Skip to main content

Elastic Fields in Quantum Dot Structures with Arbitrary Shapes and Interface Effects

  • Conference paper
IUTAM Symposium on Modelling Nanomaterials and Nanosystems

Part of the book series: IUTAM Bookseries ((IUTAMBOOK,volume 13))

  • 1812 Accesses

Abstract

Elastic fields in quantum dot (QD) structures affect their physical and mechanical properties, and they also play a significant role in their fabrication. The elastic fields in QD structures may be induced by mismatches in the coefficients of thermal expansion and the lattice constants of species, by defects, and by external loading. The calculation of the elastic fields in QD structures is complicated by several factors: by the complex shapes of QDs; by the anisotropy of the material species; and by the interface effects at the nano scale. In this paper we present a general approach to the calculation of the elastic fields in QD structures of arbitrary shape. This approach can also deal with the anisotropy of the QD material, the non-uniformity of its composition, the mismatch in the elastic constants of the matrix and the QD, and the interface effect. The effects of these factors on the elastic fields are depicted by analytical and numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chu H.J. and Wang J., 2005, Strain distribution in arbitrarily shaped quantum dots with nonuniform composition, J. Appl. Phys. 98: 034315.

    Article  ADS  CAS  Google Scholar 

  2. Chu H.J. and Wang, J., 2005, An approach for calculating strain distributions in arbitrarily shaped quantum dots. Chin. Phys. Lett. 22: 667–670.

    Article  ADS  CAS  Google Scholar 

  3. Chu H.J., 2006, Mechanics of semiconductor quantum dot structures. PhD Thesis, Peking University.

    Google Scholar 

  4. Davies J.H., 2003, Elastic field in a semi-infinite solid due to thermal expansion or a coherently misfitting inclusion, J. Appl. Mech. 70: 655–660.

    Article  MATH  Google Scholar 

  5. Downes J.R. and Faux D.A., 1995, Calculation of strain distributions in multiple-quantum-well strained-layer structures, J. Appl. Phys. 77: 2444–2447.

    Article  ADS  CAS  Google Scholar 

  6. Downes J.R., Faux D.A., and O'Reilly E.P., 1997, A simple method for calculating strain distributions in quantum dot structures, J. Appl. Phys. 81: 6700–6702.

    Article  ADS  CAS  Google Scholar 

  7. Duan H.L., Wang J., Huang Z.P., and Karihaloo B.L., 2005, Eshelby formalism for nano-inhomogeneities, Proc. R. Soc. A 461: 3335–3353.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Freund L.B. and Johnson H.T., 2001, Influence of strain on functional characteristics of nano-electronic devices, J. Mech. Phys. Solids 49: 1925–1935.

    Article  MATH  ADS  CAS  Google Scholar 

  9. Gosling T.J., and Willis J.R., 1995, Mechanical stability and electronic properties of buried strained quantum wire arrays, J. Appl. Phys. 77: 5601–5610.

    Article  ADS  CAS  Google Scholar 

  10. Grundmann M., Stier O., and Bimberg D., 1995, InAs/GaAs pyramidal quantum dots: Strain distribution, optical phonons, and electronic structure, Phys. Rev. B 52: 11969–11981.

    Article  ADS  CAS  Google Scholar 

  11. Gunnella R., Castrucci P., Pinto N., Davoli I., Sébilleau D., and Crescenzi M.D., 1996, X-ray photoelectron-diffraction study of intermixing and morphology at the Ge/Si(001) and Ge/Sb/Si(001) interface, Phys. Rev. B 54: 8882–8891.

    Article  ADS  CAS  Google Scholar 

  12. Ikeda A., Sumitomo K., Nishioka T., Yasue T., Koshikawa T., and Kido Y., 1997, Intermixing at Ge/Si(001) interfaces studied by surface energy loss of medium energy ion scattering, Surf. Sci. 385: 200–206.

    Article  ADS  CAS  Google Scholar 

  13. Makeev M.A., Wenbin Yu, and Madhukar A., 2004, Atomic scale stresses and strains in Ge/Si(001) nanopixels: An atomistic simulation study, J. Appl. Phys. 96: 4429–4443.

    Article  ADS  CAS  Google Scholar 

  14. Migliorato M.A., Cullis A.G., Fearn M., and Jefferson J.H., 2002, Atomistic simulation of strain relaxation in In x Ga 1-x As/GaAs quantum dots with nonuniform composition, Phys. Rev. B 65: 115316.

    Article  ADS  CAS  Google Scholar 

  15. Migliorato M.A., Cullis A.G., Fearn M., and Jefferson J.H., 2002, Atomistic simulation of In x Ga 1-x As/GaAs quantum dots with nonuniform composition, Phys. E 13: 1147–1150.

    Article  CAS  Google Scholar 

  16. Patthey L., Bullock E.L., Abukawa T., Kono S., and Johansson L.S.O., 1995, Mixed Ge-Si dimer growth at the Ge/Si(001)-(2×1) surface, Phys. Rev. Lett. 75: 2538–2541.

    Article  PubMed  ADS  CAS  Google Scholar 

  17. Pearson G.S. and Faux D.A., 2000, Analytical solutions for strain in pyramidal quantum dots, J. Appl. Phys. 88: 730–736.

    Article  ADS  CAS  Google Scholar 

  18. Sharma P. and Ganti S., 2004, Size-dependent Eshelby's tensor for embedded nano-inclusions incorporating surface/interface, J. Appl. Mech. 71: 663–671.

    Article  MATH  Google Scholar 

  19. Sharma P., Ganti S., and Bhate, N., 2003, Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities. Appl. Phys. Lett. 82: 535–537.

    Article  ADS  CAS  Google Scholar 

  20. Uberuaga B.P., Leskovar M., Smith A.P., Jónsson H., and Olmstead M., 2000, Diffusion of Ge below the Si(100) surface: theory and experiment, Phys. Rev. Lett. 84: 2441–2444.

    Article  PubMed  ADS  CAS  Google Scholar 

  21. Vegard L., 1921, The constitution of the mixed crystals and the filling of space of the atoms. Z. Physik 5: 17–26.

    Article  ADS  CAS  Google Scholar 

  22. Wang J. and Chu H.J., 2006, A perturbation theory for calculating strain distributions in heterogeneous and anisotropic quantum dot structures. J. Appl. Phys. 100: 053520.

    Article  ADS  CAS  Google Scholar 

  23. Yeom H.W., Sasaki M., Suzuki S., Sato S., Hosoi S., Iwabuchi M., Higashiyama K., Fukutani H., Nakamura M., Abukawa T., and Kono S., 1997, Existence of a stable intermixing phase for monolayer Ge on Si(001), Surf. Sci. 381: L533.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, B.V.

About this paper

Cite this paper

Chu, H.J., Duan, H.L., Wang, J., Karihaloo, B.L. (2009). Elastic Fields in Quantum Dot Structures with Arbitrary Shapes and Interface Effects. In: Pyrz, R., Rauhe, J.C. (eds) IUTAM Symposium on Modelling Nanomaterials and Nanosystems. IUTAM Bookseries, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9557-3_19

Download citation

Publish with us

Policies and ethics