Skip to main content

Proteomics as a New Tool for Biomarker-Discovery in Neuropsychiatric Disorders

  • Chapter
The Handbook of Neuropsychiatric Biomarkers, Endophenotypes and Genes
  • 931 Accesses

Abstract

Despite recent advances in our understanding of the neurobiology of neuropsychiatric disorders, most neuropsychiatric disorders remain clinical diagnoses that are based on the presence of a typical symptom-constellation as well as a typical time-course. Technical and laboratory examinations are frequently used to exclude other CNS-etiologies, such as tumor, infection, intoxication or epilepsy. However, only few biomarkers exist to assist in the differential diagnosis of neuropsy-chiatric disorders.

Proteomics describes the study of the structure and function of proteins with respect to the complement of proteins in a cell or an organism. New technical developments have made it possible to identify thousands of proteins in different tissues and body-fluids, including blood, urine and CSF. Thus proteomics offers a new approach for the identification of biomarkers for neuropsychiatric disorders. Potential applications of proteomics include the differential diagnosis of neuropsychiatric disorders, the identification of subtypes of neuropsychiatric disorders, predictors of treatment response as well as early measures of treatment response.

Based on preliminary studies using proteomics in neuropsychiatric disorders (in particular schizophrenia and Alzheimer Disease), we will review the potential impact of this new technology for research into neuropsychiatric disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hyman SE. Can neuroscience be integrated into the DSM-V? Nat Rev Neurosci 2007;8:725–732.

    Article  PubMed  CAS  Google Scholar 

  2. Warner R. Problems with early and very early intervention in psychosis. Br J Psychiatry Suppl. 2005;48:s104–s107.

    Article  PubMed  Google Scholar 

  3. Cannon TD, Cadenhead K, Cornblatt B, et al. Prediction of psychosis in youth at high clinical risk: a multisite longitudinal study in North America. Arch Gen Psychiatry 2008; 65:28–37.

    Article  PubMed  Google Scholar 

  4. Owen MJ, Craddock N, Jablensky A. The genetic decon-struction of psychosis. Schizophr Bull 2007;33:905–911.

    Article  PubMed  Google Scholar 

  5. Craddock N, O'Donovan MC, Owen MJ. Genes for schizophrenia and bipolar disorder? Implications for psychiatric nosology. Schizophr Bull 2006;32:9–16.

    Article  PubMed  Google Scholar 

  6. Meyer-Lindenberg A, Weinberger DR. Intermediate phe-notypes and genetic mechanisms of psychiatric disorders. Nat Rev Neurosci 2006;7:818–827.

    Article  PubMed  CAS  Google Scholar 

  7. Isles AR, Wilkinson LS. Epigenetics: what is it and why is it important to mental disease? Br Med Bull 2008;85:35–45.

    Article  PubMed  CAS  Google Scholar 

  8. Moffitt TE, Caspi A, Rutter M. Strategy for investigating interactions between measured genes and measured environments. Arch Gen Psychiatry 2005;62:473–481.

    Article  PubMed  CAS  Google Scholar 

  9. Caspi A, Moffitt TE. Gene-environment interactions in psychiatry: joining forces with neuroscience. Nat Rev Neurosci 2006;7:583–590.

    Article  PubMed  CAS  Google Scholar 

  10. Pennington K, Cotter D, Dunn MJ. The role of proteomics in investigating psychiatric disorders. Br J Psychiatry 2005;187:4–6.

    Article  PubMed  CAS  Google Scholar 

  11. Andrade EC, Krueger DD, Nairn AC. Recent advances in neuroproteomics. Curr Opin Mol Ther 2007;9:270–281.

    PubMed  CAS  Google Scholar 

  12. Zetterberg H, Rüetschi U, Portelius E, et al. Clinical pro-teomics in neurodegenerative disorders. Acta Neurol Scand 2008;118:1–11.

    Article  PubMed  CAS  Google Scholar 

  13. Choudhary J, Grant SG. Proteomics in postgenomic neuro-science: the end of the beginning. Nat Neurosci 2004;7: 440–445.

    Article  PubMed  CAS  Google Scholar 

  14. Fonteh AN, Harrington RJ, Huhmer AF, et al. Identification of disease markers in human cerebrospinal fluid using lipidomic and proteomic methods. Dis Markers 2006;22: 39–64.

    PubMed  CAS  Google Scholar 

  15. Tannu NS, Hemby SE. Methods for proteomics in neuro-science. Prog Brain Res 2006;158:41–82.

    Article  PubMed  CAS  Google Scholar 

  16. Paik YK, Kim H, Lee EY, et al. Overview and introduction to clinical proteomics. Methods Mol Biol 2008;428:1–31.

    Article  PubMed  CAS  Google Scholar 

  17. Wittke S, Mischak H, Walden M, et al. Discovery of bio-markers in human urine and cerebrospinal fluid by capillary electrophoresis coupled to mass spectrometry: towards new diagnostic and therapeutic approaches. Electrophoresis 2005;26:1476–1487.

    Article  PubMed  CAS  Google Scholar 

  18. Raedler TJ, Wittke S, Jahn H, et al. Capillary electrophoresis mass spectrometry as a potential tool to detect lithium-induced nephropathy: preliminary results. Prog Neuropsychopharmacol Biol Psychiatry 2008;32:673–678.

    Article  PubMed  CAS  Google Scholar 

  19. Good DM, Thongboonkerd V, Novak J, et al. Body fluid proteomics for biomarker discovery: lessons from the past hold the key to success in the future. J Proteome Res 2007;6:4549–4555.

    Article  PubMed  CAS  Google Scholar 

  20. Lescuyer P, Hochstrasser D, Rabilloud T. How shall we use the proteomics toolbox for biomarker discovery? J Proteome Res 2007;6:3371–3376.

    Article  PubMed  CAS  Google Scholar 

  21. Mischak H, Apweiler R, Banks RE, et al. Clinical proteomics: a need to define the field and to begin to set adequate standards. Proteomics Clin Appl 2007;1:148–156.

    Article  CAS  Google Scholar 

  22. Carr S, Aebersold R, Baldwin M, et al. The need for guidelines in publication of peptide and protein identification data: working group on publication guidelines for peptide and protein identification data. Mol Cell Proteomics 2004;3:531–533.

    Article  PubMed  CAS  Google Scholar 

  23. Bradshaw RA, Burlingame AL, Carr S, et al. Reporting protein identification data: the next generation of guidelines. Mol Cell Proteomics 2006;5:787–788.

    Article  PubMed  CAS  Google Scholar 

  24. Hamacher M, Apweiler R, Arnold G, et al. HUPO Brain Proteome Project: summary of the pilot phase and introduction of a comprehensive data reprocessing strategy. Proteomics 2006;6:4890–4898.

    Article  PubMed  CAS  Google Scholar 

  25. Hamacher M, Stephan C, Eisenacher M, et al. Maintaining standardization: an update of the HUPO Brain Proteome Project. Expert Rev Proteomics 2008;5:165–173.

    Article  PubMed  Google Scholar 

  26. Mathivanan S, Ahmed M, Ahn NG, et al. Human Proteinpedia enables sharing of human protein data. Nat Biotechnol 2008;26:164–167.

    Article  PubMed  CAS  Google Scholar 

  27. Wang H, Qian WJ, Chin MH, et al. Characterization of the mouse brain proteome using global proteomic analysis complemented with cysteinyl-peptide enrichment. J Proteome Res 2006;5:361–369.

    Article  PubMed  CAS  Google Scholar 

  28. Koomen JM, Haura EB, Bepler G, et al. Proteomic contributions to personalized cancer care. Mol Cell Proteomics 2008;7:1780–1794

    Article  PubMed  CAS  Google Scholar 

  29. Unwin RD, Whetton AD. How will haematologists use proteomics? Blood Rev 2007;21:315–326.

    Article  PubMed  CAS  Google Scholar 

  30. Decramer S, Wittke S, Mischak H, et al. Predicting the clinical outcome of congenital unilateral ureteropelvic junction obstruction in newborn by urinary proteome analysis. Nat Med 2006;12:398–400.

    Article  PubMed  CAS  Google Scholar 

  31. Rossing K, Mischak H, Dakna M, et al. Urinary proteomics in diabetes and CKD. J Am Soc Nephrol 2008;19: 1283–1290.

    Article  PubMed  CAS  Google Scholar 

  32. Kobeissy FH, Ottens AK, Zhang Z, et al. Novel differential neuroproteomics analysis of traumatic brain injury in rats. Mol Cell Proteomics 2006;5:1887–1898.

    Article  PubMed  CAS  Google Scholar 

  33. Vercauteren FG, Flores G, Ma W, et al. An organelle pro-teomic method to study neurotransmission-related proteins, applied to a neurodevelopmental model of schizophrenia. Proteomics 2007;7:3569–3579.

    Article  PubMed  CAS  Google Scholar 

  34. Tannu NS, Howell LL, Hemby SE. Integrative proteomic analysis of the nucleus accumbens in rhesus monkeys following cocaine self-administration. Mol Psychiatry 2008 (in press).

    Google Scholar 

  35. Beasley CL, Pennington K, Behan A, et al. Proteomic analysis of the anterior cingulate cortex in the major psychiatric disorders: evidence for disease-associated changes. Proteomics 2006;6:3414–3425.

    Article  PubMed  CAS  Google Scholar 

  36. Blennow K, de Leon MJ, Zetterberg H. Alzheimer's disease. Lancet 2006;368:387–403.

    Article  PubMed  CAS  Google Scholar 

  37. Hampel H, Bürger K, Teipel SJ, et al. Core candidate neu-rochemical and imaging biomarkers of Alzheimer's disease. Alzheimers Dement 2008;4:38–48.

    Article  PubMed  CAS  Google Scholar 

  38. Papassotiropoulos A, Fountoulakis M, Dunckley T, et al. Genetics, transcriptomics, and proteomics of Alzheimer's disease. J Clin Psychiatry 2006;67:652–670.

    PubMed  CAS  Google Scholar 

  39. Lovestone S, Güntert A, Hye A, et al. Proteomics of Alzheimer's disease: understanding mechanisms and seeking biomarkers. Expert Rev Proteomics 2007;4:227–238.

    Article  PubMed  CAS  Google Scholar 

  40. Abdi F, Quinn JF, Jankovic J, et al. Detection of biomarkers with a multiplex quantitative proteomic platform in cere-brospinal fluid of patients with neurodegenerative disorders. J Alzheimers Dis 2006;9:293–348.

    PubMed  CAS  Google Scholar 

  41. Zhang J, Sokal I, Peskind ER, et al. CSF multianalyte profile distinguishes Alzheimer and Parkinson diseases. Am J Clin Pathol 2008;129:526–529.

    Article  PubMed  CAS  Google Scholar 

  42. Simonsen AH, McGuire J, Podust VN, et al. A novel panel of cerebrospinal fluid biomarkers for the differential diagnosis of Alzheimer's disease versus normal aging and fron-totemporal dementia. Dement Geriatr Cogn Disord 2007;24:434–440.

    Article  PubMed  CAS  Google Scholar 

  43. Simonsen AH, McGuire J, Hansson O, et al. Novel panel of cerebrospinal fluid biomarkers for the prediction of progression to Alzheimer dementia in patients with mild cognitive impairment. Arch Neurol 2007;64:366–370.

    Article  PubMed  Google Scholar 

  44. Hansson O, Zetterberg H, Buchhave P, et al. Association between CSF biomarkers and incipient Alzheimer's disease in patients with mild cognitive impairment: a follow-up study. Lancet Neurol 2006;5:228–234.

    Article  PubMed  CAS  Google Scholar 

  45. Biroccio A, Del Boccio P, Panella M, et al. Differential post-translational modifications of transthyretin in Alzheimer's disease: a study of the cerebral spinal fluid. Proteomics 2006;6:2305–2313.

    Article  PubMed  CAS  Google Scholar 

  46. Hye A, Lynham S, Thambisetty M, et al. Proteome-based plasma biomarkers for Alzheimer's disease. Brain 2006;129: 3042–3050.

    Article  PubMed  CAS  Google Scholar 

  47. Liu HC, Hu CJ, Chang JG, et al. Proteomic identification of lower apolipoprotein A-I in Alzheimer's disease. Dement Geriatr Cogn Disord 2006;21:155–161.

    Article  PubMed  CAS  Google Scholar 

  48. Huang JT, Leweke FM, Oxley D, et al. Disease biomarkers in cerebrospinal fluid of patients with first-onset psychosis. PLoS Med 2006;3:e428.

    Article  PubMed  CAS  Google Scholar 

  49. Huang JT, Wang L, Prabakaran S, et al. Independent protein-profiling studies show a decrease in apolipoprotein A1 levels in schizophrenia CSF, brain and peripheral tissues. Mol Psychiatry 2000;13:1118–1128.

    Article  CAS  Google Scholar 

  50. Huang JT, Leweke FM, Tsang TM, et al. CSF metabolic and proteomic profiles in patients prodromal for psychosis. PLoS ONE 2007;2:e756.

    Article  PubMed  CAS  Google Scholar 

  51. Craddock RM, Huang JT, Jackson E, et al. Increased alpha defensins as a blood marker for schizophrenia susceptibility. Mol Cell Proteomics 2008;7:1204–1213.

    Article  PubMed  CAS  Google Scholar 

  52. Pennington K, Beasley CL, Dicker P, et al. Prominent synap-tic and metabolic abnormalities revealed by proteomic analysis of the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder. Mol Psychiatry 2008;13:1102–1117.

    Article  PubMed  CAS  Google Scholar 

  53. Behan A, Byrne C, Dunn MJ, et al. Proteomic analysis of membrane microdomain-associated proteins in the dorso-lateral prefrontal cortex in schizophrenia and bipolar disorder reveals alterations in LAMP, STXBP1 and BASP1 protein expression. Mol Psychiatry 2008 (in print).

    Google Scholar 

  54. Raedler TJ, Wiedemann K. Lithium-induced nephropa-thies. Psychopharmacol Bull 2007;40:134–149.

    PubMed  Google Scholar 

  55. Corbett BA, Kantor AB, Schulman H, et al. A proteomic study of serum from children with autism showing differential expression of apolipoproteins and complement proteins. Mol Psychiatry 2007;12:292–306.

    PubMed  CAS  Google Scholar 

  56. Junaid MA, Kowal D, Barua M, et al. Proteomic studies identified a single nucleotide polymorphism in glyoxalase I as autism susceptibility factor. Am J Med Genet A 2004;131:11–17.

    Article  PubMed  Google Scholar 

  57. Agid O, Kapur S, Arenovich T, et al. Delayed-onset hypothesis of antipsychotic action: a hypothesis tested and rejected. Arch Gen Psychiatry 2003;60:1228–1235.

    Article  PubMed  CAS  Google Scholar 

  58. Raedler TJ, Schreiner A, Naber D, et al. Early onset of treatment effects with oral risperidone. BMC Psychiatry 2007;7:4.

    Article  PubMed  CAS  Google Scholar 

  59. Posternak MA, Zimmerman M. Is there a delay in the anti-depressant effect? A meta-analysis. J Clin Psychiatry 2005;66:148–158.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Raedler, T.J., Mischak, H., Jahn, H., Wiedemann, K. (2009). Proteomics as a New Tool for Biomarker-Discovery in Neuropsychiatric Disorders. In: Ritsner, M.S. (eds) The Handbook of Neuropsychiatric Biomarkers, Endophenotypes and Genes. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9464-4_6

Download citation

Publish with us

Policies and ethics