Skip to main content

Finite Element Modelling Clay Nanocomposites and Interface Effects on Mechanical Properties

  • Conference paper
IUTAM Symposium on Modelling Nanomaterials and Nanosystems

Part of the book series: IUTAM Bookseries ((IUTAMBOOK,volume 13))

Abstract

The use of modelling to understand the science of engineering strong and tough materials through clay nanocomposite technology is potentially beneficial and needs to be realised. In this paper, the use of continuum finite element method as a start point to model clay/epoxy nanocomposites and its mechanical properties is explored. Its computation cost is cheap; a full three-dimensional continuum representative volume element (RVE) model to investigate the effects of interfaces on the mechanical properties of nanocomposites is new; and the use of continuum finite element method at the nano-scale with all its advantages and short-comings needs understanding. This paper briefly introduces the approach to developing RVE models of nanocomposites consisting of Montmorillonite clay nanofillers that are randomly orientated and randomly embedded in an epoxy matrix. Thereafter, the mechanics of interface failure such as particle splitting (or debonding) and its effect on the mechanical properties such as stress-strain behaviour and strength of the nanocomposite is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fornes TD and Paul DR: Modeling properties of nylon 6/clay nanocomposites using composite theories. Polymer 44, 4993–5013 (2004).

    Article  CAS  Google Scholar 

  2. Wang J and Pyrz R: Prediction of the overall moduli of layered silicate-reinforced nanocomposites — Part I: Basic theory and formulas. Compos Sci Technol 64, 925–934 (2004).

    Article  CAS  Google Scholar 

  3. Sheng N, Boyce MC, Parks DM, Rutledge GC, Abes JI, Cohen RE: Multiscale micromechanical modeling of polymer/clay nanocomposites and the effective clay particle. Polymer 45, 487–506 (2004).

    Article  CAS  Google Scholar 

  4. Hbaieb K, Wang QX, Chia YHJ, Cotterell B: Modelling stiffness of polymer/clay nanocomposites. Polymer 48, 901–909 (2007).

    Article  CAS  Google Scholar 

  5. Chia JYH, Hbaieb K, Wang QX: Finite element modelling epoxy/clay nanocomposites. Key Eng Mater 334–335, 785–788 (2007).

    Article  Google Scholar 

  6. Zeng QH, Yu AB, Lu GQ: Multiscale modeling and simulation of polymer nanocomposites. Prog Polym Sci 33, 191–269 (2008).

    Article  CAS  Google Scholar 

  7. Wang K, Chen L, Wu JS, Toh ML, He CB, Yee AF: Epoxy nanocomposites with highly exfoliated clay: Mechanical properties and fracture mechanisms. Macromol 38, 788–800 (2005).

    Article  CAS  ADS  Google Scholar 

  8. Kim GM, Lee DH, Hoffmann B, Kresslerd J, Stöppelmann G: Influence of nanofillers on the deformation process in layered silicate/polyamide-12 nanocomposites. Polymer 42, 1095– 1100 (2001).

    Article  CAS  Google Scholar 

  9. Chia JYH: Mathematical basis for developing 3-dimension unit cell models of nanocomposites containing randomly dispersed-orientated circular-disc-shaped particles. Institute of Materials Research and Engineering, A-STAR, WBS Code: IMRE/07-1R0223 Internal Report (Nov 2007).

    Google Scholar 

  10. ABAQUS Version 6.7, SIMULIA, Dassault Systems.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, B.V.

About this paper

Cite this paper

Chia, J.Y.H. (2009). Finite Element Modelling Clay Nanocomposites and Interface Effects on Mechanical Properties. In: Pyrz, R., Rauhe, J.C. (eds) IUTAM Symposium on Modelling Nanomaterials and Nanosystems. IUTAM Bookseries, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9557-3_25

Download citation

Publish with us

Policies and ethics