Advertisement

Small Scale and/or High Resolution Elasticity

  • I. Goldhirsch
  • C. Goldenberg
Part of the IUTAM Bookseries book series (IUTAMBOOK, volume 13)

Abstract

A general exact formulation of elasticity as a macroscopic theory with resolution that can be chosen, is presented. The theory is fully compatible with the classical theory of elasticity for coarse resolutions but exhibits differences at fine resolutions. For instance, a correction term to the classical expression for the elastic energy that stems from the work of the fluctuating displacements (in disordered systems) is obtained. Some applications and open problems are discussed.

Keywords

Granular Material Coarse Graining Momentum Density Granular System Classical Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alexander S (1998) Amorphous solids: Their structure, lattice dynamics and elasticity. Phys Reports 296:65–236.CrossRefGoogle Scholar
  2. 2.
    Babic M (1997) Average balance equations for granular materials. Int J Eng Sci 35:523–548.zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bathurst RJ, Rothenburg L (1988) Micromechanical aspects of isotropic granular assemblies with linear contact interactions. J Appl Mech 55:17–23.CrossRefGoogle Scholar
  4. 4.
    Berber S, Tománek D (2004) Stability differences and conversion mechanism between nan-otubes and scrolls. Phys Rev B 69:233,404.CrossRefGoogle Scholar
  5. 5.
    Bhushan B, Agrawal G (2002) Mechanical property measurements of nanoscale structures using an atomic force microscope. Nanotech 13:515–523.CrossRefADSGoogle Scholar
  6. 6.
    Born M, Huang K (1988) Dynamical Theory of Crystal Lattices. Clarendon Press, Oxford.zbMATHGoogle Scholar
  7. 7.
    Chang CS, Liao CL (1994) Estimates of elastic modulus for media of randomly packed granules. Appl Mech Rev 47:197–206.CrossRefGoogle Scholar
  8. 8.
    Chang CS, Misra A (1990) Application of uniform strain theory to heterogeneous granular solids. J Eng Mech 116:2310–2328.CrossRefGoogle Scholar
  9. 9.
    Digby PJ (1981) The effective elastic moduli of porous granular rocks. J Appl Mech 48:803–808.zbMATHCrossRefGoogle Scholar
  10. 10.
    Glasser BJ, Goldhirsch I (2001) Scale dependence, correlations, and fluctuations of stresses in rapid granular flows. Phys Fluids 13:407–420.CrossRefADSGoogle Scholar
  11. 11.
    Goldenberg C, Goldhirsch I (2005) Friction enhances elasticity in granular solids. Nature 435:188–191.PubMedCrossRefADSGoogle Scholar
  12. 12.
    Goldfarb I, Banks-Sills L, Eliasi R, Briggs G (2002) Finite element analysis of CoSi2 nanocrystals on Si(001). Interface Science 10:75–81.CrossRefGoogle Scholar
  13. 13.
    Goldhirsch I, Goldenberg C (2002) On the microscopic foundations of elasticity. Eur Phys J E 9:245–251.PubMedCrossRefGoogle Scholar
  14. 14.
    Kruyt NP, Rothenburg L (1996) Micromechanical definition of the strain tensor for granular materials. J Appl Mech 118:706–711.CrossRefGoogle Scholar
  15. 15.
    Landau L, Lifshitz E (1986) Theory of Elasticity, 3rd Edition. Pergamon, Oxford.Google Scholar
  16. 16.
    Liao CL, Chang TP, Young DH, Chang CS (1997) Stress-strain relationship for granular materials based on the hypothesis of best fit. Int J Solids Struct 34:4087–4100.zbMATHCrossRefGoogle Scholar
  17. 17.
    Makse HA, Gland N, Johnson DL, Schwartz LM (1999) Why effective medium theory fails in granular materials. Phys Rev Lett 83:5070–5073.CrossRefADSGoogle Scholar
  18. 18.
    Miller RE, Shenoy VB (2000) Size-dependent elastic properties of nanosized structural elements. Nanotech 11:139–147.CrossRefADSGoogle Scholar
  19. 19.
    Qian D, Wagner GJ, Liu WK, Yu MF, Ruoff RS (2002) Mechanics of carbon nanotubes. Appl Mech Rev 55:495–533.CrossRefGoogle Scholar
  20. 20.
    Roukes M (2001) Plenty of room indeed. Sci Am 285:48–57.PubMedCrossRefGoogle Scholar
  21. 21.
    Sharma P, Ganti S, Bhate N (2000) Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities. Appl Phys Lett 82:535–537.CrossRefADSGoogle Scholar
  22. 22.
    Srivastava D, Wei C, Cho K (2003) Nanomechanics of carbon nanotubes and composites. Appl Mech Rev 56:215–230.CrossRefGoogle Scholar
  23. 23.
    Truesdell C (1965) The classical field theories. In: Flügge S (ed) Encyclopedia of Physics, vol III/1, Springer-Verlag, Berlin, p 1.Google Scholar
  24. 24.
    Wajnryb E, Altenberger AR, Dahler JS (1995) Uniqueness of the microscopic stress tensor. J Chem Phys 103:9782–9787.CrossRefADSGoogle Scholar
  25. 25.
    Xiao T, Liao K (2003) Non-linear elastic response of fullerene balls under uniform and axial deformations. Nanotech 14:1197–1202.CrossRefADSGoogle Scholar
  26. 26.
    Zhu HP, Yu AB (2002) Averaging method of granular materials. Phys Rev E 66:021,302.Google Scholar

Copyright information

© Springer Science+Business Media, B.V. 2009

Authors and Affiliations

  • I. Goldhirsch
    • 1
  • C. Goldenberg
    • 2
  1. 1.School of Mechanical EngineeringTel-Aviv UniversityTel-AvivIsrael
  2. 2.Laboratoire de Physique et Mécanique des Milieux Hétérogènes (CNRS UMR 7636)ESPCIParis Cedex 05France

Personalised recommendations