Skip to main content

Disposition of Nanoparticles as a function of Their Interactions with Biomolecules

  • Conference paper
Nanomaterials: Risks and Benefits

Abstract

This review focuses on emerging concepts in the fundamental understanding of how particle surfaces interact with components in biological fluids, with an emphasis on how these interactions may inform research regarding the biodistribution of nanosized materials from the portal of entry to other organ systems. The respiratory tract is given particular focus here because of expected occupational and environmental exposure scenarios. Information regarding the biodistribution of nanoparticles and how they might be altered during the process by their local environment is a critical part of a complete human health risk assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahsan, F., Rivas, I. P., Khan, M. A., and Torres Suárez, A. I., 2002, Targeting to macrophages: role of physicochemical properties of particulate carriers - liposomes and microspheres - on the phagocytosis by macrophages, J. Control. Release 79: 29–40.

    Article  PubMed  CAS  Google Scholar 

  2. Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., and Watson, J. D., 1994, Molecular Biology of the Cell, 3rd Edition. Garland Publishing, London.

    Google Scholar 

  3. Bakshi, M. S., Zhao, L., Smith, R., Possmayer, F., and Petersen, N. O., 2008, Metal nanoparticle pollutants interfere with pulmonary surfactant function in vitro, Biophys. J. 94: 855–868.

    Article  PubMed  CAS  Google Scholar 

  4. Barrett, E. G., Johnston, C., Oberdorster, G., and Finkelstein, J. N., 1999, Silica binds serum proteins resulting in a shift of the dose-response for silica-induced chemokine expression in an alveolar type II cell line, Toxicol. Appl. Pharmacol. 161: 111–122.

    Article  PubMed  CAS  Google Scholar 

  5. Bodian, D., and Howe, H. A., 1941b, The rate of progression of poliomyelitis virus in nerves, Bull. Johns Hopkins Hosp. 69: 79–85.

    Google Scholar 

  6. Bodian, D., and Howe, H. A., 1941a, Experimental studies on intraneural spread of poliomyelitis virus, Bull. Johns Hopkins Hosp. 68: 248–267.

    Google Scholar 

  7. Borm, P. J. A., Robbins, D., Haubold, S., Kuhlbusch, T., Fissan, H., Donaldson, K., Schins, R., Stone, V., Kreyling, W., Lademann, J., Krutmann, J., Warheit, D., and Oberdörster, E., 2006, The potential risks of nanomaterials: a review carried out for ECETOC, Part. Fibre Toxicol. 3(11): 35.

    Google Scholar 

  8. Chen, J.,i Tan, M., Nemmar, A., Song, W., Dong, M., Zhang, G., and Li, Y., 2006, Quantification of extrapulmonary translocation of intratracheal-instilled particles in vivo in rats: effect of lipopolysaccharide, Toxicology 222: 195–201.

    Article  PubMed  CAS  Google Scholar 

  9. Choi, H. S., Liu, W., Misra, P., Tanaka, E., Zimmer, J. P., Ipe, B. I., Bawendi, M. G., and Frangioni, J. V., 2007, Renal clearance of quantum dots, Nat. Biotechnol. 25(10): 1165–1170.

    Article  PubMed  CAS  Google Scholar 

  10. DeLorenzo, A. J. D., 1970, The olfactory neuron and the blood-brain barrier. In: Wolstenholme, G. E. W. and Knight, J. (eds.), Taste and Smell in Vertebrates. London: J&A Churchill, pp. 151–176.

    Chapter  Google Scholar 

  11. DeLorenzo, J., 1957, Electron microscopic observations of the olfactory mucosa and olfactory nerve, J. Biophys. Biochem. Cytol.3: 839–850.

    Article  CAS  Google Scholar 

  12. Driscoll, K. E., Costa, D. L., Hatch, G., Henderson, R., Oberdörster, G., Salem, H., and Schlesinger, R. B., 2000, Intratracheal instillation as an exposure technique for the evaluation of respiratory tract toxicity: uses and limitations, Toxicol. Sci. 55(1): 24–35.

    Article  PubMed  CAS  Google Scholar 

  13. Elder, A., Gelein, R., Silva, V., Feikert, T., Opanashuk, L., Carter, J., Potter, R., Maynard, A., Ito, Y., Finkelstein, J., and Oberdörster, G., 2006, Translocation of inhaled ultrafine manganese oxide particles to the central nervous system, Environ. Health Perspect. 114(8): 1172–1178.

    Article  PubMed  CAS  Google Scholar 

  14. Elder, A., Lynch, I., Grieger, K., Chan-Remillard, S., Gatti, A., Gnewuch, H., Kenawy, E., Korenstein, R., Kuhlbusch, T., Linker, F., Matias, S., Monteiro-Riviere, N., Pinto, V., Rudnitsky, R., Savoleinen, K., and Shvedova, A., 2008, Human health risks of engineered nanomaterials. In: Linkov, I. and Steevens, J. (eds.), Nanotechnology: Risks and Benefits. Dordrecht: Springer.

    Google Scholar 

  15. Geiser, M., Rothen-Rutishauser, B., Kapp, N., Schurch, S., Kreyling, W., Schulz, H., Semmler, M., Im Hof, V., Heyder, J., and Gehr, P., 2005, Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells, Environ. Health Perspect. 113: 1555–1560.

    Article  PubMed  Google Scholar 

  16. Gao, N., Keane, M. J., Ong, T., Ye, J., Miller, W. E., and Wallace, W. E., 2001, Effects of phospholipid on apoptosis induction by respirable quartz and kaolin in NR8383 rat pulmonary macrophages, Toxicol. Appl. Pharmacol. 175: 217–225.

    Article  PubMed  CAS  Google Scholar 

  17. Gao, N., Keane, M. J., Ong, T., and Wallace, W. E., 2000, Effects of simulated pulmonary surfactant on the cytotoxicity and DNA-damaging activity of respirable quartz and kaolin, J. Toxicol. Environ. Health 60: 153–167.

    Article  CAS  Google Scholar 

  18. Griese, M., 1999, Pulmonary surfactant in health and human lung diseases: state of the art, Eur. Respir. J. 13: 1455–1476.

    Article  PubMed  CAS  Google Scholar 

  19. Hahn, F. F., Newton, G. J., and Bryant, P. L., 1977, In vitro phagocytosis of respirable-sized monodisperse particles by alveolar macrophages, ERDA Ser. 43: 424–435.

    Google Scholar 

  20. International Committee on Radiological Protection, 1994, Human Respiratory Tract Model for Radiological Protection, A Report of Committee 2 of the ICRP.

    Google Scholar 

  21. Kendall, M., 2007, Fine airborne urban particles (PM2.5) sequester lung surfactant and amino acids from human lung lavage, Am. J. Physiol. 293: L1053–L1508.

    CAS  Google Scholar 

  22. Kim, K. J., and Malik, A. B., 2003, Protein transport across the lung epithelial barrier, Am. J. Physiol. 284(2): L247–L259.

    CAS  Google Scholar 

  23. Kreyling, W. G., Semmler, M., Erbe, F., Mayer, P., Takenaka, S., and Schulz, H., 2002, Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low, J. Toxicol. Environ. Health Part A 65: 1513–1530.

    Article  PubMed  CAS  Google Scholar 

  24. Kuroda, K., Morimoto, Y., Ogami, A., Oyabu, T., Nagatomo, H., Hirohashi, M., Yamato, H., Nagafuchi, Y., and Tanaka. I., 2006, Phospholipid concentration in lung lavage fluid as biomarker for pulmonary fibrosis, Inhal. Toxicol 18: 389–393.

    Article  PubMed  CAS  Google Scholar 

  25. Lynch, I., Cedervall, T., Lundqvist, M., Cabaleiro-Lago, C., Linse, S., and Dawson, K. A., 2007, The nanoparticle-protein complex as a biological entity; a complex fluids and surface science challenge for the 21st century, J. Colloid Interface Sci. 134–135: 167–174.

    Google Scholar 

  26. Lynch, I., Dawson, K. A., and Linse, S., 2006, Detecting crytpic epitopes in proteins adsorbed onto nanoparticles. Sci. STKE 327: 14.

    Google Scholar 

  27. Mercer, R. R., Scabilloni, J., Wang, L., Kisin, E., Murray, A. R., Schwegler-Berry, D., Shvedova, A. A., and Castranova, V., 2008, Alteration of deposition pattern and pulmonary response as a result of improved dispersion of aspirated single-walled carbon nanotubes in a mouse model, Am. J. Physiol. Lung Cell. Mol. Physiol. 294(1): L87–L97.

    Article  PubMed  CAS  Google Scholar 

  28. Muthusamy, B., Hanumanthu, G., Suresh, S., et al., 2005, Plasma proteome database as a resource for proteomics research, Proteomics 5: 3531–3536.

    Article  PubMed  CAS  Google Scholar 

  29. Oberdörster, G., Ferin, J., Gelein, R., Soderholm, S., and Finkelstein, J., 1992, Role of the alveolar macrophage in lung injury: studies with ultrafine articles, Environ. Health Perspect. 97: 193–199.

    Article  PubMed  Google Scholar 

  30. Oberdörster, G., Sharp, Z., Atudorei, V., Elder, A., Gelein, R., Lunts, A., Kreyling, W., and Cox, C., 2002, Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats, J. Toxicol. Environ. Health 65: 1531–1543.

    Article  CAS  Google Scholar 

  31. Oberdörster, G., Sharp, Z., Atudorei, V., Elder, A., Gelein, R., Kreyling, W., and Cox, C., 2004, Translocation of inhaled ultrafine particles to the brain, Inhal. Toxicol. 16(6–7): 437–445.

    Article  PubMed  CAS  Google Scholar 

  32. Salvador-Morales, C., Townsend, P., Flahaut, E., Vénien-Bryan, C., Vlandas, A., Green, M. L. H., and Sim, R. B., 2007, Binding of pulmonary surfactant proteins to carbon nanotubes; potential for damage to lung immune defense mechanisms, Carbon 45: 607–617.

    Article  CAS  Google Scholar 

  33. Seagrave, J., Knall, C., McDonald, J. D., and Mauderly, J. L., 2004, Diesel particulate material binds and concentrates a proinflammatory cytokine that causes neutrophil migration, Inhal. Toxicol. 16(Suppl. 1): 93–98.

    Article  PubMed  CAS  Google Scholar 

  34. Semmler, M., Seitz, J., Erbe, F., Mayer, P., Heyder, J., Oberdörster, G., and Kreyling, W. G., 2004, Long-term clearance kinetics of inhaled ultrafine insoluble iridium particles from the rat lung, including transient translocation into secondary organs, Inhal. Toxicol. 16: 453–459.

    Article  PubMed  CAS  Google Scholar 

  35. Semmler-Behnke, M., Takenaka, S., Fertsch, S., Wenk, A., Seitz, J., Mayer, P., Oberdörster, G., and Kreyling, W. G., 2007, Efficient elimination of inhaled nanoparticles from the alveolar region: evidence for interstitial uptake and subsequent reentrainment onto airways epithelium, Environ. Health Perspect. 115(5): 728–733.

    Article  PubMed  CAS  Google Scholar 

  36. Shvedova, A. A., Kisin, E. R., Murray, A. R., Johnson, V. J., Gorelok, O., Arepalli, S., Hubbs, A., Mercer, R. R., Keohavonf, P., Sussman, N., Jin, J., Stone, S., Chen, B. T., Deye, G., Maynard, A., Castranova, V., Baron, P. A., and Kagan, V. E., 2008, Inhalation vs aspiration of single-walled carbon nanotubes in C57BL/6 mice: inflammation, fibrosis, oxidative stress and mutagenesis, Am. J. Physiol. Lung Cell Mol. Physiol. 295(4): L552–565.

    Article  PubMed  CAS  Google Scholar 

  37. Takenaka, S., Karg, E., Kreyling, W. G., Lentner, B., Möller, W., Behnke-Semmler, M., Jennen, L., Walch, A., Michalke, B., Schramel, P., Heyder, J., and Schulz, H., 2006, Distribution pattern of inhaled ultrafine gold particles in the rat lung, Inhal. Toxicol. 18(10): 733–740.

    Article  PubMed  CAS  Google Scholar 

  38. Takenaka, S., Karg, E., Roth, C., Schulz, H., Ziensis, A., Heinzmann, U., Schramel, P., and Heder, J., 2001, Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats, Environ. Health Perspect. 109(Suppl. 4): 547–551.

    Article  PubMed  CAS  Google Scholar 

  39. The Royal Society and the Royal Academy of Engineering, Nanoscience and Nanotechnologies: Opportunities and Uncertainties, The Royal Society, 2004.

    Google Scholar 

  40. Wagner, J. G., Hotchkiss, J. A., and Harkema, J. R., 2001, Effects of ozone and endotoxin coexposure on rat airway epithelium: potentiation of toxicity-induced alterations, Environ. Health Perspect. 109(Suppl. 4): 591–598.

    Article  PubMed  CAS  Google Scholar 

  41. Wilson, C. J., Clegg, R. E., Leavesley, D. I., and Pearcy, M. J., 2005, Mediation of biomaterial-cell interactions by adsorbed proteins: a review, Tissue Eng. 11: 1–18.

    Article  PubMed  CAS  Google Scholar 

  42. Woodrow Wilson International Center for Scholars, Project on Emerging Nanotechno-logies, Consumer Products Inventory. http://www.nanotechproject.org/inventories/ consumer/.

  43. Xiao, H., Banks, W. A., Niehoff, M. L., and Morley, J. E., 2001, Effect of LPS on the permeability of the blood-brain barrier to insulin, Brain Res. 896: 36–2.

    Article  Google Scholar 

  44. Lundqvist, M., Stigler, J., Elia, G., Lynch, I., Cedervall, T., Kenneth A., and Dawson, K.A., 2008, Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. PNAS, 105(38): 14265–14270.

    Article  PubMed  CAS  ADS  Google Scholar 

  45. Lynch, I., and Dawson, K. A., 2008, Protein-nanoparticle interactions, Nano Today 3: 40–47.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V.

About this paper

Cite this paper

Lynch, I., Elder, A. (2009). Disposition of Nanoparticles as a function of Their Interactions with Biomolecules. In: Linkov, I., Steevens, J. (eds) Nanomaterials: Risks and Benefits. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9491-0_2

Download citation

Publish with us

Policies and ethics