Skip to main content

History of Dynamics of Machines and Mechanisms from Leonardo to Timoshenko

  • Conference paper
International Symposium on History of Machines and Mechanisms

Abstract

In this paper we review the use of dynamic analysis in the evolution of machine and mechanism design. Our thesis is that the application of analytical methods in dynamics to machines and mechanisms lagged behind the application of these methods to non-machine areas of science and engineering such as planetary dynamics and structural dynamics. The early works of Mertzalov, Den Hartog and Timoshenko are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Airy GB (1826) On the Disturbances of Pendulums and Balances and the Theory of Escapements, Trans. Cambridge Philos. Soc. 3(pt.I(1830)), 105–128.

    Google Scholar 

  2. Andronov AA, Vitt AA, Khaikin SE (1966) Theory of Oscillators, Pergamon Press, Oxford. Dover Publ., 1987.

    Google Scholar 

  3. Baillie GH, Clutton C, Ilbert CA (1956) Britten’s Old Clocks and Watches and Their Makers, 7th Ed., Bonanza Books, NY.

    Google Scholar 

  4. Bennett S (1979) A History of Control Engineering 1800–1930, Institution of Electrical Engineers, London and Peter Peregrinus Ltd., Stevenage, UK.

    Google Scholar 

  5. Bennett (1979)

    Google Scholar 

  6. Bernstein D (2000) Escapements, Governors, Ailerons, Gyros, and Amplifiers: Feedback Control and the History of Technology, Michigan St. Univ. Report.

    Google Scholar 

  7. Besson (1569–1578)

    Google Scholar 

  8. Besson J (1569–1578) Theatre des Instruments.

    Google Scholar 

  9. Bevan T (1939) The Theory of Machines, Longmans, Green and Co., London.

    Google Scholar 

  10. Biezeno CB, Grammel R (1939, 1953) Technische Dynamik, 2nd Ed., Springer, Berlin.

    Google Scholar 

  11. Bloxam JM (1854) On the Mathematical Theory and Practical Defects of Clock Escapements, with a Description of a New Escapement; and Some Observations for Astronomical and Scientific Purposes, Mem. Roy. Astron. Soc. 22, 103–150.

    Google Scholar 

  12. Böckler (1661) Theatrum Machinarum Novum.

    Google Scholar 

  13. Böckler (1661)

    Google Scholar 

  14. Böckler (1661)

    Google Scholar 

  15. Borgnis JA (1818) Traite’ Complet De Me’canique Applique’e Aux Arts: Composition des Machines, Bachlier, Libraire, Paris.

    Google Scholar 

  16. Bruton E (1979) The History of Clocks and Watches, Orbis Publ., London.

    Google Scholar 

  17. Buckingham E (1949) Analytical Mechanics of Gears, McGraw-Hill, NY.

    Google Scholar 

  18. Burmester L (1888) Lehrbuch der Kinematik; Erster Band. Die Ebene Bewegung, Verlag von Arthur Felix, Leipzig.

    Google Scholar 

  19. Callon MJ (1875)

    Google Scholar 

  20. Conway HG (1953–55)Origins of Mechanical Servo Mechanisms, Newcomen Soc. 29, 1953–1954, 1954-1955.

    Google Scholar 

  21. Crabtree H (1909, 1913) An Elementary Treatment of the Theory of Spinning Tops and Gyroscopic Motion 2nd Ed., Longmans, Green and Co., London.

    Google Scholar 

  22. Den Hartog JP (1934, 1940) Mechanical Vibrations, 2nd Ed., McGraw-Hill Book Co., NY.

    Google Scholar 

  23. Denison EB (1868) (a.k.a. Lord Grimthorpe) A Rudimentary Treatise on Clocks and Watches and Bells.

    Google Scholar 

  24. Dugas R (1955, 1988) A History of Mechanics, Dover Edition, Dover Publ., NY.

    Google Scholar 

  25. Dunkerley S (1904, 1910) Mechanism, 3rd Ed., Longmans, Green and Co., London.

    Google Scholar 

  26. Euler L (1760) Theoria motus corporum solidorum seu rigidorum.

    Google Scholar 

  27. Ferguson ES (1962) Kinematics of Mechanisms from the Time of Watt, from United States National Museum Bulletin, 228, Smithsonian Institution, Washington, DC. paper 27, pp. 185–230.

    Google Scholar 

  28. Foucault (1853)

    Google Scholar 

  29. Grübler M (1917) Getriebelehre, Verlag von Julius Springer, Berlin.

    Google Scholar 

  30. Hachette et al. (1811)

    Google Scholar 

  31. Hachette JNP (1811) Traité Elementaire des Machines, Paris.

    Google Scholar 

  32. Ham, Crane (1927) Mechanics of Machines, McGraw-Hill, NY.

    Google Scholar 

  33. Hartenberg and Denevit (1964)

    Google Scholar 

  34. Hartenberg RS, Denavit J (1964) Kinematic Synthesis of Linkages, McGraw- Hill Book Co., NY, p 75.

    Google Scholar 

  35. Hartman (1956) Dynamics of Machinery.

    Google Scholar 

  36. Hartmann W (1913) Die Maschinengetriebe, Stuttgart.

    Google Scholar 

  37. Haton de la Goupillie (1864) Traite des Mecanismes.

    Google Scholar 

  38. Headrick MV (2001) Clocks and Time: Clock and Watch Escapements http://ubr.com/clocks/educ/escapem.html

  39. Huygens C (1658) Horologium.

    Google Scholar 

  40. Kauderer H (1958) Nichtlineare Mechanik, Springer-Verlag, Berlin, Second part, Section 4, pp. 415–423.

    Google Scholar 

  41. Kennedy ABW (1886) The Mechanics of Machinery, Macmillan and Co., London.

    Google Scholar 

  42. Kesteven M (1978) On the Mathematical Theory of Clocks, Am. J. Phys. 46(2), 125–129.

    Article  Google Scholar 

  43. Laboulaye C (1849, 1864) Traite de Cinematique ou Theorie des Mechanismes, 2nd Ed., Gauthier-Villars, Paris.

    Google Scholar 

  44. Lagrange JL (1788) Mecanique Analytique.

    Google Scholar 

  45. Lanz, Betoncourt (1808) Analytical Essay on the Construction of Machines.

    Google Scholar 

  46. Leonardo da Vinci (c.1500) Codex Atlanticus.

    Google Scholar 

  47. Leonardo da Vinci (c. 1500) Codex Madrid I.

    Google Scholar 

  48. Lepschy AM, Mian GA, Viaro U (1992) Feedback Control in Ancient Water and Mechanical Clocks, IEEE Trans. Edu. 35(1), 3–10.

    Article  Google Scholar 

  49. Leupold J (1724) Theatrum Machinarum, Leipzig.

    Google Scholar 

  50. Lyapunov AM (1892) The General Problem of the Stability of Motion.

    Google Scholar 

  51. Mach E (1893) The Science of Mechanics, English edition, The Open Court Publishing Co. Lasalle Illinois, 1960.

    Google Scholar 

  52. Martinek, Rehor (1996) Mechanische Uhren.

    Google Scholar 

  53. Maxwell JC (1867/1868) On Governors, Proc. Royal Soc. 16, pp. 270–283.

    Google Scholar 

  54. Mayr O (1969, 1970) The Origins of Feedback Control, English Edition, MIT Press, Cambridge, MA.

    Google Scholar 

  55. Mertzalov NI (1914)

    Google Scholar 

  56. Mertzalov NI (1914) [In Russian] Dynamics of Machines.

    Google Scholar 

  57. Mevel B, Guyader JL (1993) Routes to Chaos in Ball Bearings, J. Sound Vib. 162(3), 471–487.

    Article  Google Scholar 

  58. Moll C L, Reuleaux F (1854) Constructionslehre Für Den Maschinenbau, (Design for mechanical engineering) Druck und Verlag von Friedrich Vieweg und Sohn, Braunschweig.

    Google Scholar 

  59. Moon FC (1992) Chaotic and Fractal Dynamics, Wiley, NY.

    Google Scholar 

  60. Moon FC (1998, 2008) Applied Dynamics: With Applications to Multibody and Mechatronic Systems, Wiley-VCH, Berlin.

    Google Scholar 

  61. Moon FC (2003) Franz Reuleaux; Contributions to 19th Century Kinematics and Theory of Machines, App. Mech. Rev. 56(2), 261–285.

    Article  Google Scholar 

  62. Moon FC (2003) Robert Willis and Franz Reuleaux: Notes and Records, Roy.Soc.

    Google Scholar 

  63. Moon FC (2007) The Machines of Leonardo da Vinci and Franz Reuleaux, Springer, NY.

    Google Scholar 

  64. Moon FC, Stiefel PD (2006) Coexisting Periodic and Chaotic Dynamics in Clock Escapements, Phil Trans. Roy Soc A 364, 2539–2563.

    Article  Google Scholar 

  65. Nikolai EI (1939) Theoretical Mechanics

    Google Scholar 

  66. Ord-Hume AWJG (1977) Perpetual Motion: The History of an Obsession, St. Marten’s Press, NY.

    Google Scholar 

  67. Rankine WJM (1858, 1868) A Manual of Applied Mechanics, 4th Ed., Charles Griffin and Co., London.

    Google Scholar 

  68. Rayleigh [Lord] (1894–1896) The Theory of Sound, 2nd Ed., Macmillan, London.

    Google Scholar 

  69. Redtenbacher (1861) Resultate für den Maschinenbaau, Mannheim.

    Google Scholar 

  70. Redenbacher F (1865) Der Machinenbau Dritter Band, Verlagsbuchhandlung von Friedrich Bassermann, Mannheim.

    Google Scholar 

  71. Reti L (1974) The Unknown Leonardo.

    Google Scholar 

  72. Reuleaux F (1859) Regulatorenfrage, Zeitschtrift von deutscher Ingenuier, Vol 3.

    Google Scholar 

  73. Reuleaux F and Moll (1854)

    Google Scholar 

  74. Reuleaux (1875) Theoretische Kinematik.

    Google Scholar 

  75. Reuleaux F (1876) Das Zentrifugalmoment. Ein Beitrag zur Dynamik Verhandlungen des Verein zur Beförderung des Gewerbefleisses, Vol 55, (Sitzungsberichte), s. 50–88.

    Google Scholar 

  76. Reuleaux F (1876) Kinematics of Machinery; Outlines of a Theory of Machines, A.B.W. Kennedy, Transl., MacMillan and Co., London.

    Google Scholar 

  77. Reuleaux F (1893) The Constructor, 4th Edition, Translated by H. Suplee.

    Google Scholar 

  78. Roup and Bernstein et al. (2001) Analysis of the Verge and Foliot Clock Escapement, Michigan State Univ Report.

    Google Scholar 

  79. Routh (1905)

    Google Scholar 

  80. Routh EJ (1905) Dynamics of a System of Rigid Bodies, 6th Ed., Macmillan, London.

    Google Scholar 

  81. Sommerfeld A (1952) Mechanics.

    Google Scholar 

  82. Strada (1617) Künstlicher Abriss Allerand Wasser, Wind, Ross, und Handt Mühlen.

    Google Scholar 

  83. Szabo (1987) Geschichte der mechanischen Prinzipien, 3rd Ed., Birkhaüser Verlag, Basel.

    Google Scholar 

  84. Timoshenko S (1928) Vibration Problems in Engineering, D. Van Nostrand, NY.

    Google Scholar 

  85. Timoshenko S, Young DH (1948) Advanced Dynamics, McGraw-Hill, NY.

    Google Scholar 

  86. Truesdell C (1968) Essays in the History of Mechanics, Springer-Verlag, NY.

    Google Scholar 

  87. Watt (1780)

    Google Scholar 

  88. Weisbach J (1848) Principles of the Mechanics of Machinery and Engineering, First American Edition, Vol. 2 Lea and Blanchard, Philadelphia, 1848–1849.

    Google Scholar 

  89. Willis R (1841) Principles of Mechanisms, London.

    Google Scholar 

  90. Wood G (2002) Living Dolls, Faber and Faber Ltd., London.

    Google Scholar 

  91. Wrigley W, Hollister WM, Denhard WG (1969) Gyroscopic Theory, Design and Instrumentation, MIT Press, Cambridge US.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this paper

Cite this paper

Moon, F. (2009). History of Dynamics of Machines and Mechanisms from Leonardo to Timoshenko. In: Yan, HS., Ceccarelli, M. (eds) International Symposium on History of Machines and Mechanisms. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9485-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-9485-9_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-9484-2

  • Online ISBN: 978-1-4020-9485-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics