Skip to main content

Assessment of Quantum Dot Penetration into Skin in Different Species Under Different Mechanical Actions

  • Conference paper
Nanomaterials: Risks and Benefits

Abstract

Skin penetration is one of the major routes of exposure for nanoparticles to gain access to a biological system. QD nanoparticles have received a great deal of attention due to their fluorescent characteristics and potential use in medical applications. However, little is known about their permeability in skin. This study focuses on three types of quantum dots (QD) with different surface coatings and concentrations on their ability to penetrate skin. QD621 (polyethylene glycol coated, PEG) was studied for 24 h in porcine skin flow-through diffusion cells. QD565 and QD655 coated with carboxylic acid were studied for 8 and 24 h in flow-through diffusion cells with flexed, tape stripped and abraded rat skin to determine if these mechanical actions could perturb the barrier and affect penetration. Confocal microscopy depicted QD621 penetration through the uppermost layers of the stratum corneum (SC) and fluorescence was found in the SC and near hair follicles. QD621 were found in the intercellular lipid layers of the SC by transmission electron microscopy (TEM). QD565 and 655 with flexed and tape-stripped skin did not show penetration; only abraded skin showed penetration in the viable dermal layers. In all QD studies, inductively coupled plasma-optical emission spectroscopy (ICP-OES) analysis for cadmium (Cd) and fluorescence for QD did not detect Cd or fluorescence signal in the perfusate at any time point, concentration or type of QD. These results indicate that porcine skin penetration of QD621 is minimal and limited primarily to the outer SC layers, while QD565 and 655 penetrated into the dermis of abraded skin. The anatomical complexity of skin and species differences should be taken into consideration when selecting an animal model to study nanoparticle absorption/penetration. These findings are of importance to risk assessment for nanoscale materials because it indicates that if skin barrier is altered such as in wounds, scrapes, or dermatitis conditions could affect nanoparticle penetration deeper into the dermal layers and skin is an important organ and can serve as a potential route of exposure and should not be overlooked.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Michalet, X., Pinaud, F. F., Bentolila, L. A., Tsay, J. M., Doose, S., Li, J. J., Sundaresan, G., Wu, A. M., Gambhir, S. S., and Weiss, S., 2005, Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307: 538–544.

    Article  PubMed  ADS  CAS  Google Scholar 

  2. Wu X., Liu, H., Liu, J., Haley, K. N., Treadway, J. A., Larson, J. P., Ge, N., Peale, F., and Bruchez, M. P., 2003, Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat. Biotechnol. 21: 41–46.

    Article  PubMed  CAS  Google Scholar 

  3. Wang, J., Yong, W. H., Sun, Y., Vernier, P. T., Koeffler, H. P., Gundersen, M. A., and Marcu, L., 2007, Receptor-targeted quantum dots: fluorescent probes for brain tumor diagnosis. J. Biomed. Opt. 12: 044021.

    Article  PubMed  ADS  CAS  Google Scholar 

  4. Gao, X., Cui, Y., Levenson, R. M., Chung, L. W., and Nie, S., 2004, In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 22: 969–976.

    Article  PubMed  CAS  Google Scholar 

  5. Ryman-Rasmussen, J., Riviere, J. E., and Monteiro-Riviere, N. A., 2006, Penetration of intact skin by quantum dots with diverse physicochemical properties. Toxicol. Sci. 91: 159–165.

    Article  PubMed  CAS  Google Scholar 

  6. Yu, W. W., Chang, E., Falkner, J. C., Zhang, J., Al-Somali, A. M., Sayes, C. M., Johns, J., Drezek, R., and Colvin, V. L., 2007, Forming biocompatible and nonaggregated nanocrystals in water using amphiphilic polymers. J. Am. Chem. Soc. 129: 2871–2879.

    Article  PubMed  CAS  Google Scholar 

  7. Derfus, A. M., Chan, W. C. W., and Bhatia, S. N., 2006, Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 4: 11–18.

    Article  CAS  ADS  Google Scholar 

  8. Chang, E., Thekkek, N., Yu, W. W., Colvin, V. L., and Drezek, R., 2006, Evaluation of quantum dot cytotoxicity based on intracellular uptake. Small 12: 1412–1417.

    Article  CAS  Google Scholar 

  9. Zhang, L. W., Yu, W. W., Colvin, V. L., and Monteiro-Riviere, N. A., 2008, Biological interactions of quantum dot nanoparticles in skin and in human epidermal keratinocytes. Toxicol. Appl. Pharmacol. 228: 200–211.

    Article  PubMed  CAS  Google Scholar 

  10. Honeywell-Nguyen, P. L., Gooris, G. S., and Bouwstra, J. A., 2004, Quantitative assessment of the transport of elastic and rigid vesicle components and a model drug from these vesicle formulations into human skin in vivo. J. Invest. Dermatol. 123: 902– 910.

    Article  PubMed  CAS  Google Scholar 

  11. Van der Merwe, D., Brooks, J. D., Gehring, R., Baynes, R. E., Monteiro-Riviere, N. A., and Riviere, J. E., 2006., A physiologically based pharmacokinetic model of organophosphate dermal absorption. Toxicol. Sci. 89: 188–204.

    Article  PubMed  Google Scholar 

  12. Zhang, L. W., and Monteiro-Riviere, N. A., 2008, Assessment of quantum dot penetration into intact, tape stripped, abraded and flexed rat skin. Skin Pharmacol. Physiol. 21: 166–180.

    Article  PubMed  CAS  Google Scholar 

  13. Monteiro-Riviere, N. A., and Inman, A. O., 2008, Evaluation of quantum dot nanoparticle penetration in human skin. The Toxicologist CD-An official. J. Soc. Toxicol. 102: S-1, 1029, 211.

    Google Scholar 

  14. Gamer, A. O., Leibold, E., and van Ravenzwaay B., 2006, The in vitro absorption of microfine zinc oxide and titanium dioxide through porcine skin. Toxicol. In Vitro 20: 301–307.

    Article  PubMed  CAS  Google Scholar 

  15. Alvarez-Roman, R., Naik, A., Kalia, Y. N., Guy, R. H., and Fessi, H., 2004, Skin penetration and distribution of polymeric nanoparticles. J. Control. Release 99: 53–62.

    Article  PubMed  CAS  Google Scholar 

  16. Baroli, B., Ennas, M. G., Loffredo, F., Isola, M., Pinna, R., and López-Quintela, M. A., 2007, Penetration of metallic nanoparticles in human full-thickness skin. J. Invest. Dermatol. 127: 1701–1712.

    PubMed  CAS  Google Scholar 

  17. Shim, J., Seok, K. H., Park, W. S., Han, S. H., Kim, J., and Chang, I. S., 2004, Transdermal delivery of minoxidil with block copolymer nanoparticles. J. Control. Release 97: 477–484.

    PubMed  CAS  Google Scholar 

  18. Monteiro-Riviere, N. A., 1998, Integument. In: Dellmann, H. D., and Eurell, J. A. (Eds.), Textbook of Veterinary Histology. Williams & Wilkins, Baltimore, MD, pp. 303–332.

    Google Scholar 

  19. Monteiro-Riviere, N. A., 2008, Anatomical Factors that Affect Barrier Function. In: Zhai, H., Wilhelm, K. P., and Maibach, H. I. (Eds.), Dermatotoxicology. CRC Press, New York, pp. 39–50.

    Google Scholar 

  20. Monteiro-Riviere, N. A., 1991, Comparative Anatomy, Physiology, and Biochemistry of Mammalian Skin. In: Hobson, D.W. (Ed.), Dermal and Ocular Toxicology Fundamentals and Methods. CRC Press, Boca Raton, FL, pp. 3–71.

    Google Scholar 

  21. Monteiro-Riviere, N. A., and Riviere, J. E., 1996, The Pig as a Model for Cutaneous Pharmacology and Toxicology Research. In: Tumbleson, M. E., and Schook, L. B. (Eds.), Advances in Swine in Biomedical Research. Plenum, New York, pp. 425–458.

    Google Scholar 

  22. Monteiro-Riviere, N. A., 2001, Integument. In: Pond, W. G., and Mersmann, H. J. (Eds.), The Biology of the Domestic Pig. Cornell University Press, Ithaca, NY, pp. 625– 652.

    Google Scholar 

  23. Bronaugh, R. L., Stewart, R. F., and Congdon, E. R., 1982, Methods for in vitro percutaneous absorption studies. 2. Animal models for human skin. Toxicol. Appl. Pharmacol. 62: 481–488.

    Article  PubMed  CAS  Google Scholar 

  24. Schaefer, H., and Redelmeier, T. E., 1996, Skin Barrier. In: Schaefer, H., and Redelmeier, T. E. (Eds.), Skin Barrier: Principles of Percutaneous Absorption. Karger Basel, Switzerland, pp. 146–148.

    Google Scholar 

  25. Treffel, P., and Gabrad, B., 1996, Skin penetration and sun protection factor of ultraviolet filters from two vehicles. Pharmaceut. Res. 13: 770–774.

    Article  CAS  Google Scholar 

  26. Hostýnek, J. J., Dreher, F., Pelosi, A., Anigbogu, A., and Maibach, H. I., 2001, Human stratum corneum penetration by nickel: In vivo study of depth distribution after occlusive application of the metal as powder. Acta. Derm. Venereol. 212(Suppl.): 5–10.

    Article  Google Scholar 

  27. Fent, K. W., Jayaraj, K., Gold, A., Ball, L. M., and Nylander-French, L. A., 2006, Tape-strip sampling for measuring dermal exposure to 1,6-hexamethylene diisocyanate. Scand. J. Work Environ. Health 32: 225–240.

    PubMed  CAS  Google Scholar 

  28. Orentreich, N., and Orentreich, D. S., 1995, Dermabrasion, in Dermatol. Clin. 15: 313– 327.

    Google Scholar 

  29. Grimes, P. E., 2005, Microdermabrasion. Dermatol. Surg. 31: 1160–1165.

    Article  PubMed  CAS  Google Scholar 

  30. Lee, W. R., Shen, S. C., Wang, K. S., Hu, C. H., and Fang, J. Y., 2003, Lasers and microdermabrasion enhance and control topical delivery of vitamin C. J. Invest. Dermatol. 121: 118–1125.

    Article  PubMed  CAS  Google Scholar 

  31. Tinkle, S. S., Antonini, J. M., Rich, B. A., Roberts, J. R., Salmen, R., DePree, K., and Adkins, E. J., 2003, Skin as a route of exposure and sensitization in chronic beryllium disease. Environ. Health Perspect.. 111: 1202–1208.

    Article  PubMed  CAS  Google Scholar 

  32. Rouse, J. G., Yang, J., Barron, A. R., and Monteiro-Riviere, N. A., 2006, Fullerene-based amino acid nanoparticle interactions with human epidermal keratinocytes. Toxicol. In Vitro 8: 1313–1320.

    Article  CAS  Google Scholar 

  33. Monteiro-Riviere, N. A., Inman, A. O., and Ryman-Rasmussen, J. P., 2007, Dermal Effects of Nanomaterials. In: Monteiro-Riviere, N. A., and Tran, C. L. (Eds.), Nanotoxicology: Characterization, Dosing, and Health Effects. Informa Healthcare, New York, pp. 317–337.

    Google Scholar 

  34. Cross, S. E., Innes, B., Roberts, M. S., Tsuzuki, T., Robertson, T. A., and McCormick, P., 2007, Human skin penetration of sunscreen nanoparticles: In-vitro assessment of a novel micronized zinc oxide formulation. Skin Pharmacol. Physiol. 20: 148–154.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Monteiro-Riviere .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V.

About this paper

Cite this paper

Monteiro-Riviere, N.A., ZHANG, L.W. (2009). Assessment of Quantum Dot Penetration into Skin in Different Species Under Different Mechanical Actions. In: Linkov, I., Steevens, J. (eds) Nanomaterials: Risks and Benefits. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9491-0_3

Download citation

Publish with us

Policies and ethics