The Characteristics of Infrasound, its Propagation and Some Early History



Infrasound is inaudible sound as it consists of frequencies lower than 20 Hz, i.e. the human hearing threshold. Low frequency acoustic signals were first discovered after the eruption of the Krakatoa (Indonesia) in 1883. Owing to its low frequency content, this infrasound traveled up to four times around the globe while reaching altitudes over 100 k. The ability to detect explosions with infrasound resulted in substantial scientific and societal interest during World War I and the era of atmospheric nuclear testing. This interest diminished as nuclear tests were confined to the underground under the Limited Test Ban Treaty in 1963. Recently, with the signature of the Comprehensive Nuclear-Test-Ban Treaty, infrasound gained renewed attention as it is being used as a verification technique. This chapter describes the physical characteristics of infrasound, in relation to other atmospheric waves. The propagation through the highly dynamic atmosphere is addressed with an introduction to the characteristics of the medium. Next, some highlights of the remarkable history of infrasound are given, and early instrumental developments are shown. This chapter aims at establishing the framework for the study of infrasound and its application to atmospheric sciences.


Microbarographs propagation 


  1. .
    A.D. (1912) S. Fujiwhara über die abnormale Verbreitung von Schallwellen in der Atmosphäre. Meteorologische Zeitschrift November:543–544Google Scholar
  2. .
    Balachandran NK (1968) Acoustic-gravity wave propagation in a temperature- and wind-stratified atmosphere. J Atmos Sci 25:818–826CrossRefGoogle Scholar
  3. .
    Balachandran NK (1970) Effects of winds on the dispersion of acoustic-gravity waves. J Acoust Soc Am 48:211–220CrossRefGoogle Scholar
  4. .
    Balachandran NK (1979) Infrasound signals from thunder. J Geophys Res 84:1735–1745CrossRefGoogle Scholar
  5. .
    Balachandran NK, Donn WL, Rind D (1977) Concorde sonic booms as an atmospheric probe. Science 197:47–49CrossRefGoogle Scholar
  6. Bass HE (1972) Atmospheric absorption of sound: analytical expressions. J Acoust Soc Am 52:821–825CrossRefGoogle Scholar
  7. Benioff H, Gutenberg B (1939) Waves and currents recorded by electromagnetic barographs. Bull Am Meteorol Soc 20:421–426Google Scholar
  8. Blanc E, Le Pichon A, Ceranna L, Farges T, Marty J, Herry (2010) Global scale monitoring of acoustic and gravity waves for the study of the atmospheric dynamics. This volume, pp. 641–658Google Scholar
  9. Brachet N, Brown D, Le Bras R, Mialle P, Coyne J (2010) Monitoring and earth’s atmosphere with the global IMS infrasound network, this volume, pp. 73–114Google Scholar
  10. Campus P, Christie Dr (2010) Worldwide observations of infrasonic waves. This volume, pp. 181–230Google Scholar
  11. Carpenter EW, Harwood G, Whiteside T (1961) Microbarograph records from the Russian large nuclear explosions. Nature 98:857CrossRefGoogle Scholar
  12. Cook RK, Bedard AJ Jr (1971) On the measurement of infrasound. Geophys J R Astr Soc 26:5–11Google Scholar
  13. Cox EF (1947) Microbarometric pressures from large high explosives blasts. J Acoust Soc Am 19:832–846CrossRefGoogle Scholar
  14. Cox EF (1949) Abnormal audibility zones in long distance propagation through the atmosphere. J Acoust Soc Am 21:6–16CrossRefGoogle Scholar
  15. Daniels FB (1959) Noise-reducing line microphone for frequencies below 1 cps. J Acoust Soc Am 31:529–531CrossRefGoogle Scholar
  16. Davison C (1917) Sound-areas of great explosion. Nature 98:438–439CrossRefGoogle Scholar
  17. Donn WL, Balachandran NK (1974) Meteors and meteorites detected by infrasound. Science 185:707–709CrossRefGoogle Scholar
  18. Donn WL, Balachandran NK (1981) Mount St. Helens eruption of 18 May 1980: air waves and explosive yield. Science 213:539–541CrossRefGoogle Scholar
  19. Donn WL, Posmentier ES (1964) Ground-coupled air waves from the great Alaskan earthquake. J Geophys Res 69:5357–5361CrossRefGoogle Scholar
  20. Donn WL, Posmentier ES (1967) Infrasonic waves for the marine storm of April 7, 1966. J Geophys Res 72:2053–2061CrossRefGoogle Scholar
  21. Donn WL, Rind D (1971) Natural infrasound as an atmospheric probe. Geophys J R Astr Soc 26:111–133Google Scholar
  22. Donn WL, Rind D (1972) Microbaroms and the temperature and wind of the upper atmosphere. J Atmos Sci 29:156–172CrossRefGoogle Scholar
  23. Donn WL, Rind D (1979) Monitoring stratospheric winds with Concorde generated infrasound. J Appl Meteorol 18:945–952CrossRefGoogle Scholar
  24. Donn WL, Pfeffer RL, Ewing M (1963) Propagation of air waves from nuclear explosions. Science 139:307–317CrossRefGoogle Scholar
  25. Donn WL, Balachandran NK, Kaschak G (1974) Atmospheric infrasound radiated by bridges. J Acoust Soc Am 56:1367–1370CrossRefGoogle Scholar
  26. Donn WL, Balachadran NK, Rind D (1975) Tidal wind control of long-range rocket infrasound. J Geophys Res 80:1162–1164CrossRefGoogle Scholar
  27. Dörr JN (1915) Über die Hörbarkeit von Kanonendonner, Explosionen u. dgl. Meteorologische Zeitschrift Mai:207–215Google Scholar
  28. Drob DP, Picone JM, Garcés MA (2003) The global morphology of infrasound propagation. 108:4680Google Scholar
  29. de Groot-Hedlin CD, Hedlin MAH, Drob DP (2010) Atmospheric variability and infrasound monitoring. This volume, PP. 469–504Google Scholar
  30. Gainville O, Blanc-Benon Ph, Blanc E, Roche R, Millet C, Le Piver F, Despres B, Piserchia PF (2010) Misty picture: a unique experiment for the interpretation of the infrasound propagation from large explosive sources. This volume, pp. 569–592Google Scholar
  31. Garcés MA, Hansen RA, Lindquist KG (1998) Traveltimes for infrasonic waves propagating in a stratified atmosphere. Geophys J Int 135:255–263CrossRefGoogle Scholar
  32. Georges TM, Beasley WH (1977) Refractions of infrasound by upper-atmospheric winds. J Acoust Soc Am 61:28–34CrossRefGoogle Scholar
  33. Gossard EE, Hooke WH (1975) Waves in the atmosphere. Elsevier AmsterdamGoogle Scholar
  34. Grover FH (1971) Experimental noise reducers for an active microbarograph array. Geophys J R Astr Soc 26:41–52Google Scholar
  35. Grover FH (1977) A survey of atmospheric waves recording at Blacknest. AWRE Report No. O 51/77, UKGoogle Scholar
  36. Gutenberg B (1939) The velocity of sound waves and the temperature in the stratosphere above Southern California. Bull Am Meteorol Soc 20:192–201Google Scholar
  37. Hunt JN, Palmer R, Penney W (1960) Atmospheric waves caused by large explosions. Phil Trans Roy Soc London A 252:275–315CrossRefGoogle Scholar
  38. Holton JR (1979) An introduction to dynamic meteorology. Academic Press, LondonGoogle Scholar
  39. Kulichkov S (2010) On the prospects for acoustic sounding of the fine structure of the middle atmosphere. This volume, pp. 505–534Google Scholar
  40. Lamb H (1932) Hydrodynamics. Dover, New YorkGoogle Scholar
  41. Le Pichon A, Vergoz J, Cansi Y, Ceranna L, Drob D (2010) Contribution of infrasound monitoring for atmospheric remote sensing. This volume, pp. 623–640Google Scholar
  42. Lindemann FRS, Dobson GMB (1922) A theory of meteors, and the density and temperature of the outer atmosphere to which it leads. Proc Roy Soc 102:411–437Google Scholar
  43. Liszka L (1978) Long-distance focusing of concorde sonic boom. J Acoust Soc Am 64:631–635CrossRefGoogle Scholar
  44. Lott F, Millet C (2010) The representation of gravity waves in atmospheric general circulation models (GCMs). This volume, pp. 679–694Google Scholar
  45. Meinardus W (1915) Die Hörweite des Kanonendonners bei der Belagerung von Antwerpen. Meteorologische Zeitschrift Mai: 199–206Google Scholar
  46. Meteorological Office (1956) Handbook of meteorological instruments. Her Majesty’s Stationary Office, LondonGoogle Scholar
  47. McAdie AG (1912) Taal, Asama-Yama and Katmai. Bull Seism Soc Am 2:233–242Google Scholar
  48. Mutschlecner JP, Whitaker RW (2010) Some atmospheric effects on infrasound signal amplitudes, This volume pp. 449–468Google Scholar
  49. NOAA, NASA, USAF (1976) US Standard Atmosphere, 1976. U.S. Government Printing Office, Washington, DC.Google Scholar
  50. Norris D, Gibson R, Bongiovanni K (2010) Numerical methods to model infrasonic propagation through realistic specifications of the atmosphere. This volume, pp. 535–568Google Scholar
  51. Pain HJ (1983) The physics of vibrations and waves. Wiley, Great BritainGoogle Scholar
  52. Pierce AD (1963) Propagation of acoustic-gravity waves from a small source above the ground in an isothermal atmosphere. J Acoust Soc Am 35:1798–1807CrossRefGoogle Scholar
  53. Pierce AD, Posey JW (1971) Theory of the excitation and propagation of Lamb’s atmospheric edge mode from nuclear explosions. Geophys J R Astr Soc 26:341–368Google Scholar
  54. Ponceau D, Bosca L (2010) Specifications of low-noise broadband microbarometers. This volume, pp. 115–136Google Scholar
  55. Posmentier (1967) A theory of microbaroms. Geophys J R Astr Soc 13:487–501Google Scholar
  56. Rind DH, Donn WL (1978) Infrasound observations of variability during stratospheric warmings. J Atmos Sci 35:546–553CrossRefGoogle Scholar
  57. Salby ML (1996) Fundamentals of atmospheric physics. Academic Press, San DiegoGoogle Scholar
  58. Shaw WN, Dines WH (1904) The study of the minor fluctuations of atmospheric pressure. Q J R Meteorol Soc 31:39–52CrossRefGoogle Scholar
  59. Steel D (2008) Tunguska at 100. Nature 453:1157–1159CrossRefGoogle Scholar
  60. Symons GJ (1888) The eruption of Krakatoa and subsequent phenomena, Trübner, LondonGoogle Scholar
  61. Rothwell P (1947) Calculation of sound rays in the atmosphere. J Acoust Soc Am 19:205–221CrossRefGoogle Scholar
  62. Thomas JE, Pierce AD, Flinn EA, Craine LB (1971) Bibliography on infrasonic waves. Geophys J R Astr Soc 26:399–426.Google Scholar
  63. Van Everdingen E (1914) De hoorbaarheid in Nederland van het kanongebulder bij Antwerpen op 7–9 October 1914. Hemel en Dampkring 6:81–85Google Scholar
  64. Verbeek RDM (1885) Krakatau (Uitgegeven op last van zijne excellentie den Gouverneur-Generaal van Nederlandsch-Indië). Landsdrukkerij, BataviaGoogle Scholar
  65. Von dem Borne G (1910) Über die schallverbreitung bei Explosionskatastrophen. Physikalische Zeitschrift XI:483–488Google Scholar
  66. Walker KT, Hedlin MAH (2010) A review of wind-noise reduction methodologies. This volume, pp. 137–180Google Scholar
  67. Wegener A (1925) Die äußere Hörbarkeitzone. Zeitsch Geophys I:297–314Google Scholar
  68. Whipple FJW (1923) The high temperature of the upper atmosphere as an explanation of zones of audibility. Nature 111:187CrossRefGoogle Scholar
  69. Whipple FJW (1930) The great Siberian meteor and the waves, seismic and arial, which it produced. Q J R Meteorol Soc 56:287–304Google Scholar
  70. Whipple FJW (1935) The propagation of sound to great distances. Q J R Meteorol Soc 61:285–308CrossRefGoogle Scholar
  71. Whipple FJW (1939) The upper atmosphere, density and temperature, direct measurements and sound evidence. Q J R Meteorol Soc 65:319–323CrossRefGoogle Scholar
  72. Whitehouse W (1870) On a new instrument for recording minute variations of atmospheric pressure. Proc Roy Soc 19:491–493CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Royal Netherlands Meteorological Institute (KNMI)De BiltThe Netherlands

Personalised recommendations