biodegradable electrospun membrane: Scaffold for tissue engineering. Biomaterials 25, 2595 (2004).PubMedCrossRefGoogle Scholar
  5. 5.
    Carretero-Benignos, J.A.: Numerical simulation of a single emitter colloid thruster in the pure droplet cone-jet mode. Ph.D. thesis, Massachusetts Institute of Technology (2005).Google Scholar
  6. 6.
    Carroll, C.P., Joo, Y.L.: Electrospinning of viscoelastic Boger fluids: Modeling and experiments. Phys. Fluids 18, 053102 (2006).CrossRefADSGoogle Scholar
  7. 7.
    Christlieb, A.J., Krasny, R., Verboncoeur, J.P., Emhoff, J.W., Boyd, I.D.: Grid-free plasma simulation techniques. IEEE. Trans. Plasma Sci. 34, 149 (2006).CrossRefADSGoogle Scholar
  8. 8.
    Dayal, P., Kyu, T.: Dynamics and morphology development in electrospun fibers driven by concentration sweeps. Phys. Fluids 19, 1011061 (2007).CrossRefGoogle Scholar
  9. 9.
    Feng, J.J.: The stretching of an electrified non-Newtonian jet: A model for electrospinning. Phys. Fluids 14, 3912 (2002).CrossRefADSGoogle Scholar
  10. 10.
    Feng, J.J.: Stretching of a straight electrically charged viscoelastic jet. J. Non-Newtonian Fluid Mech. 116, 55 (2003).zbMATHCrossRefGoogle Scholar
  11. 11.
    Fridrikh, S.V., Yu, J.H., Brenner, M.P., Rutledge, G.C.: Controlling the fiber diameter during electrospinning. Phys. Rev. Lett. 90, 144502 (2003).PubMedCrossRefADSGoogle Scholar
  12. 12.
    Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput. Phys. 73, 325 (1987).zbMATHCrossRefADSMathSciNetGoogle Scholar
  13. 13.
    Hohman, M.M., Shin, M., Rutledge, G., Brenner, M.P.: Electrospinning and electrically forced jets. I. Stability theory. Phys. Fluids 13, 2201 (2001).CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Khayms, V.: Advanced propulsion for microsatellites. Ph.D. thesis, Massachusetts Institute of Technology (2000).Google Scholar
  15. 15.
    Ko, F.K., El-Aufy, A., Lam, H.: Wearable Electronics and Photonics, chap. Electrostatically Generated Nanofibres for Wearable Electronics, pp. 13–40. Woodhead Publishing Ltd., Cambridge, UK (2005).CrossRefGoogle Scholar
  16. 16.
    Kowalczyk, T., Nowicka, A., Elbaum, D., Kowalewski, T.A.: Electrospinning of bovine serum albumin. Optimization and use for the production of biosensors. Biomacromolecules 9, 2087 (2008).PubMedCrossRefGoogle Scholar
  17. 17.
    Kowalewski, T.A., Blonski, S., Barral, S.: Experiments and modelling of electrospinning process. Bull. Polish Acad. Sci. 53, 385 (2005).Google Scholar
  18. 18.
    Lopez-Herrera, J.M., Ganan-Calvo, A.M., Perez-Saborid, M.: One-dimensional simulation of the breakup of capillary jets of conducting liquids. Application to E.H.D spraying. J. Aerosol Sci. 30, 895 (1999).CrossRefGoogle Scholar
  19. 19.
    Luu, Y.K., Kim, K., Hsiao, B., Chu, B., Hadjiargyrou, M.: Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLAPEG block copolymers. J. Control. Release 89, 341 (2003).PubMedCrossRefGoogle Scholar
  20. 20.
    Reneker, D.H., Yarin, A.L., Fong, H., Koombhongse, S.: Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. J. Appl. Phys. 87, 4531 (2000).CrossRefADSGoogle Scholar
  21. 21.
    Spivak, A.F., Dzenis, Y.A.: Asymptotic decay of radius of a weakly conductive viscous jet in an external electric field. Appl. Phys. Lett. 73, 3067 (1998).CrossRefADSGoogle Scholar
  22. 22.
    Thompson, C.J., Chase, G.G., Yarin, A.L., Reneker, D.H.: Effects of parameters on nanofiber diameter determined from electrospinning model. Polymer 48, 6913 (2007).CrossRefGoogle Scholar
  23. 23.
    Yang, Y., Jia, Z., Li, Q., Guan, Z.: Experimental investigation of the governing parameters in the electrospinning of polyethylene oxide solution. IEEE Trans. Dielectr. Electr. Insul. 13, 580 (2006).CrossRefGoogle Scholar
  24. 24.
    Yarin, A.L., Koombhongse, S., Reneker, D.H.: Bending instability in electrospinning of nanofibers. J. Appl. Phys. 89, 3018 (2001).CrossRefADSGoogle Scholar
  25. 25.
    Yoon, S.S., Heister, S.D., Epperson, J.T., Sojka, P.E.: Modeling multi-jet mode electrostatic atomization using boundary element methods. J. Electrostat. 50, 91 (2001).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, B.V. 2009

Authors and Affiliations

  • T. A. Kowalewski
    • 1
  • S. Barral
    • 1
  • T. Kowalczyk
    • 1
  1. 1.IPPT-PANWarsawPoland

Personalised recommendations