Rice Blast in India and Strategies to Develop Durably Resistant Cultivars

  • Mukund Variar
  • C.M. Vera Cruz
  • M.G. Carrillo
  • J.C. Bhatt
  • R.B.S. Sangar


Analyses of the population of Magnaporthe oryzae at Hazaribag, India, revealed high pathogen diversity influenced by host cultivars, rice ecology and geographic location even though recent evidence suggested that the population is largely clonal. Host selection of low virulence frequency and unrestricted seed movement across the country help to introduce and establish new virulence in different regions. Strategies for blast management therefore focus on accumulation of race non-specific resistance genes in commercial cultivars susceptible to the disease. We evaluated a population of rice lines containing none to six defense response (DR) genes (thaumatin, oxalate oxidase, oxalate oxidase-like proteins, chitinase, peroxidase, HSP90) in three blast endemic locations during 2004–2006 and compared their performance with the level of resistance in monogenic lines having different Pi genes. The population was obtained by intermating advanced backcross derived lines of Vandana/Moroberekan (V4M-14-1-B with V4M-5-3-B, V4M-6-1-B and V4M-82-2-B). Disease progress curves in lines carrying five and six DR genes were comparable to the monogenic lines carrying R genes Piz and Pi9 effective at all three locations. While the monogenic lines generally exhibited an ‘all or nothing effect’ with high or low disease, the introgressed population had a range of disease intensities that declined progressively with the addition of each DR gene. Some defense response genes individually conferred a higher level of resistance compared to others and hence resistance was not proportional to the number of DRs present in all cases. Nevertheless, significant reduction in leaf blast intensity with increasing DRs in the introgressed lines at different locations and years suggested that accumulation of DRs conferring different mechanisms of resistance may contribute to non-specific resistance effective in multiple environments.


Defense response genes Magnaporthe oryzae 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beavis, W. D., Grant, D., Albersen, M., & Fincher, R. (1991). Quantitative trait loci for plant height in four maize populations and their associations with qualitative genetic loci. Theor Appl Genet, 83, 141–145.CrossRefGoogle Scholar
  2. Buddenhagen, I. W. (1981). Conceptual and practical considerations when breeding for tolerance or resistance. In: Plant Disease Control: Resistance and Susceptibility. Wiley, New York,221–234.Google Scholar
  3. Carrillo, G., Wu, J., Liu, B., Sugiyama, N., Oña, I., Variar, M., Courtois, B., Leach, J.E., Goodwin, P. H., Leung, H., & Vera Cruz, C.M. (2005). In: Proceedings of the World Rice Research Conference, Tsukuba, Japan, 4–7 Nov. 2004. Association of candidate defense genes with quantitative resistance to rice blast and in silico analysis of their characteristics, pp. 480–482.Google Scholar
  4. Chadha, S. & Gopalakrishna, T. (2005). Genetic diversity of Indian isolates of rice blast pathogen (Magnaporthe grisea) using molecular markers. Curr Sci, 88(9), 1467–1469.Google Scholar
  5. Davidson, R. M., Manosalva, P., Vera Cruz, C. M., Leung, H., & Leach, J. E. (2006). Expression patterns of oxalate oxidase-like genes associated with balst resistance QTL on chromosome 8 of Oryza sativa. In: F. Sanchez, C. Quinto, I.M. Lopez-Lara and O. Geiger (Eds.), Biology of Plant-Microbe Interactions, Vol. 5. International Society for Plant-Microbe Interactions, St. Paul, Minnesota, USA.Google Scholar
  6. Dey, C. (2003). Enhancement of Quantitative Resistance to Blast in Rice. Ph D Dissertation. Vinoba Bhave University, Hazaribag, 165p.Google Scholar
  7. Hamer, J. E., Valent, B., & Chumley, F. G. (1989). Mutations at the SMO genetic locus affect the shape of diverse cell types in the rice blast fungus. Genetics, 122, 351–361.PubMedGoogle Scholar
  8. Hittalmani, S., Parco, A., Mew, T. V., Zeigler, R. S., & Huang, N. (2000). Fine mapping and DNA marker-assisted pyramiding of the three major genes of blast resistance in rice. Theor Appl Genet, 100, 1121–1128.CrossRefGoogle Scholar
  9. Kumar, J., Nelson, R. J., & Zeigler, R. S. (1999). Population structure and dynamics of M. grisea in the Indian Himalayas. Genetics, 152, 971–984.PubMedGoogle Scholar
  10. Leach, J. E., Davidson, R., Liu, B., Manosalva, P., Mauleon, R., Carrillo, G., Bruce, M., Stephens, J., Diaz, M. G., Nelson, R., Vera Cruz, C., & Leung, H. (2007). Understanding broad-spectrum durable resistance in rice. In: D.S. Brar, D. J. Mackill and B. Hardy (Eds.), International Rice Research Institute, Philippines. Rice Genetics V, Proc Fifth International Rice Genetics Symposium, The Philippines 19–23 November 2005, pp. 191–208.Google Scholar
  11. Levy, M., Correa, F. J., Zeigler, R. S., Xu, S., & Hamer, J. E. (1993). Genetic diversity of the rice blast fungus in disease nursery in Colombia. Phytopathology, 83, 1427–1433.CrossRefGoogle Scholar
  12. Mishra, D., Singh, U. D., Dash, A. B., Reddy, J. N., Sridhar, R., George, M. L. C., Vera Cruz, C. M., & Leung, H. (2005). Analysis of Pyricularia grisea populations from three different blast epidemics. IRRN 31(1), 22–24.Google Scholar
  13. Naqvi, N. I., Bonman, J. M., Mackill D. J., Nelson, R. J., & Chattoo, B. B. (1995). Identification of RAPD markers linked to major blast-resistance gene in rice. Mol Breed, 1, 341–348.CrossRefGoogle Scholar
  14. Notteghem, J. L. (1993). Durable resistance to rice blast disease. Current plant science and biotechnology in agriculture 18. In: T. H. Jacobs and J. E. Parlevliet (Eds.), Durability of disease resistance. Kluwer Acad Pub the Netherlands, 125–134.Google Scholar
  15. Production-Oriented Survey – Annual Reports, Directorate of Rice Research, Hyderabad, India, 1994–2006.Google Scholar
  16. Ramalingam J., Vera Cruz, C.M., Kukreja, K., Chittoor, J.M., Wu, J.-L., Lee, S.W., Baraoidan, M., George, M.L., Cohen, M.B., Hulbert, S.H., Leach, J.E., & Leung, H. (2003). Candidate defense genes from rice, barley, and maize and their association with qualitative and quantitative resistance in rice. MPMI, 16(1), 14–24.PubMedCrossRefGoogle Scholar
  17. Sharma, T. R., Madhav, M. S., Singh, B. K., Shanker, P., Jana, T. K., Dalal, V., Pandit, A., Singh, A., Gaikwad, K., Upreti, H. C., & Singh, N. K. (2005). High resolution mapping, cloning and molecular characterization of the Pi Kh gene of rice, which confers resistance to M. grisea. Mol Genet & Genomics, 274(6), 569–578.CrossRefGoogle Scholar
  18. Siddiq, E. A. (2000). Yawning productivity gaps. Survey of Indian Agriculture. The Hindu, Chennai, pp. 39–43.Google Scholar
  19. Singh, R. N. (1990). Status of rice blast (Bl) in eastern Uttar Pradesh, India. Int Rice Res Notes, 15(4), 22.Google Scholar
  20. Sivaraj, R., Gnanamanickam, S. S., & Levy, M. (1998). “Lineage-Exclusion” tests for blast resistance in Southern India. 2nd International rice blast conference 4–7 August 1998, p. 26.Google Scholar
  21. Sridhar, R., Singh, U. P., Agarwal, P. K., Reddy, J. N., Chandra Vanshi, S., Sanger, R. B. S., Bhatt, J. C., Rathiah, Y., & Row, K. V. S. R. K. (1999). Usefulness of blast resistance genes and their combinations in different blast endemic locations in India. IRRN, 24(2), 22–24.Google Scholar
  22. Variar, M. (1986). Reaction of differential varieties exposed to natural infection by blast fungus in a blast endemic area. Oryza, 23, 270–273.Google Scholar
  23. Variar, M. & Maiti, D. (1988). Response of indigenous rice varieties to blast in endemic areas. Indian J Mycol & Pl Path, 18(2), 186–187.Google Scholar
  24. Variar, M, Courtois, B., Javier, E., Vera Cruz, C., Bhatt, J. C., & Sangar, R. B. S. (2005). Multi-environment testing reveals site specific QTLs against blast in rice. (Abs). 5th International Rice Genetics Symposium, Manila, Philippines, 19–21 Nov. 2005.Google Scholar
  25. Variar, M. (2006). Pathogenic variation in M grisea and breeding for blast resistance in India. In: JIRCAS Working Report No 53, Japan International Center for Agricultural Sciences, Tsukuba, Japan, pp. 87–95.Google Scholar
  26. Wang, G. L., Mackill, D. J., Bonman, J. M., McCouch, S. R., Champoux, M. C., & Nelson, R. J. (1994). RFLP mapping of the genes conferring complete and partial resistance to blast in a durably resistant cultivar. Genetics, 136, 1421–1431.PubMedGoogle Scholar
  27. Wu, J. L., Sinha, P. K., Variar, M., Zheng, K.L., Leach, J. E., Courtois, B., & Leung, H. (2004). Association between molecular markers and blast resistance in an advanced backcross population of rice. Theor Appl Genet, 108, 1024–1032.PubMedCrossRefGoogle Scholar
  28. Xia, J. Q., Corell, J. C., Lee, F. N., Marchetti, M. A., & Rhoads, D. D. (1994). Mitotic stability of and low hybridization potential between two DNA fingerprint groups of Magnaporthe grisea. In: Proceedings of the International Blast Conference, Madison, Wisconsin, p. 587.Google Scholar
  29. Yu, Z. H., Mackill, D. J., Bonman, J. M., & Tanksley, S. D. (1991). Tagging genes for blast resistance in rice via linkage to RFLP markers. Theor Appl Genet, 81, 471–476.CrossRefGoogle Scholar
  30. Zeigler, R. S. (1994). Lineage exclusion: a proposal for linking blast population analysis to resistance breeding. In: Proceedings of the International Blast Conference, Madison, Wisconsin, pp. 267–292.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Mukund Variar
    • 1
  • C.M. Vera Cruz
  • M.G. Carrillo
  • J.C. Bhatt
  • R.B.S. Sangar
  1. 1.Central Rainfed Upland Rice Research StationIndia

Personalised recommendations