Skip to main content

Neuropsychological Endophenotypes in Schizophrenia and Bipolar I Disorder: Yields from the Finnish Family and Twin Studies

  • Chapter
Book cover The Handbook of Neuropsychiatric Biomarkers, Endophenotypes and Genes

Abstract

This chapter summarizes findings related to the neuropsychology of schizophrenia and bipolar disorders and the use of neuropsychological functions as endophenotypes in genetic analyses in Finnish family and twin studies. The endophenotypes are the intermediate factors between the phenotype and genotype, and they are assumed to be contributed to by fewer genes than the clinical phenotypes of the complex psychiatric disorders. There is a long tradition of research both on schizophrenia and bipolar disorder in Finland, and large population based family and twin samples for clinical, neuropsychological, and genetic studies have been collected. In these samples, we have used the endophenotype strategy, first evaluating whether the neuropsychological test variables fulfill the criteria for valid endophenotypes and then using them in genomewide linkage and candidate gene association analyses. In the genomewide linkage analysis, several variables related to learning and memory were shown to enhance the linkage as compared with using the categorical clinical phenotype. Moreover, working memory, and several variables from the learning and memory process were found to be heritable and to show significant associations with DISC1, reelin, and AKT1 in schizophrenia, and with DISC1 in bipolar disorder, in which DAOA also associated with visuospatial ability. Although the associations are modest, our results support the validity of the endophenotype approach in investigating the genetic etiology of severe mental illnesses. Future studies should further evaluate endophenotypes derived from neuroscience to obtain optimal variables that help in tracking multiple genes of small effect predisposing to developing the complex psychiatric disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Reichenberg A, Harvey PD, Bowie CR, Mojtabai R, Rabinowitz J, Heaton RK, Bromet E. Neuropsychological Function and Dysfunction in Schizophrenia and Psychotic Affective Disorders. Schizophr Bull., in press.

    Google Scholar 

  2. Keefe RS, Eesley CE, Poe MP. Defining a cognitive function decrement in schizophrenia. Biol Psychiatry 2005;57:688–691

    PubMed  Google Scholar 

  3. Heinrichs RW, Zakzanis KK. Neurocognitive deficit in schizophrenia: a quantitative review of the evidence. Neuropsychology 1998;12:426–445

    PubMed  CAS  Google Scholar 

  4. Cirillo MA, Seidman LJ. Verbal declarative memory dysfunction in schizophrenia: from clinical assessment to genetics and brain mechanisms. Neuropsychol Rev 2003;13:43–77

    PubMed  Google Scholar 

  5. Dickinson D, Ramsey ME, Gold JM. Overlooking the obvious: a meta-analytic comparison of digit symbol coding tasks and other cognitive measures in schizophrenia. Arch Gen Psychiatry 2007;64:532–542

    PubMed  Google Scholar 

  6. 6.Dickinson D, Ragland JD, Gold JM, Gur RC. General and specific cognitive deficits in schizophrenia: Goliath defeats David? Biol Psychiatry 2008; 64: 823– 827

    PubMed  Google Scholar 

  7. Cornblatt BA, Malhotra AK. Impaired attention as an endo-phenotype for molecular genetic studies of schizophrenia. Am J Med Genet 2001;105:11–15.

    PubMed  CAS  Google Scholar 

  8. Eastvold AD, Heaton RK, Cadenhead KS. Neurocognitive deficits in the (putative) prodrome and first episode of psychosis. Schizophr Res 2007;93:266–277

    PubMed  CAS  Google Scholar 

  9. Heaton RK, Gladsjo JA, Palmer BW, Kuck J, Marcotte TD, Jeste DV. Stability and course of neuropsychologi-cal deficits in schizophrenia. Arch Gen Psychiatry 2001;58:24–32

    PubMed  CAS  Google Scholar 

  10. Hoff AL, Svetina C, Shields G, Stewart J, DeLisi LE. Ten year longitudinal study of neuropsychological functioning subsequent to a first episode of schizophrenia. Schizophr Res 2005;78:27–34

    PubMed  Google Scholar 

  11. Szöke A, Trandafir A, Dupont ME, Méary A, Schürhoff F, Leboyer M. Longitudinal studies of cognition in schizophrenia: meta-analysis. Br J Psychiatry 2008;192:248–257

    PubMed  Google Scholar 

  12. Fucetola R, Seidman LJ, Kremen WS, Faraone S V, Goldstein JM, Tsuang MT. Age and neuropsychologic function in schizophrenia: a decline in executive abilities beyond that observed in healthy volunteers. Biol Psychiatry 2000;48:137–146

    PubMed  CAS  Google Scholar 

  13. Green MF. What are the functional consequences of neu-rocognitive deficits in schizophrenia? Am J Psychiatry 153: 321 –330. Review

    PubMed  CAS  Google Scholar 

  14. Green MF. Cognitive impairment and functional outcome in schizophrenia and bipolar disorder. J Clin Psychiatry 2006;67 Suppl 9:3–8; discussion 36–42

    PubMed  Google Scholar 

  15. Kurtz MM, Mueser KT. A meta-analysis of controlled research on social skills training for schizophrenia. J Consult Clin Psychol 2008;76:491–504

    PubMed  Google Scholar 

  16. Gur RE, Nimgaonkar VL, Almasy L, Calkins ME, Ragland JD, Pogue-Geile MF, Kanes S, Blangero J, Gur RC. Neurocognitive endophenotypes in a multiplex multigen-erational family study of schizophrenia. Am J Psychiatry 2007;164:813–819

    PubMed  Google Scholar 

  17. Ma X, Wang Q, Sham PC, Liu X, Rabe-Hesketh S, Sun X, Hu J, Meng H, Chen W, Chen EY, Deng W, Chan RC, Murray RM, Collier DA, Li T. Neurocognitive deficits in first-episode schizophrenic patients and their first-degree relatives. Am J Med Genet B Neuropsychiatr Genet 2007;144B:407–416

    PubMed  Google Scholar 

  18. Sitskoorn MM, Aleman A, Ebisch SJ, Appels MC, Kahn RS. Cognitive deficits in relatives of patients with schizophrenia: a meta-analysis. Schizophr Res 2004;71:285–295

    PubMed  Google Scholar 

  19. Cannon TD, Huttunen MO, Lönnqvist J, Tuulio-Henriksson A, Pirkola T, Glahn D, Finkelstein J, Hietanen M, Kaprio J, Koskenvuo M. The inheritance of neuropsychological dysfunction in twins discordant for schizophrenia. Am J Hum Genet 2000;67:369–382

    PubMed  CAS  Google Scholar 

  20. Goldberg TE, Ragland JD, Torrey EF, Gold JM, Bigelow LB, Weinberger DR. Neuropsychological assessment of monozygotic twins discordant for schizophrenia. Arch Gen Psychiatry 1990;47:1066–1072

    PubMed  CAS  Google Scholar 

  21. Erlenmeyer-Kimling L, Rock D, Roberts SA, Janal M, Kestenbaum C, Cornblatt B, Adamo UH, Gottesman II. Attention, memory, and motor skills as childhood predictors of schizophrenia-related psychoses: the New York high-risk project. Am J Psychiatry 2000;157:1416–1422

    PubMed  CAS  Google Scholar 

  22. Gottesman II, Erlenmeyer-Kimling L. Family and twin strategies as a head start in defining prodromes and endo-phenotypes for hypothetical early-interventions in schizophrenia. Schizophr Res 2001;51:93–102

    PubMed  CAS  Google Scholar 

  23. Cornblatt BA, Malhotra AK. Impaired attention as an endo-phenotype for molecular genetic studies of schizophrenia. Am J Med Genet 2001;105:11–15

    PubMed  CAS  Google Scholar 

  24. Maziade et al., still in press.

    Google Scholar 

  25. Niendam TA, Bearden CE, Zinberg J, Johnson JK, O'Brien M, Cannon TD. The course of neurocognition and social functioning in individuals at ultra high risk for psychosis. Schizophr Bull 2007;33:772–781

    PubMed  Google Scholar 

  26. Arts B, Jabben N, Krabbendam L, van Os J. Meta-analyses of cognitive functioning in euthymic bipolar patients and their first-degree relatives. Psychol Med 2008;38:771–785

    PubMed  CAS  Google Scholar 

  27. Malhi GS, Ivanovski B, Hadzi-Pavlovic D, Mitchell PB, Vieta E, Sachdev P. Neuropsychological deficits and functional impairment in bipolar depression, hypomania and euthymia. Bipolar Disord 2007;9:114–125

    PubMed  Google Scholar 

  28. Jones SH, Tai S, Evershed K, Knowles R, Bentall R. Early detection of bipolar disorder: a pilot familial high-risk study of parents with bipolar disorder and their adolescent children. Bipolar Disord 2006;8:362–372

    PubMed  Google Scholar 

  29. Burt T, Prudic J, Peyser S, Clark J, Sackeim HA. Learning and memory in bipolar and unipolar major depression: effects of aging. Neuropsychiatr Neuropsychol Behav Neurol 2000;13:246–253

    CAS  Google Scholar 

  30. Salloum IM, Thase ME. Impact of substance abuse on the course and treatment of bipolar disorder. Bipolar Disord 2000;2:269–280. Review

    PubMed  CAS  Google Scholar 

  31. Zubieta JK, Huguelet P, O'Neil RL, Giordani BJ. Cognitive function in euthymic bipolar I disorder. Psychiatry Res 2001;102:9–20

    PubMed  CAS  Google Scholar 

  32. Gruber S, Rathgeber K, Bräunig P, Gauggel S. Stability and course of neuropsychological deficits in manic and depressed bipolar patients compared to patients with Major Depression. J Affect Disord 2007;104:61–71

    PubMed  Google Scholar 

  33. Martinez-Aran A, Torrent C, Tabares-Seisdedos R, Sala-mero M, Daban C, Balanza-Martinez V, Sanchez-Moreno J, Manuel Goikolea J, Benabarre A, Colom F, Vieta E. Neurocognitive impairment in bipolar patients with and without history of psychosis. J Clin Psychiatry 2008; 69:233–239

    PubMed  Google Scholar 

  34. Mur M, Portella MJ, Martínez-Arán A, Pifarré J, Vieta E. Persistent neuropsychological deficit in euthymic bipolar patients: executive function as a core deficit. J Clin Psychiatry 2007;68:1078–1086

    PubMed  Google Scholar 

  35. Robinson LJ, Thompson JM, Gallagher P, Goswami U, Young AH, Ferrier IN, Moore PB. A meta-analysis of cognitive deficits in euthymic patients with bipolar disorder. J Affect Disord 2006;93:105–115

    PubMed  Google Scholar 

  36. Hasler G, Drevets WC, Gould TD, Gottesman II, Manji HK. Toward constructing an endophenotype strategy for bipolar disorders. Biol Psychiatry 2006;60:93–105

    PubMed  Google Scholar 

  37. Gottesman II, Gould TD. The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry 2003;160:636–45. Review

    PubMed  Google Scholar 

  38. Gottesman II, Shields J. Schizophrenia and Genetics: A Twin Study Vantage Point. New York: Academic, 1972

    Google Scholar 

  39. Hall MH, Rijsdijk F. Validating endophenotypes for schizophrenia using statistical modeling of twin data. Clin EEG Neurosci 2008;39:78–81

    PubMed  Google Scholar 

  40. Prasad KM, Keshavan MS. Structural cerebral variations as useful endophenotypes in schizophrenia: do they help construct “extended endophenotypes”? Schizophr Bull 2008;34(4):774–790

    PubMed  Google Scholar 

  41. 41.Chan RC, Gottesman II. Neurological soft signs as candidate endophenotypes for schizophrenia: a shooting star or a Northern star? Neurosci Biobehav Rev 2008; 32: 957– 971

    PubMed  Google Scholar 

  42. Egan MF, Goldberg TE. Intermediate cognitive pheno-types associated with schizophrenia. Methods Mol Med 2003;77:163–197, 163

    PubMed  Google Scholar 

  43. Wechsler D. Wechsler Adult Intelligence Scale — Revised (WAIS-R), Manual. The Psychological Corporation. Cleveland, OH: Harcourt Brace Jovanovich, 1981

    Google Scholar 

  44. Wechsler D. Wechsler Memory Scale — Revised (WMS-R), Manual. The Psychological Corporation. San Antonio, TX: Harcourt Brace Jovanovich, 1987

    Google Scholar 

  45. Reitan RM. The Halstead-Reitan Neuropsychological Test Battery. Tucson, AZ: Neuropsychology Press

    Google Scholar 

  46. Rosvold HE, Mirsky A, Sarason I, Bransome EDJ, Beck LH. A continuous perfomace test of brain damage. J Consult Psychology 1956;20:343–350

    Google Scholar 

  47. Posner M, Petersen SE. The attention system of the human brain. Annu Rev Neurosci 1990;13:25–42

    PubMed  CAS  Google Scholar 

  48. Gur RC, Jaggi JL, Ragland JD, Resnick SM, Shtasel D, Muenz L, Gur RE. Effects of memory processing on regional brain activation: cerebral blood flow in normal subjects. Int J Neurosci 1993;72:31–44

    PubMed  CAS  Google Scholar 

  49. Golden C. Stroop Color and Word Test: Manual for Clinical and Experimental Uses. Chicago, IL: Stoelting, 1978

    Google Scholar 

  50. Benton AL, Hamsher K. Multilingual Aphasia Examination Manual. Iowa City, IA: University of Iowa, 1989

    Google Scholar 

  51. Heaton RK. Wisconsin Card Sorting Test. Odessa, TX: Psychological Assessment Resources, 1981

    Google Scholar 

  52. Vilkki J, Virtanen S, Surma-Aho O, Servo A. Dual task performance after focal cerebral lesions and closed head injuries. Neuropsychologia 1996;34:1051–1056

    PubMed  CAS  Google Scholar 

  53. Reitan R, Wolfson D. The Halstead-Reitan neuropsycho-logical test battery: theory and clinical interpretation. Tucson, AZ: Neuropsychology Press, 1985

    Google Scholar 

  54. Hovatta I, Terwilliger JD, Lichtermann D, Mäkikyrö T, Suvisaari J, Peltonen L, Lönnqvist J. Schizophrenia in the genetic isolate of Finland. Am J Med Genet B Neuropsychiatr Genet 1997;74:353–360

    CAS  Google Scholar 

  55. 55.Tuulio-Henriksson A, Haukka J, Partonen T, Varilo T, Paunio T, Ekelund J, Cannon TD, Lönnqvist J. Heritability of neu-rocognitive functions and number of quantitative trait loci contributing to them in families with schizophrenia, Am J Med Genet (Neuropsych Genet),2002;114: 483–490

    Google Scholar 

  56. Tuulio-Henriksson A, Arajärvi R, Partonen T, Haukka J, Varilo T, Schreck M, Cannon TD, Lönnqvist J. Familial loading associates with impaired visual span among healthy siblings of schizophrenia patients. Biol Psychiatry, 2003; 54:623–628

    PubMed  Google Scholar 

  57. Tuulio-Henriksson A, Partonen T, Suvisaari J, Haukka J, Lönnqvist J. Age of onset and cognitive functioning in schizophrenia. Br J Psychiatry 2004;185:215–219

    PubMed  Google Scholar 

  58. Hambrecht M, Lammertink M, Klosterkotter J, Matuschek E, Pukrop R. Subjective and objective neuropsychological abnormalities in a psychosis prodrome clinic. Br J Psychiatry 2002;181(S43):30–37

    Google Scholar 

  59. Hoti F, Tuulio-Henriksson A, Haukka J, Partonen T, Holmström L, Lönnqvist J. Family-based clusters of cognitive test performance in familial schizophrenia. BMC Psychiatry 2004;22;4:20

    PubMed  Google Scholar 

  60. Kuha A, Tuulio-Henriksson A, Eerola M, Perälä J, Suvisaari J, Partonen T, Lönnqvist J. Impaired executive performance in healthy siblings of schizophrenia patients in a population-based study. Schizophr Res 2007;92:142–150

    PubMed  Google Scholar 

  61. Hovatta I, Varilo T, Suvisaari J, Terwilliger JD, Ollikainen V, Arajärvi R, Juvonen H, Kokko-Sahin ML, Väisänen L, Mannila H, Lönnqvist J, Peltonen L. A genomewide screen for schizophrenia genes in an isolated Finnish subpopula-tion, suggesting multiple susceptibility loci. Am J Hum Genet 1999;65:1114–1124

    PubMed  CAS  Google Scholar 

  62. Ekelund J, Hennah W, Hiekkalinna T, Parker A, Meyer J, Lönnqvist J, Peltonen L. Replication of 1q42 linkage in Finnish schizophrenia pedigrees. Mol Psychiatry 2004;9:1037–1041

    PubMed  CAS  Google Scholar 

  63. Ekelund J, Hovatta I, Parker A, Paunio T, Varilo T, Martin R, Suhonen J, Ellonen P, Chan G, Sinsheimer JS, Sobel E, Juvonen H, Arajärvi R, Partonen T, Suvisaari J, Lönnqvist J, Meyer J, Peltonen L. Chromosome 1 loci in Finnish schizophrenia families. Hum Mol Genet 2001;15:1611–1617

    Google Scholar 

  64. Ekelund J, Lichtermann D, Hovatta I, Ellonen P, Suvisaari J, Terwilliger JD, Juvonen H, Varilo T, Arajarvi R, Kokko-Sahin ML, Lonnqvist J, Peltonen L. Genome-wide scan for schizophrenia in the Finnish population: evidence for a locus on chromosome 7q22. Hum Mol Genet 2000;9:1049–1057

    PubMed  CAS  Google Scholar 

  65. Paunio T, Ekelund J, Varilo T, et al. Genome-wide scan in the nationwide study sample of schizophrenia families in Finland. Hum Mol Genet 2001;10:3037–3048

    PubMed  CAS  Google Scholar 

  66. Paunio T, Tuulio-Henriksson A, Hiekkalinna T, Perola M, Varilo T, Partonen T, Cannon TD, Lönnqvist J, Peltonen L. Search for cognitive trait components of schizophrenia reveals a locus for verbal learning and memory on 4q and for visual working memory on 2q. Hum Mol Genet 2004;13:1693–1702

    PubMed  CAS  Google Scholar 

  67. Hennah W, Varilo T, Kestilä M, Paunio T, Arajärvi R, Haukka J, Parker A, Martin R, Levitzky S, Partonen T, Meyer J, Lönnqvist J, Peltonen L, Ekelund J. Haplotype transmission analysis provides evidence of association for DISC1 to schizophrenia and suggests sex-dependent effects. Hum Mol Genet 2003;12:3151–3159

    PubMed  CAS  Google Scholar 

  68. Palo OM, Antila M, Silander K, Hennah W, Kilpinen H, Soronen P, Tuulio-Henriksson A, Kieseppä T, Partonen T, Lönnqvist J, Peltonen L, Paunio T. Association of distinct allelic haplotypes of DISC1 with psychotic and bipolar spectrum disorders and with underlying cognitive impairments. Hum Mol Genet 2007;16:2517–2528

    PubMed  CAS  Google Scholar 

  69. Blackwood DH, Fordyce A, Walker MT, St Clair DM, Porteous DJ, Muir WJ. Schizophrenia and affective disorders - cosegregation with a translocation at chromosome 1q42 that directly disrupts brain-expressed genes: clinical and P300 findings in a family. Am J Hum Genet 2001;69:428–433

    PubMed  CAS  Google Scholar 

  70. Hennah W, Tuulio-Henriksson A, Paunio T, Ekelund J, Varilo T, Partonen T, Cannon TD, Lönnqvist J, Peltonen L. A haplotype within the DISC1 gene is associated with visual memory functions in families with a high density of schizophrenia. Mol Psychiatry 2005;10:1097–1103

    PubMed  CAS  Google Scholar 

  71. Hennah W, Tomppo L, Hiekkalinna T, Palo OM, Kilpinen H, Ekelund J, Tuulio-Henriksson A, Silander K, Partonen T, Paunio T, Terwilliger JD, Lönnqvist J, Peltonen L. Families with the risk allele of DISC1 reveal a link between schizophrenia and another component of the same molecular pathway, NDE1. Hum Mol Genet 2007;16:453–462

    PubMed  CAS  Google Scholar 

  72. Wedenoja J, Loukola A, Tuulio-Henriksson A, Paunio T, Ekelund J, Silander K, Varilo T, Heikkilä K, Suvisaari J, Partonen T, Lönnqvist J, Peltonen L. Replication of linkage on chromosome 7q22 and association of the regional Reelin gene with working memory in schizophrenia families. Mol Psychiatry 2008;13:673–684

    PubMed  CAS  Google Scholar 

  73. Antila M, Tuulio-Henriksson A, Kieseppä T, Eerola M, Partonen T, Lönnqvist J. Cognitive functioning in patients with familial bipolar I disorder and their unaffected relatives. Psychol Med 2007 May;37(5):679–687

    PubMed  Google Scholar 

  74. Antila M, Tuulio-Henriksson A, Kieseppä T, Soronen P, Palo M, Paunio T, Haukka J, Partonen T, Lönnqvist J. Heritability of cognitive traits in families with bipolar disorder. Am J Med Genet (Neuropsych Genet), 2007;144:802–808

    Google Scholar 

  75. Hodgkinson CA, Goldman D, Jaeger J, Persaud S, Kane JM, Lipsky RH, Malhotra AK. Disrupted in schizophrenia 1 (DISC1): association with schizophrenia, schizoaf-fective disorder, and bipolar disorder. Am J Hum Genet 2004;75:862–872

    PubMed  CAS  Google Scholar 

  76. Thomson PA, Wray NR, Millar JK, Evans KL, Hellard SL, Condie A, Muir WJ, Blackwood DH, Porteous DJ. Association between the TRAX/DISC locus and both bipolar disorder and schizophrenia in the Scottish population. Mol Psychiatry 2005;10:657–668

    PubMed  CAS  Google Scholar 

  77. Soronen P, Silander K, Antila M, Palo OM, Tuulio-Henriksson A, Kieseppä T, Ellonen P, Wedenoja J, Turunen JA, Pietiläinen OP, Hennah W, Lönnqvist J, Peltonen L, Partonen T, Paunio T. Association of a nonsynonymous variant of DAOA with visuospatial ability in a bipolar family sample. Biol Psychiatry 2008;64:438–442

    PubMed  Google Scholar 

  78. Glahn DC, Therman S, Manninen M, Huttunen M, Kaprio J, Lönnqvist J, Cannon TD. Spatial working memory as an endophenotype for schizophrenia. Biol Psychiatry 2003;53:624–626

    PubMed  Google Scholar 

  79. Johnson JK, Tuulio-Henriksson A, Pirkola T, Huttunen MO, Lönnqvist J, Kaprio J, Cannon TD. Do schizotypal symptoms mediate the relationship between genetic risk for schizophrenia and impaired neuropsychological performance in co-twin of schizophrenic patients. Biol Psychiatry 2003;54:1200–1204

    PubMed  Google Scholar 

  80. van Erp TGM, Therman S, Pirkola T, Tuulio-Henriksson A, Glahn DC, Bachman P, Huttunen MO, Lönnqvist J, Hietanen M, Kaprio J, Koskenvuo M, Cannon TD. Verbal recall and recognition in twins discordant for schizophrenia. Psychiatry Res 2008;159:271–280

    Google Scholar 

  81. Gasperoni TL, Ekelund J, Huttunen M, Palmer CGS, Tuulio-Henriksson A, Lönnqvist J, Kaprio J, Peltonen L, Cannon TD. Genetic linkage and association between chromosome 1q and working memory function in schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2003;116:8–16

    Google Scholar 

  82. Cannon TD, Hennah W, van Erp TG, Thompson PM, Lonnqvist J, Huttunen M, Gasperoni T, Tuulio-Henriksson A, Pirkola T, Toga AW, Kaprio J, Mazziotta J, Peltonen L. Association of DISC1/TRAX haplotypes with schizophrenia, reduced prefrontal gray matter, and impaired short- and long-term memory. Arch Gen Psychiatry 2005;62:1205–1213

    PubMed  CAS  Google Scholar 

  83. Pietiläinen OP, Paunio T, Loukola A, Tuulio-Henriksson A, Kieseppä T, Thompson P, Toga AW, van Erp TG, Silventoinen K, Soronen P, Hennah W, Turunen JA, Wedenoja J, Palo OM, Silander K, Lönnqvist J, Kaprio J, Cannon TD, Peltonen L. Association of AKT1 with verbal learning, verbal memory, and regional cortical gray matter density in twins. Am J Med Genet B Neuropsychiatr Genet., in press.

    Google Scholar 

  84. Kieseppä T, Tuulio-Henriksson A, Haukka J, van Erp T, Glahn D, Cannon TD, Kaprio J, Lönnqvist J. Memory and verbal learning functions in twins with bipolar I disorder, and the role of information processing speed. Psychol Med 2005;35:205–215

    PubMed  Google Scholar 

  85. Pirkola T, Tuulio-Henriksson A, Glahn D, Kieseppä T, Haukka J, Kaprio J, Lönnqvist J, Cannon TD. Spatial working memory function in twins with schizophrenia and bipolar disorder. Biol Psychiatry 2005;58:930–936

    PubMed  Google Scholar 

  86. Burdick KE, Hodgkinson CA, Szeszko PR, Lencz T, Ekholm JM, Kane JM, Goldman D, Malhotra AK. DISC1 and neurocognitive function in schizophrenia. Neuroreport 2005;16:1399–1402

    PubMed  Google Scholar 

  87. Callicott JH, Straub RE, Pezawas L, et al. Variation in DISC1 affects hippocampal structure and function and increases risk for schizophrenia. PNAS 2005;102:8627–8632

    PubMed  CAS  Google Scholar 

  88. Thomson PA, Harris SE, Starr JM, Whalley LJ, Porteous DJ, Deary IJ. Association between genotype at an exonic SNP in DISC1 and normal cognitive aging. Neurosci Lett 2005;389:41–45

    PubMed  CAS  Google Scholar 

  89. Szeszko PR, Christian C, Macmaster F, Lencz T, Mirza Y, Taormina SP, Easter P, Rose M, Michalopoulou GA, Rosenberg DR. Gray matter structural alterations in psycho-tropic drug-naive pediatric obsessive-compulsive disorder: an optimized voxel-based morphometry study. Am J Psychiatry 2008;165:1299–1307

    PubMed  Google Scholar 

  90. Chubb JE, Bradshaw NJ, Soares DC, Porteous DJ, Millar JK. The DISC locus in psychiatric illness. Mol Psychiatry 2008;13:36–64

    PubMed  CAS  Google Scholar 

  91. Herz J, Chen Y. Reelin, lipoprotein receptors and synaptic plasticity. Nature Rev Neurosci 2006;7:850–859

    CAS  Google Scholar 

  92. Shifman S, Johannesson M, Bronstein M, Chen SX, Collier DA, Craddock NJ, Kendler KS, Li T, O'Donovan M, O'Neill FA, Owen MJ, Walsh D, Weinberger DR, Sun C, Flint J, Darvasi A. Genome-wide association identifies a common variant in the reelin gene that increases the risk of schizophrenia only in women. PLoS Genetics 2008;4:e28

    PubMed  Google Scholar 

  93. Fatemi SH, Earle JA, McMenomy T. Reduction in Reelin immunoreactivity in hippocampus of subjects with schizophrenia, bipolar disorder and major depression. Mol Psychiatry 2000;5:654–663

    PubMed  CAS  Google Scholar 

  94. Turunen JA, Peltonen JO, Pietiläinen OP, Hennah W, Loukola A, Paunio T, Silander K, Ekelund J, Varilo T, Partonen T, Lönnqvist J, Peltonen L. The role of DTNBP1, NRG1, and AKT1 in the genetics of schizophrenia in Finland. Schizophr Res 2007;91:27–36

    PubMed  Google Scholar 

  95. Emamian ES, Hall D, Birnbaum MJ, Karayiorgou M, Gogos JA. Convergent evidence for impaired AKT1-GSK3 signaling in schizophrenia. Nature Gen 2004;36:131–137

    CAS  Google Scholar 

  96. Tan HY, Nicodemus KK, Chen Q, Li Z, Brooke JK, Honea R, Kolachana BS, Straub RE, Meyer-Lindenberg A, Sei Y, Mattay VS, Callicott JH, Weinberger DR. Genetic variation in AKT1 is linked to dopamine-asso-ciated prefrontal cortical structure and function in humans. J Clin Invest 2008;118:2200–2208

    PubMed  CAS  Google Scholar 

  97. Thiselton DL, Vladimirov VI, Kuo PH, McClay J, Wormley B, Fanous A, O'Neill FA, Walsh D, Van den Oord EJ, Kendler KS, Riley BP. AKT1 is associated with schizophrenia across multiple symptom dimensions in the Irish study of high density schizophrenia families. Biol Psychiatry 2008;63:449–457

    PubMed  CAS  Google Scholar 

  98. Lai WS, Xu B, Westphal KG, Paterlini M, Olivier B, Pavlidis P, Karayiorgou M, Gogos JA. Akt1 deficiency affects neuronal morphology and predisposes to abnormalities in prefrontal cortex functioning. Proc Natl Acad Sci U S A 2006;103:16906–16911

    PubMed  CAS  Google Scholar 

  99. Opgen-Rhein C, Lencz T, Burdick KE, Neuhaus AH, Derosse P, Goldberg TE, Malhotra AK. Genetic variation in the DAOA gene complex: impact on susceptibility for schizophrenia and on cognitive performance. Schizophr Res 2008;103:169–177

    PubMed  Google Scholar 

  100. Hall J, Whalley HC, Moorhead TW, Baig BJ, McIntosh AM, Job DE, Owens DG, Lawrie SM, Johnstone EC. Genetic variation in the DAOA (G72) gene modulates hip-pocampal function in subjects at high risk of schizophrenia. Biol Psychiatry 2008;64:428–433

    PubMed  CAS  Google Scholar 

  101. Gothelf D, Feinstein C, Thompson T, Gu E, Penniman L, Van Stone E, Kwon H, Eliez S, Reiss AL. Risk factors for the emergence of psychotic disorders in adolescents with 22q11.2 deletion syndrome. Am J Psychiatry 2007;164:663–669

    PubMed  Google Scholar 

  102. Bilder RM, Volavka J, Czobor P, Malhotra AK, Kennedy JL, Ni X, Goldman RS, Hoptman MJ, Sheitman B, Lindenmayer JP, Citrome L, McEvoy JP, Kunz M, Chakos M, Cooper TB, Lieberman JA. Neurocognitive correlates of the COMT Val(158)Met polymorphism in chronic schizophrenia. Biol Psychiatry 2002;52:701–707

    PubMed  CAS  Google Scholar 

  103. Egan MF, Goldberg TE, Kolachana BS, Callicott JH, Mazzanti CM, Straub RE, Goldman D, Weinberger DR. Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci U S A 2001;98:6917–6922

    PubMed  CAS  Google Scholar 

  104. Ehlis AC, Reif A, Herrmann MJ, Lesch KP, Fallgatter AJ. Impact of catechol-O-methyltransferase on prefrontal brain functioning in schizophrenia spectrum disorders. Neuropsychopharmacology 2007;32:162–170

    PubMed  CAS  Google Scholar 

  105. Fan JB, Zhang CS, Gu NF, Li XW, Sun WW, Wang HY, Feng GY, St Clair D, He L. Catechol-O-methyltransferase gene Val/Met functional polymorphism and risk of schizophrenia: a large-scale association study plus meta-analysis. Biol Psychiatry 2005;57:139–144

    PubMed  CAS  Google Scholar 

  106. Sanders AR, Duan J, Levinson DF, Shi J, He D, Hou C, Burrell GJ, Rice JP, Nertney DA, Olincy A, Rozic P, Vinogradov S, Buccola NG, Mowry BJ, Freedman R, Amin F, Black DW, Silverman JM, Byerley WF, Crowe RR, Cloninger CR, Martinez M, Gejman PV. No significant association of 14 candidate genes with schizophrenia in a large European ancestry sample: implications for psychiatric genetics. Am J Psychiatry 2008;165:497–506

    PubMed  Google Scholar 

  107. John JP, Arunachalam V, Ratnam B, Isaac MK. Expanding the schizophrenia phenotype: a composite evaluation of neu-rodevelopmental markers. Compr Psychiatry 2008;49:78–86

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tuulio-Henriksson, A., Perälä, J., Gottesman, I.I., Suvisaari, J. (2009). Neuropsychological Endophenotypes in Schizophrenia and Bipolar I Disorder: Yields from the Finnish Family and Twin Studies. In: Ritsner, M.S. (eds) The Handbook of Neuropsychiatric Biomarkers, Endophenotypes and Genes. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9464-4_8

Download citation

Publish with us

Policies and ethics