Monitoring of Molecule Adsorption and Stress Evolutions by In-situ Microcantilever Systems

  • H. L. Duan
  • Y. Wang
  • X. Yi
Conference paper
Part of the IUTAM Bookseries book series (IUTAMBOOK, volume 13)


In this paper, a theoretical analysis is given to two applications of micro-cantilever systems. The first is the detection of molecule adsorption by a two-layer composite cantilever consisting of a porous (nano- or micro-scale) film and a solid layer. In contrast to the classical cantilevers, the static deformation and the vibration frequency shift are greatly influenced by the density and sizes of the pores in the porous films. The second is that the cantilever can be used as a substrate to grow quantum dots (QDs). It is shown that a thin in-situ cantilever setup can monitor QD growth state by choosing the thickness of cantilever.


Molecule Adsorption Surface Stress Stress Evolution Solid Layer Surface Modulus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chiu, C.H., Huang, Z., Poh, C.T., 2004, Formation of nanostructures by the activated Stranski— Krastanow transition method, Phys. Rev. Lett. 93, 136105-1–4.CrossRefADSGoogle Scholar
  2. 2.
    Dareing, D.W., Thundat, T., 2005, Simulation of adsorption-induced stress of a microcan-tilever sensor, J. Appl. Phys. 97, 043526-1–5.ADSGoogle Scholar
  3. 3.
    Daruka, I., Barabasi, A.L., 1997, Dislocation-free island formation in heteroepitaxial growth: A study at equilibrium, Phys. Rev. Lett. 79, 3708–3711.CrossRefADSGoogle Scholar
  4. 4.
    Duan, H.L., Wang, J., Karihaloo, B.L., Huang, Z.P., 2006, Nanoporous materials can be made stiffer than non-porous counterparts by surface modification, Acta Mater. 54, 2983–2990.CrossRefGoogle Scholar
  5. 5.
    Godin, M., 2004, Surface stress, kinetics, and structure of alkanethiol self-assembled mono-layers. Ph.D. Thesis, McGill University, Canada.Google Scholar
  6. 6.
    Gurtin, M.E., Markenscoff, X., Thurston, R.N., 1976, Effect of surface stress on the natural frequency of thin crystals, Appl. Phys. Lett. 29, 529–530.CrossRefADSGoogle Scholar
  7. 7.
    Hu, D.Z., 2007, Stress evolution during growth of InAs on GaAs measured by an in-situ cantilever beam setup. Ph.D. thesis, Humboldt University, Germany.Google Scholar
  8. 8.
    Huang, G.Y., Gao, W., Yu, S.W., 2006, Model for the adsorption-induced change in resonance frequency of a cantilever, Appl. Phys. Lett. 89, 043506-1–3.ADSGoogle Scholar
  9. 9.
    Kramer, D., Viswanath, R.N., Weissmüller, J., 2004, Surface-stress induced macroscopic bending of nanoporous gold cantilevers, Nano Lett. 4, 793–796.CrossRefGoogle Scholar
  10. 10.
    Liu, F., Huang, M.H., Rugheimer, P.P., Savage, D.E., Lagally, M.G., 2002, Nanostressors and the nanomechanical response of a thin silicon Film on an insulator, Phys. Rev. Lett. 89, 136101-1–4.ADSGoogle Scholar
  11. 11.
    Lu, P., Lee, H.P., Lu, C., O'Shea, S.J., 2005, Surface stress effects on the resonance properties of cantilever sensors, Phys. Rev. B 72, 085405-1–5.ADSGoogle Scholar
  12. 12.
    Ren, Q., Zhao, Y.P., 2004, Influence of surface stress on frequency of microcantilever-based biosensors, Microsystem Technologies 10, 307–314.CrossRefGoogle Scholar
  13. 13.
    Shchukin, V.A., Ledentsov, N.N., Kop'ev, P.S., Bimberg, D., 1995, Spontaneous ordering of arrays of coherent strained islands, Phys. Rev. Lett. 75, 2968–2971.PubMedCrossRefADSGoogle Scholar
  14. 14.
    Stoney, G.G., 1909, The tension of metallic films deposited by electrolysis, Proc. Roy. Soc. A 82, 172–175.CrossRefADSGoogle Scholar
  15. 15.
    Wang, Y., et al., 2008, Tuning and monitoring of quantum dot growth by an in-situ cantilever. Phys. Rev. B, submitted.Google Scholar
  16. 16.
    Wu, G., Ji, H., Hansen, K., Thundat, T., Datar, R., Cote, R., Hagan, M.F., Chakraborty, A.K., Majumdar, A., 2001, Origin of nanomechanical cantilever motion generated from biomolecu-lar interactions, Proc. Natl. Acad. Sci. U.S.A. 98, 1560–1564.PubMedCrossRefADSGoogle Scholar
  17. 17.
    Yi, X. et al., 2008, Mechanics of microcantilevers based on interactions of adsorbates and application to design of surface-enhanced sensors. J. Mech. Phys. Solids, submitted.Google Scholar

Copyright information

© Springer Science+Business Media, B.V. 2009

Authors and Affiliations

  • H. L. Duan
    • 1
    • 2
  • Y. Wang
    • 1
    • 2
  • X. Yi
    • 2
  1. 1.Institute of NanotechnologyForschungszentrum KarlsruheKarlsruheGermany
  2. 2.College of EngineeringPeking UniversityP.R. China

Personalised recommendations