Multiscale Modelling of Mechanical Anisotropy of Metals

  • Grethe Winther
Conference paper
Part of the IUTAM Bookseries book series (IUTAMBOOK, volume 13)


The mechanical anisotropy of a rolled metal sheet depends both on its tex ture and dislocation boundary characteristics (boundary plane, misorientation angle and boundary spacing), thereby linking dislocation interactions at the nanometre scale to bulk properties through phenomena involving individual grains of dimensions of the order of 100 micrometres. The focus of the modelling is on the boundary plane. Atomistic and dislocation dynamics simulations have not yet been able to produce sufficiently realistic dislocation structures to provide the planes needed. Instead the boundary planes can be predicted at the grain scale based on the slip systems operating during rolling, which generate the dislocations available for inclusion in the boundaries. The predicted boundary planes are verified by transmission electron microscopy and the predicted anisotropy by mechanical testing.


Slip System Dislocation Structure Grain Orientation Misorientation Angle Multiscale Modelling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Juul Jensen D, Hansen N, Acta Metall Mater 38, 1990, 1369.CrossRefGoogle Scholar
  2. 2.
    Eardley ES, Coulet A, Court SA, Humphreys F, Bate P, Mat Sci Forum 426–432, 2003, 363.Google Scholar
  3. 3.
    Eardley ES, Humphreys F, Court SA, Bate P, Mat Sci Forum 396–402, 2002, 1085.CrossRefGoogle Scholar
  4. 4.
    Juul Jensen D, Hansen N, In: Brandon DG, Chaim R, Rosen A (Eds), Proceedings of ICSMA 9, Haifa, 1991, p 179.Google Scholar
  5. 5.
    Liu Q, Juul Jensen D, Hansen N, Acta Mater 46, 1998, 5819.CrossRefGoogle Scholar
  6. 6.
    Huang X, Winther G, Phil Mag A 87, 2007, 5189.CrossRefGoogle Scholar
  7. 7.
    Kühlmann-Wilsdorf D, Mat Sci Eng A 113, 1989, 1.CrossRefGoogle Scholar
  8. 8.
    Hughes DA, Khan S, Godfrey A, Zbib H, Mat Sci Eng. A 309, 2001, 220.CrossRefGoogle Scholar
  9. 9.
    McCabe RJ, Misra A, Mitchell TE, Acta Mater 52, 2004, 705.CrossRefGoogle Scholar
  10. 10.
    Wert JA, Liu Q, Hansen N, Acta Metall Mater 43, 1995, 4153.CrossRefGoogle Scholar
  11. 11.
    Winther G, Huang X, Phil Mag A 87, 2007, 5215.CrossRefGoogle Scholar
  12. 12.
    Winther G, In: Szpunar (Ed), Proceedings of ICOTOM 12, Montreal, 1999, p 387.Google Scholar
  13. 13.
    Li ZJ, Winther G, Hansen N, Acta Mater 54, 2006, 401.CrossRefGoogle Scholar
  14. 14.
    Winther G, Scripta Mater 52, 2005, 995.CrossRefGoogle Scholar
  15. 15.
    Winther G, Juul Jensen D, Hansen N, Acta Mater 45, 1997, 2455.CrossRefGoogle Scholar
  16. 16.
    Winther G, Juul Jensen D, Hansen N, Acta Mater 45, 1997, 5059.CrossRefGoogle Scholar
  17. 17.
    Hansen N, Juul Jensen D, Acta Metall Mater 40, 1992, 3265.CrossRefGoogle Scholar
  18. 18.
    Hansen N, Mat Sci Eng A 409, 2005, 39.CrossRefGoogle Scholar
  19. 19.
    Hansen N, Huang X, Hughes DA, Mat Sci Eng A 317, 2001, 3.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, B.V. 2009

Authors and Affiliations

  • Grethe Winther
    • 1
  1. 1.Center for Fundamental Research: Metal Structures in Four Dimensions, Materials Research Division, Risø National Laboratory for Sustainable EnergyTechnical University of DenmarkRoskildeDenmark

Personalised recommendations