Skip to main content

Uncertainty in Life Cycle Assessment of Nanomaterials

Multi-criteria Decision Analysis Framework for Single Wall Carbon Nanotubes in Power Applications

  • Conference paper
Nanomaterials: Risks and Benefits

Abstract

Despite concerns regarding environmental fate and toxicology, engineered nanostructured material manufacturing is expanding at an increasingly rapid pace. In particular, the unique properties of single walled carbon nanotubes (SWCNT) have made them attractive in many areas, including high-tech power applications such as experimental batteries, fuel cells or electrical wiring. The intensity of research interest in SWCNT has raised questions regarding the life cycle environmental impact of nanotechnologies, including assessment of: worker and consumer safety, greenhouse gas emissions, toxicological risks associated with production or product emissions and the disposition of nanoproducts at end of life. However, development of appropriate nanotechnology assessment tools has lagged progress in the nanotechnologies themselves. In particular, current approaches to life cycle assessment (LCA) — originally developed for application in mature manufacturing industries such as automobiles and chemicals — suffer from several shortcomings that make applicability to nanotechnologies problematic. Among these are uncertainties related to the variability of material properties, toxicity and risk, technology performance in the use phase, nanomaterial degradation and change during the product life cycle and the impact assessment stage of LCA. This chapter expounds upon the unique challenges presented by nanomaterials in general, specifies sources of uncertainty and variability in LCA of SWCNT for use in electric and hybrid vehicle batteries and makes recommendations for modeling and decision-making using LCA in a multi-criteria decision analysis framework under conditions of high uncertainty.1

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Basson, L., and Petrie, J.G. (2007) An integrated approach for the consideration of uncertainty in decision making supported by life cycle assessment, EnvironmentalModeling & Software 22(2), 167–176.

    Article  Google Scholar 

  2. Cleveland, C.J., Hall, C.A.S., and Herendeen, R.A. (2006) Energy returns on ethanol production, Science 312(5781), 1746.

    Article  PubMed  CAS  Google Scholar 

  3. Crutzen, P.J., Mosier, A.R., Smith, K.A., and Winiwarter, W. (2008) N2O from agro-biofuel production negates global warming reduction by replacing fossil fuels, Atmospheric Chemistry and Physics 8, 389–395.

    Article  ADS  CAS  Google Scholar 

  4. Davis, J.M. (2007) How to assess the risks of nanotechnology: Learning from past experience, Journal of Nanoscience and Nanotechnology 7, 1–8.

    Article  CAS  Google Scholar 

  5. Donaldson, K., Aiken, R., Tran, L., Stone, V., Duffin, R., Forrst, G., and Alexander, A. (2006) Carbon nanotubes: A review of their properties in relation to pulmonary toxicology and workplace safety, Toxicological Sciences 92(1), 5–22.

    Article  PubMed  CAS  Google Scholar 

  6. Fargione, J., Hill, J., Tilman, D., Polasky, S., and Hawthorne, P. (2008) Land clearing and the biofuel carbon debt. Science 319, 1235–1238.

    Article  PubMed  ADS  CAS  Google Scholar 

  7. Gloria, T.P., Lippiatt, B.C., and Cooper, J. (2007) Life cycle impact assessment weights to support environmentally preferable purchasing in the United States, EnvironmentalScience & Technology 41(21), 7551–7557.

    CAS  Google Scholar 

  8. Gregory, R., and McDaniels, T. (2005) Improving environmental decision processes. In: Decision Making for the Environment, Brewer, G.D., and Stern, P.C. (eds.), National Academy Press, Washington, DC.

    Google Scholar 

  9. Guinee, J.B. (ed.) (2002) Handbook on Life Cycle Assessment: Operational Guide tothe ISO Standards, Kluwer, Boston, MA.

    Google Scholar 

  10. Hansen, S.F., Larsen, B.H., Olsen, S.I., and Baun, A. (2007) Categorization frameworkto aid hazard identification of nanomaterials, Nanotoxicology 1(3), 243–250.

    Article  CAS  Google Scholar 

  11. Hammerschlag, H. (2006) Ethanol's energy return on investment: A survey of literature 1990–present, Environmental Science and Technology 40, 1744–1750.

    Article  PubMed  CAS  Google Scholar 

  12. Herzog, E., Casey, A., Lyng, F.M., Chambers, G., Byren, H.J., and Davoren, M. (2007) A new approach to the toxicity testing of carbon-based nanomaterials - The clonogenic assay, Toxicology Letters 174, 49–60.

    Article  PubMed  CAS  Google Scholar 

  13. Jolliet, O., Müller-Wenk, R., Bare, J., Brent, A., Goedkoop, M., Heijungs, R., Itsubo, N., Pe************ña C., Pennington, D., Potting, J., Rebitzer, G., Stewart, M., Udo de Haes, H., and Weidema, B. (2004) The LCIA midpoint-damage framework of the UNEP/SETAClife cycle initiative, International Journal of Life Cycle Assessment 9(6), 394–404.

    Article  Google Scholar 

  14. Kö hler, A.R., Som, C., Helland, A., and Gottschalk, F. (2008) Studying the potential release of carbon nanotubes throughout the application life cycle, Journal of CleanerProduction 16, 927–937.

    Google Scholar 

  15. Landis, A.E., and Theis, T.L. (2006) Response to ‘Comments on workshop report on the economic and environmental impacts of biobased producion’, International Journal of Life Cycle Assessment 11(3), 213–214.

    Article  Google Scholar 

  16. Lichtenstein, S., and Slovic, P. (2006) The Construction of Preference, CambridgeUniversity Press, New York.

    Book  Google Scholar 

  17. Linkov, I., Tervonen, T., Figueira, J., Steevens, J., and Kim, J. (2008) Classifying nanomaterial risks: Use of multi-criteria decision analysis. In: Nanotechnology: Risks and Benefits, Linkov, I., and Steevens, J. (eds.), Springer, Amsterdam.

    Google Scholar 

  18. Linkov, I., and Ramadan, A.B. (2004) Comparative Risk Assessment and Environmental Decision-Making, Kluwer, Boston, MA.

    Google Scholar 

  19. Linkov, I., Satterstrom, F.K., Steevens, J., Ferguson, E., and Pleus, R.C. (2007) Multi-criteria decision analysis and environmental risk assessment for nanomaterials, Journalof Nanoparticle Research 9, 543–554.

    Article  Google Scholar 

  20. Liu, X., Guo, L., Morris, D., Kane, A.B., and Hurt, R.H. (2008) Targeted removal of bioavailable metal as a detoxification strategy for carbon nanotubes, Carbon 46, 489–500.

    Article  CAS  PubMed  Google Scholar 

  21. Lloyd, S.M., and Ries, R. (2007) Characterizing, propagating and analyzing uncertainty in life-cycle assessment, Journal of Industrial Ecology 11, 161–180.

    Article  Google Scholar 

  22. Lo, S.-C., Ma. H.-W., and Lo, S.-L. (2005) Quantifying and reducing uncertainty in life cycle assessment using bayesian monte carlo method, Science of the Total Environment 340, 23–33.

    Article  PubMed  CAS  Google Scholar 

  23. Matheys, J., Van Autoenboer, W., Timmermans, J.-M., Van Mierlo, J., Van den Bossche, P., and Maggetto, G. (2007) Influence of functional unit on the life cycle assessment of traction batteries, International Journal of Life Cycle Assessment 12(3), 191–196.

    Article  CAS  Google Scholar 

  24. Miettinen, P., and Hämäläinen, R.P. (1997) How to benefit from decision analysis in environmental life cycle assessment (LCA), European Journal of Operational Research 102(2),279–294.

    Article  MATH  Google Scholar 

  25. Muller, J., Huaux, F., and Lison, D. (2006) Respiratory toxicity of carbon nanotubes: How worried should we be?, Carbon 44, 1048–1056.

    Article  CAS  Google Scholar 

  26. NRC (Committee on Models in the Regulatory Decision Process) (2007) Models inEnvironmental Regulatory Decision Making Top, National Academy Press, Washington, DC.

    Google Scholar 

  27. Nel, A., Xia, T., Mädler, L., and Li, N. (2006) Toxic potential of materials at the nanolevel, Science 311, 622–627.

    Article  PubMed  ADS  CAS  Google Scholar 

  28. Oberdörster, G., Stone, V., and Donaldson, K. (2007) Toxicology of nanoparticles: A historical perspective, Nanotoxicology 1(1), 2–25.

    Article  CAS  Google Scholar 

  29. Ok, Z.D., Benneyan, J.C., and Isaacs, J.A. (2008) Risk analysis modeling of production costs and occupational health exposure of single-wall carbon nanotube manufacturing, Journal of Industrial Ecology 12(3). (Available online at www.blackwellpublishing.com/jie; last accessed 25 July 2008.)

  30. Payne, J.W., Bettman, J.R., and Schkade, DA. (1999) Measuring constructed preferences: Towards a building code, Journal of Risk and Uncertainty 19(1), 243–270.

    Article  MATH  Google Scholar 

  31. Powers, K.W., Palazuelos, M., Moudgil, B.M., and Roberts, S.M. (2007) Characterization of the size, shape and state of dispersion of nanoparticles for toxicological studies, Nanotoxicology 1(1), 42–51.

    Article  CAS  Google Scholar 

  32. Rinzler, A.G., Liu, J., Dai, H., Nikolaev, P., Huffman, C.B., Rodriguez-Macias, F.J., Boul, P.J., Lu, A.H., Heyman, D., Colbert, D.T., Lee, R.S., Fischer, J.E., Rao, A.M., Eklund, P.C., and Smalley, R.E. (1998) Large-scale purification of single-wall carbon nanotubes: Process, product, and characterization, Applied Physics A. 67, 29–37.

    Article  CAS  Google Scholar 

  33. Robichaud, C.O., Tanzil, D., Weilenmann, U., and Wiesner, M.R. (2005) Relative risk analysis of several manufactured nanomaterials: An insurance industry context, Environmental Science & Technology 39, 8985–8994.

    Article  CAS  Google Scholar 

  34. Roco, M.C. (2008) Possibilities for global governance of converging technologies, Journal of Nanoparticle Research 10, 11–29.

    Article  Google Scholar 

  35. Seager, T.P., Satterstrom, F.K, Tuler, S.P., Kay, R., and Linkov, I. (2007) Typological review of environmental performance metrics (with illustrative examples for oil spill response), Integrated Environmental Assessment & Management 3(3), 310–321.

    Article  Google Scholar 

  36. Seager, T.P., and Linkov, I. (2008) Coupling multi-criteria decision analysis and life cycle assessment for nanomaterials, Journal of Industrial Ecology 12(3), 282–285.

    Article  Google Scholar 

  37. Searchinger, T., Heimlich, R., Houghton, R.A., Dong, F., Elobeid, A., Fabiosa, J., Tokgoz, S., Hayes, D., and Yu, T.-H. (2008) Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change, Science 319, 1238–1240.

    Article  PubMed  ADS  CAS  Google Scholar 

  38. Sengül, H., Theis, T., and Ghosh, S. (2008) Towards sustainable nanoproducts: An overview of nanomanufacturing methods, Journal of Industrial Ecology 12(3), 329–359.

    Article  CAS  Google Scholar 

  39. Stern, P.C., and Fineberg, H., eds. (1996) Understanding Risk: Informing Decisions in aDemocratic Society, National Academy Press, Washington, DC.

    Google Scholar 

  40. Sweet, L., and Strohm, B. (2006) Nanotechnology—life-cycle risk management, Human and Ecological Risk Assessment 12(3), 528–551.

    Article  CAS  Google Scholar 

  41. Tervonen, T., and Lahdelma, R. (2007) Implementing stochastic multicriteria acceptability analysis, European Journal of Operational Research 178, 500–513.

    Article  MATH  Google Scholar 

  42. Tsuji, J.S., Maynard, A.D., Howard, P.C., James, J.T., Lam, C.-W., Warheit, D.B., and Santamaria, A.B. (2006) Research strategies for safety evaluation of nanomaterials, Part IV: Riskassessement of nanoparticles, Toxicological Sciences 89(1), 42–50.

    Article  PubMed  CAS  Google Scholar 

  43. United States Environmental Protection Agency (2008) Draft Nanomaterial Research Strategy,United States Environmental Protection Agency, Office of Research and Development, Washington, DC, publication EPA/600/S–08/002.

    Google Scholar 

  44. Von Blottnitz, H., and Curran, M.A. (2007) A review of assessments conducted on bio-ethanol as a transportation fuel from a net energy, greenhouse gas, and environmental life cycle perspective, Journal of Cleaner Production 15, 607–619.

    Article  Google Scholar 

  45. Williams, E.D., Ayres, R.Y, and Heller, M. (2002) The 1.7kg microchip: Energy and material usein the production of semiconductor devices, Environmental Science and Technology 36, 5504–5510.

    Article  PubMed  CAS  Google Scholar 

  46. Bare, J.C., Norris, G.A., Pennington, D.W., and McKone, T. (2003) TRACI: The Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts, Journal of Industrial Ecology 6, 49–78.

    Article  Google Scholar 

  47. Healy, M.L., Dahlben, L.J., and Isaacs, J.A. (2008) Environmental assessment of single wallcarbon nanotube processes, Journal of Industrial Ecology 12(3), 376–393.

    Article  CAS  Google Scholar 

  48. Oberdörster, G., Oberdörster, E., and Oberdörster, J. (2005) Nanotoxicology: An emergingdiscipline evolving from studies of ultrafine particles, Environmental Health Perspectives 113(7), 823–839.

    Article  PubMed  CAS  Google Scholar 

  49. Raffaelle, R.P., Landi, B.J., Harris, J.D., Bailey, S.G., and Hepp, A.F. (2005) Carbon nanotubes for power applications, Materials Science and Engineering B 116, 233–243.

    Article  CAS  Google Scholar 

  50. Rogers, K. (2008) Environmental Decision-Making Using Life Cycle Impact Assessment andStochastic Multi-Attribute Decision Analysis: A Case Study on Alternative Transportation Fuels.Master's thesis, Civil Engineering, Purdue University, West Lafayette, IN.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. P. Seager or I. Linkov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V.

About this paper

Cite this paper

Seager, T.P., Linkov, I. (2009). Uncertainty in Life Cycle Assessment of Nanomaterials. In: Linkov, I., Steevens, J. (eds) Nanomaterials: Risks and Benefits. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9491-0_33

Download citation

Publish with us

Policies and ethics