Understanding the Co-evolution of the Rice Blast Resistance Gene PI-TA and Magnaporthe oryzae Avirulence Gene AVR-PITA

  • Yulin Jia
  • Xueyan Wang
  • Stefano Costanzo
  • Seonghee Lee


The Pi-ta gene in rice effectively prevents infection by races of Magnaporthe oryzae that contain the corresponding AVR gene, AVR-Pita. Pi-ta is a putative cytoplasmic protein with a centrally located nucleotide binding sites (NBS) and a leucine rich domain (LRD) at the carboxyl terminus. The Pi-ta gene has been deployed effectively in preventing rice blast in the southern US since 1990. AVR-Pita encodes a predicted metalloprotease, and its processed form, AVR-Pita176$, was shown to directly bind with the Pi-ta protein in triggering effective defense responses. Variants of AVR-Pita were identified in many contemporary M. oryzae races and in isolates collected during the last 30 years in the US. Sequence analysis of these AVR-Pita variants revealed that the AVR-Pita protein might be under diversified selection. Most recently, sequence analysis of the Pi-ta variants in six Oryza species (O. sativa, O. glaberrima, O. officialis, O. rufipogon, O. barthii and O. nivara) revealed that functional nucleotide polymorphism at the position of 918 (FNP918) is present among all these Oryzae species, and Pi-ta may be under balanced selection. Our results suggest that Pi-ta co-evolves with AVR-Pita, and that rice engages trench warfare with M. oryzae during the host and pathogen co-evolution.


Pi-ta AVR-Pita Co-evolution Balanced selection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Böhnert, H. U., Fudal, I., Dioh, W., Tharreau, D., Notteghem, J. L., & Lebrun, M. H. (2004). A putative polyketide synthase/peptide synthetase from Magnaporthe grisea signals pathogen attack to resistant rice. Plant Cell 16, 2499–2513.PubMedCrossRefGoogle Scholar
  2. Bryan, B. T., Wu, K. S., Farrall, L., Jia, Y., Hershey, H., McAdams, S., Tarchini, R., Donaldson, G., Faulk, K., & Valent, B. (2000). A single amino acid difference distinguishes resistant and susceptible allele of the rice blast resistance gene Pi-ta. Plant Cell 12, 2033–2045.PubMedCrossRefGoogle Scholar
  3. Chen, M., Presting, G., & Barbazuk, W. B. (2002). An integrated physical and genetic map of the rice genome. Plant Cell 14, 537–545.PubMedCrossRefGoogle Scholar
  4. Chen, X., Shang, J., Chen, D., Lei, C., Zou, Y., Zhai, W., Liu, G., Xu, J., Ling, Z., Cao, G., Ma, B., Wang, Y., Zhao, X., Li, S., & Zhu, L. (2006). A B-lectin receptor kinase gene conferring rice blast resistance. Plant J. 46, 794–804.PubMedCrossRefGoogle Scholar
  5. Correll, J. C., Harp, T. L., Guerber, J. C., Zeigler, R. S., Liu, B., Cartwright, R. D., & Lee, F. N. (2000). Characterization of Pyricularia grisea in the United States using independent genetic and molecular markers. Phytopathology 90, 1396–1404.PubMedCrossRefGoogle Scholar
  6. Dioh, W., Tharreau, D., Notteghem, J. L., Orbach, M., & Lebrun, M. H. (2000). Mapping of avirulence genes in the rice blast fungus, Magnaporthe grisea, with RFLP and RAPD markers. Mol. Plant-Microbe Interact. 13, 217–227.PubMedCrossRefGoogle Scholar
  7. Farman, M. L., & Leong, S. A. (1998). Chromosome walking to the AVR1-CO39 avirulence gene of Magnaporthe grisea: Discrepancy between the physical and genetic maps. Genetics 150, 1049–1058.PubMedGoogle Scholar
  8. Farman, M. L., Eto, Y., Nakao, T., Tosa, Y., Nakayashiki, H., Mayama, S., & Leong, S.A. (2002). Analysis of the structure of the AVR1-CO39 avirulence locus in virulent race infecting isolates of Magnaporthe grisea. Mol. Plant-Microbe Interact. 15, 6–16.PubMedCrossRefGoogle Scholar
  9. Fjellstrom, R., Conaway-Bormans, C. A., McClung, A., Marchetti, M. A., Shank, A. R., & Park, W. D. (2004). Development of DNA markers suitable for marker assisted selection of three Pi- genes conferring resistance to multiple Pyricularia grisea pathotypes. Crop Sci. 44,1790–1798.Google Scholar
  10. Flor, H.H. (1971). Current status of the gene-for-gene concept. Annu. Rev. Phytopathol. 9,275–296.Google Scholar
  11. Gowda, M., Venu, R. C., Roopalakshmi, K., Sreerekha, M. V., & Kulkarni, R. S. (2003). Advances in rice breeding, genetics and genomics. Mol. Breed. 11, 337–352.CrossRefGoogle Scholar
  12. Gravois, K. A., Moldenhauer, K. A. K., Lee, F. N., Norman, R. J., Helms, R. S., Bernhardt, J. L., Wells, B. R., Dilday, R. H., Rohman, P. C., & Blocker, M. M. (1995). Registration of ‘Kaybonnet’ rice. Crop Sci. 35, 586–587.Google Scholar
  13. Gibbons, J. W., Moldenhauer, K. A. K., Gravois, K., Lee, F. N., Bernhardt, J. L., Meullenet, J. F., Bryant, R., Anders, M., Norman, R. J., Cartwright, R., Taylor, K., Bulloch, J., & Blocker, M. M. (2006). Registration of ‘Cybonnet’ Rice. Crop Sci. 46, 2317–2318.CrossRefGoogle Scholar
  14. Jia, Y. (2003). Marker assisted selection for the control of rice blast disease. Pesticide Outlook 14, 150–152.CrossRefGoogle Scholar
  15. Jia, Y., Bryan, G. T., Farrall, L., & Valent, B. (2003). Natural variation at the Pi-ta rice blast resistance locus. Phytopathology 93, 1452–1459.PubMedCrossRefGoogle Scholar
  16. Jia, Y., Lin, M. J., & Jia, M. H. (2005). Genetic analysis of the rice blast resistance gene Pi-ta-mediated signal transduction pathway, Phytopathology, 2005, APS, Austin, Texas, Phytopathology 95, S48.Google Scholar
  17. Jia, Y., & Martin, R. (2008). Identification of a new locus, Ptr(t), required for rice blast resistance gene Pi-ta-mediated resistance. Mol. Plant-Microbe Interact. 21, 396–403.PubMedCrossRefGoogle Scholar
  18. Jia, Y., McAdams, S. A., Bryan, G. T., Hershey, H. P., & Valent, B. (2000). Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J. 19, 4004–4014.PubMedCrossRefGoogle Scholar
  19. Jia, Y., Redus, M., Wang, Z., & Rutger, J. N. (2004a). Development of a SNLP marker from the Pi-ta blast resistance gene by tri-primer PCR. Euphytica 138, 97–105.Google Scholar
  20. Jia, Y., Wang, Z., Fjellstrom, R. G., Moldenhauer, K. A. K., Azam, M.A., Correll, J., Lee, F. N., Xia, Y., & Rutger, J. N. (2004b). Rice Pi-ta gene confers resistance to the major pathotypes of the rice blast fungus in the US. Phytopathology 94, 296–301.Google Scholar
  21. Jia, Y., Wang, Z., & Singh, P. (2002). Development of dominant rice blast resistance Pi-ta gene markers. Crop Sci. 42, 2145–2149.Google Scholar
  22. Johnson, V. A., Redus, M. A., Gibbons, J. W., Moldenhauer, K. A. K., Jiang, J., & Jia, Y. (2005). Marker-assisted selection for the rice blast resistance gene Pi-ta: Development and use of an improved codomiant analysis method, Proced. of the 30th Rice Technical Working Group Meeting, Feb. 29-March 3, 2004, New Orleans, LA. 62.Google Scholar
  23. Kang, S., Lebrun, M. H., Farrall, L., & Valent, B. (2001). Gain of virulence caused by insertion of a Pot3 transposon in a Magnaporthe grisea avirulence gene. Mol. Plant Micro. Interact. 14, 671–674.CrossRefGoogle Scholar
  24. Kang, S., Sweigard, J. A., & Valent, B. (1995). The PWL Host specificity gene family in the blast fungus Magnaporthe grisea. Mol. Plant-Microbe Interact. 8, 939–948.PubMedGoogle Scholar
  25. Kawasaki, S. ed. (2004). Proceedings of the 3rd international rice blast conference. Rice Blast: Interaction with rice and control, Dordrecht, The Netherlands: Kluwer Academic Publishers.Google Scholar
  26. Kiyosawa, S. (1966). Studies on inheritance of resistance of rice varieties to blast. 3. Inheritance of resistance of a rice variety Pi No. I to the blast fungus. Jpn. J. Breed. 16, 243–250.Google Scholar
  27. Lee, F. N. (1994). Rice breeding programs, blast epidemics and blast management in the United States, In: Zeigler R.S., Leong S.A., and Teng P.S. (eds.), Rice blast disease, CAB Int, Wallingford, UK, 489–500.Google Scholar
  28. Lee, F. N., Cartwright, R. D, Jia, Y., Correll, J. C., Moldenhauer, K. A. K, Gibbons, J. W., Boyett, V., Zhou, E., Boza, E., & Seyran, E. (2005). A preliminary characterization of the rice blast fungus on ‘Banks” rice. In: Wells B.R., Norman R.J., and Meullenet J.F. (eds.), 2004, Rice Research Studies, Arkansas Agricultural Experiment Station, series 529, 103–110.Google Scholar
  29. Liu, X., Lin, F., Wang, L., & Pan, Q. (2007). The in silico map-based cloning of Pi36, a rice coiled coil-nucleotide-binding site-leucine-rich repeat gene that confers race specific resistance to the Blast fungus. Genetics 176, 2541–2549.PubMedCrossRefGoogle Scholar
  30. McCouch, S. R, Kochert, G., Yu, Z., Wang, Z., Khush, G. S., Coffman, W. R., & Tanksley, S. D., (1988). Molecular mapping of rice chromosomes. Theor. Appl. Genet. 76, 815–829.CrossRefGoogle Scholar
  31. McCouch, S. R., Nelson, R. J.,Tohme, J., & Zeigler, R. S. (1994). Mapping of blast resistance genes in rice. In: R. S. Zeigler, S. A. Leong, and P. S. Teng (eds), Rice blast disease. CAB International, Wallingford, Oxon, UK, 167–186.Google Scholar
  32. McClung, A. M., Marchetti, M. A., Webb, B. D., & Bollich, C. N. (1999). Registration of ‘Madison’ rice. Crop Sci. 39, 1256.Google Scholar
  33. Moldenhauer, K. A. K., Bastawisi, A. O., & Lee, F. N. (1992). Inheritance of resistance in rice to races IB-49 and IC-17 of Pyricularia grisea rice blast. Crop Sci. 32, 584–588.CrossRefGoogle Scholar
  34. Moldenhauer, K. A. K., Lee, F. N., Norman, R. J., Helms, R. S., Well, R. H., Dilday, R. H., Rohman, P. C., & Marchetti, M. A. (1990), Registration of ‘Katy’ rice. Crop Sci. 30, 747–748.Google Scholar
  35. Moldenhauer, K. A. K., Gravois, K. A., Lee, F. N., Norman, R. J., Bernhardt, J. L., Well, B. R., Dilday, R. H., Blocker, M. M., Rohman, P. C., & McMinn, T. A. (1998). Registration of ‘Drew’ rice. Crop Sci. 38, 896–897.Google Scholar
  36. Moldenhauer, K. A. K., Gibbons, J. W., Anders, M. M., Lee, F. N., Bernhardt, J. L., Wilson, E., Cartwright, R. D., Norman, R. J., Blocker, M. M., Boyett, V. A., Tolbert, A. C., Taylor, K., & Bulloch, J.M. (2007a). Registration of ‘Spring’ Rice. Crop Sci. 47, 447–449.Google Scholar
  37. Moldenhauer, K. A. K., Lee, F. N., Gibbons, J. W., Anders, M. M., Bernhardt, J. L., Norman, R. J., Slaton, N. A., Wilson, E., Cartwright, R. D., Anders, M. M., Tolbert, A. C., Blocker, & Bulloch, J. M. (2007b). Registration of ‘Ahrent’ Rice. Crop Sci. 47, 446–447.Google Scholar
  38. Moldenhauer, K. A. K., Gibbons, J. W., Lee, F. N., Bernhardt, J. L., Wilson, C. E.,. Cartwright, R. D, Anders, M. M., Norman, R. J., Blocker, M. M., Boyett, V. A., Tolbert, A. C., Taylor, K., & Bulloch, J. M. (2007c). Registration of ‘Banks’ Rice. Crop sci. 47, 445–446.Google Scholar
  39. Orbach, M. J., Farrall, L., Sweigard, J., Chumley, F. G., & Valent, B. (2000). A telomeric avirulence gene determines efficacy for the rice blast resistance gene Pi-ta, Plant Cell 12, 2019–2032.PubMedCrossRefGoogle Scholar
  40. Qu, S., Liu, G., Zhou, B., Bellizzi, M., Zeng, L., Dai, L., Han, B., & Wang, G.-L. (2006). The Broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site–leucine-rich repeat protein and is a member of multigene family in rice. Genetics 172, 1901–1914.PubMedCrossRefGoogle Scholar
  41. Rybka, K., Miyamoto, M., Ando, I., & Kawasaki, S. (1997). High resolution mapping of the indica-derived rice blast resistance genes, II. $Pi-ta2$ and Pi-ta and a consideration of their origin. Mol. Plant-Microbe Interact. 10, 517–524.CrossRefGoogle Scholar
  42. Silue, D., Nottenghem, J. L., & Tharreau, D. (1992). Evidence for a gene-for-gene relationship in the Oryza sativa-Magnaporthe grisea pathosystem. Phytopathology. 82, 577–580.CrossRefGoogle Scholar
  43. Sweigard, J. A., Carroll, A. M., Kang, S., Farrall, L., Chumley, F. G., & Valent, B. (1995). Identification, cloning, and characterization of PWL2, a gene for host species specificity in the rice blast fungus. Plant Cell 7, 1221–1233.PubMedCrossRefGoogle Scholar
  44. Valent, B., (1997). The rice blast fungus, Magnaporthe grisea, In: Carroll/Tudzynoski (eds.), Plant relationships, The Mycota V Part B., Springer-Verlag, Berlin Heidelberg, 37–54.Google Scholar
  45. Wamishe, Y. A., Jia, M., & Jia, Y. (2005). Identification of blast resistance genes in rice cultivar Zhe733, Phytopathology, 2005 APS, Austin, Texas, Phytopathology 95, S108.CrossRefGoogle Scholar
  46. Wang, Z.-X., Yano, M., Yamanouchi, U., Iwamoto, M., Monna, L., Hayasaka, H., Katayose, Y., & Sasaki, T. (1999). The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. Plant J. 19, 55–64.PubMedCrossRefGoogle Scholar
  47. Wang, Z., Jia, Y., Rutger, J. N. & Xia, Y. (2007a). Rapid survey for presence of a blast resistance gene Pi-ta in rice cultivars using the dominant DNA markers derived from portions of the Pi-ta gene. Plant Breeding 126, 36–42.Google Scholar
  48. Wang, Z., Lin, H., Valent, B, Rutger, J. N., & Jia, Y. (2007b). Cytological and molecular analyses of disease resistance to the rice blast fungus. Chinese J. of Rice Sci. 21, 335–340 (In Chinese, English abstract, English version of manuscript to be published by this journal in November).Google Scholar
  49. Yan, W., Rutger, J. N., Bryant, R. J., Bockelman, H., Fjellstrom, R. G., Chen, M.-H., Tai, T. H., & McClung, A. M. (2007). Crop Sci. 47, 869–878.Google Scholar
  50. Yu, Z. H., Mackill, D. J., Bonman, J. M., McCouch, S. R., Guiderdoni, E., Notteghem, J. L., & Tanksley, S. D. (1996). Molecular mapping of genes for resistance to rice blast (Pyricularia grisea Sacc.). Theor. Appl. Genet. 93, 859–863.CrossRefGoogle Scholar
  51. Zhou, B., Qu, S., Liu, G., Dolan, M., Sakai, H., Lu, G., Bellizzi, M., & Wang, G. (2006). The eight amino acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea. Mole. Plant Microbe Intera. 19, 1216–1228.CrossRefGoogle Scholar
  52. Zhou, E., Jia, Y., Correll, J., & Lee, F. N. (2007). Instability of the Magnaporthe oryzae avirulence gene AVR-Pita alters virulence. Fungal Genetics and Biology 44, 1024–1034.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Yulin Jia
    • 1
  • Xueyan Wang
  • Stefano Costanzo
  • Seonghee Lee
  1. 1.USDA-ARS Dale Bumpers National Rice Research CenterStuttgartUSA

Personalised recommendations