Skip to main content

Biomarkers of Nanoparticles Impact on Biological Systems

  • Conference paper
Nanomaterials: Risks and Benefits

Abstract

Studies of nanoscale mineral fibers have demonstrated that the toxic and carcinogenic effects are related to the surface area and surface activity of inhaled particles. Particle surface characteristics are considered to be key factors in the generation of free radicals and reactive oxygen species and are related to the development of apoptosis or cancer. Existing physico-chemical methods do not always allow estimation of the nanoparticles impact on organismal and cellular levels. The aim of this study was to develop marker system for evaluation the toxic and carcinogenic effects of nanoparticles on cells. The markers are designed with respect to important nanoparticles characteristics for specific and sensitive assessment of their impact on biological system. We have studied DNA damage, the activity of xanthine oxidoreductase influencing the level of free radicals, bioenergetic status, phospholipids profile and formation of 1H-NMR-visible mobile lipid domains in Ehrlich carcinoma cells. The efficiency of the proposed marker system was tested in vivo and in vitro with the use of C60 fullerene nanoparticles and multiwalled carbon nanotubes. Our data suggest that multiwalled carbon nanotubes and fullerene C60 may pose genotoxic effect, change energy metabolism and membrane structure, alter free radical level via xanthine oxidase activation and cause mobile lipid domains formation as determined in vivo and in vitro studies on Ehrlich carcinoma cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Fubini, Surface reactivity in the pathogenic response to particles, Environ. HealthPerspect. 105(5), 1013–1020 (1997).

    Google Scholar 

  2. G. OberdÖrster, A. Maynard, K. Donaldson, et al., Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy, Part. Fibre Toxicol. 2(1), 1–60 (2005).

    Article  Google Scholar 

  3. P.H. Avogbe, L. yi-Fanou, H. Autrup, S. Loft, B. Fayomi, A. Sanni, et al., Ultrafine particulate matter and high-level benzene urban air pollution in relation to oxidative DNA damage, Carcinogenesis 26, 613–620 (2005).

    Article  PubMed  CAS  Google Scholar 

  4. I. Beck-Speier, N. Dayan, E. Karg, K.L. Maier, G. Schumann, H. Schulz, et al., Oxidative stress and lipid mediators induced in alveolar macrophages by ultrafine particles, Free Radic. Biol. Med. 38, 1080–1092 (2005).

    Article  PubMed  CAS  Google Scholar 

  5. N. Li, C. Sioutas, A. Cho, D. Schmitz, C. Misra, J. Sempf, et al., Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage, Environ. Health Perspect. 111, 455–460 (2003).

    PubMed  CAS  Google Scholar 

  6. C.M. Sayes, A.M. Gobin, K.D. Ausman, J. Mendez, J.L. West, V.L. Calvin, Nano-C(60) cytotoxicity is due to lipid peroxidation, Biomaterials 26, 7587–7595 (2005).

    Article  PubMed  CAS  Google Scholar 

  7. J. Hewinson, C.R. Stevens, T.M. Millar, Vascular physiology and pathology of circulating xanthine oxidoreductase: from nucleotide sequence to functional enzyme, Redox Rep. 9(2), 71–79 (2004).

    Article  PubMed  CAS  Google Scholar 

  8. R. Harisson, Structure and function of xanthine oxidoreductase: where are we now?, Free Radic. Biol. Med. 33(6), 774–797 (2002).

    Article  Google Scholar 

  9. N. Linder, E. Martelin, R. Lapatto, K.O. Raivio, Posttranslational inactivation of human xanthine oxidoreductase by oxygen under standard cell culture conditions, Am. J. Physiol. Cell Physiol. 285(1), 48–55 (2003).

    Google Scholar 

  10. M. Trujillo, M.N. Alvarez, G. Peluffo, B.A. Freeman, R. Radi, Xanthine oxidase-mediated decomposition of S-nitrosothiols, J. Biol. Chem. 273(14), 7828–7834 (1998).

    Article  PubMed  CAS  Google Scholar 

  11. B.L.J. Godber, J.J. Doel, J. Durgan, R. Eisenthal, R. Harrison, A new route to peroxynitrite: a role for xanthine oxidoreductase, FEBS Lett. 475, 93–96 (2000).

    Article  PubMed  CAS  Google Scholar 

  12. A. Sola, V. Alfaro, G. Hotter, Intestinal ischemic preconditioning: less xanthine accumulation relates with less apoptosis, Apoptosis 9(3), 353–361 (2004).

    Article  PubMed  CAS  Google Scholar 

  13. S. Ranjbar, B.M. Hannigan, DNA damage in human T-lymphoblastoid cell line Molt-3 induced by reactive oxygen species, Mutat. Res. 285(2), 225–228 (1993).

    PubMed  CAS  Google Scholar 

  14. J.H. Jackson, M. Vollenweider, J. Hill, H. Rodriguez, A.W. Schwabacher, G. Mitra, C.Y. Kuo, Stimulated human leukocytes cause activating mutations in the K-ras protooncogene, Oncogene 14(23), 2803–2808 (1997).

    Article  PubMed  CAS  Google Scholar 

  15. A.C. Souici, J. Mirkovitch, P. Hausel, L.K. Keefer, E. Felley-Bosco, Transition mutation in codon 248 of the p53 tumor suppressor gene induced by reactive oxygen species and a nitric oxide-releasing compound, Carcinogenesis 21(2), 281–287 (2000).

    Article  PubMed  CAS  Google Scholar 

  16. S.A. Thom, Dehydrogenase conversion to oxidase and lipid peroxidation in brain after carbon monoxide poisoning, J. Appl. PhysiolL. 73(4), 1584–1589 (1992).

    CAS  Google Scholar 

  17. C.E. Mountford, W.B. Mackinnon, P. Russell, A. Rutter, E.J. Delikatny, Human cancers detected by proton MRS and chemical shift imaging ex vivo, Anticancer Res. 16, 1521–1531 (1996).

    PubMed  CAS  Google Scholar 

  18. J.M. Hakumaki, R.A. Kauppinen, 1H NMR visible lipids in the life and death of cells, TIBS. 25, 357–362 (2000).

    PubMed  CAS  Google Scholar 

  19. M. Quintero, M.ECabañas, C. Arús, A possible cellular explanation for the NMR-visible mobile lipid (ML) changes in cultured C6 glioma cells with growth, Biochim.Biophys. Acta 1771(1), 31–44 (2007).

    PubMed  CAS  Google Scholar 

  20. V. Koshkin, M.L. Greenberg, Cardiolipin prevents rate-dependent uncoupling and provides osmotic stability in yeast mitochondria, Biochem. J. 364, 317–322 (2002).

    PubMed  CAS  Google Scholar 

  21. S.L. Iverson, M. Enoksson, V. Gogvadze, et al., Cardiolipin is not required for Bax-mediated cytochrome c release from yeast mitochondria, J. Biol. Chem. 279(2), 110–1107 (2004).

    Google Scholar 

  22. R.F.A. Zwaal, P. Comfurius, E.M. Bevers, Surface exposure of phosphatidylserine in pathological cells, Cell. Mol. Life Sci. 62(9), 971–988 (2005).

    Article  PubMed  CAS  Google Scholar 

  23. V.F. Chekhun, V.P. Tryndiak, I.M. Todor, V.M. Mikhailenko, et al., Phospholipids and cholesterol content in tumor cell plasma membranes with different sensitivity to doxorubicin, Ukr. Biokhim. Zh. 75(4), 120–25 (2003).

    PubMed  CAS  Google Scholar 

  24. P.L. Olive, J.P. Banáth, The comet assay: a method to measure DNA damage in individual cells, Nat. Protoc. 1(1), 23–29 (2006).

    Article  PubMed  CAS  Google Scholar 

  25. R.K. Tyagi, A. Azrad, H. Degani, Y. Salomon, Simultaneous extraction of cellular lipids and water-soluble metabolites: evaluation by NMR spectroscopy, Magn. Reson. Med. 35(2), 194–200 (1996).

    Article  PubMed  CAS  Google Scholar 

  26. A.R. Collins, The comet assay for DNA damage and repair: principles, applications and limitations, Mol. Biotechnol. 26, 29–261(2004).

    Article  Google Scholar 

  27. M. Battelli, A. Abboudaza, F. Stirpe, Effects of hypoxia and ethanol on xanthine oxidase, Chem. Biol. Interact. 283, 73–84 (1992).

    Article  Google Scholar 

  28. R.M. Wright, L.A. Ginger, N. Kosila, N.D. Elkins, B. Essary, J.L. McManaman, J.E. Repine, Mononuclear phagocyte xanthine oxidoreductase contributes to cytokine-induced acute lung injury, Am J. Respir. Cell Mol. Biol. 30(4), 479–490 (2004).

    Article  PubMed  CAS  Google Scholar 

  29. C.S. Greenberg, P.R. Craddock, Rapid single-step membrane protein assay, Clin. Chem. 28, 1725–1726 (1982).

    PubMed  CAS  Google Scholar 

  30. G.G. Gatsko, L.M. Majul, A.A. Pozdnyakova, Detection of malonic dialdehyde (MDA), in: Biochemical, immunological and biophysical methods in toxicological experiment, edited by U.A. Kuzminskaya, M.G. Kokarovtseva, L.M. Ovsyannikova (Kiev, 1989), DIA pp. 30–33.

    Google Scholar 

  31. M. Kessiova, A. Alexandrova, A. Georgieva, M. Kirkova, S. Todorov, In vitro effects of CB1 receptor ligands on lipid peroxidation and antioxidant defense systems in the rat brain, Pharmacol. Rep. 58(6), 870–875 (2006).

    PubMed  CAS  Google Scholar 

  32. R.F. Anderson, K.B. Patel, K. Reghebi, S.A. Hill, Conversion of xanthine dehydrogenase to xanthine oxidase as a possible marker for hypoxia in tumors and normal tissues, Br. J. Cancer 60(3), 193–197 (1989).

    PubMed  CAS  Google Scholar 

  33. I. Fenoglio, M. Tomatis, D. Lison, J. Muller, A. Fonseca, J.B. Nagy, B., Fubini Reactivity of carbon nanotubes: free radical generation or scavenging activity?, Free Radic. Biol. Med. 40(7), 1227–1233 (2006).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Mikhailenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V.

About this paper

Cite this paper

Mikhailenko, V., Ieleiko, L., Glavin, A., Sorochinska, J. (2009). Biomarkers of Nanoparticles Impact on Biological Systems. In: Linkov, I., Steevens, J. (eds) Nanomaterials: Risks and Benefits. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9491-0_5

Download citation

Publish with us

Policies and ethics