Skip to main content

Translational Medicine: Functional Biomarkers for Drug Development of “Cognitive Enhancers” in Schizophrenia

  • Chapter
  • 911 Accesses

Abstract

Biomarkers are the bridge between basic and clinical research and enable us to speed up the pro cess of drug development. In the process of drug devel opment of “cognitive enhancers” for the treatment of schizophrenia, the usefulness of biomarkers is increas ingly realized. In this chapter, we will introduce the concept of biomarkers and discuss its application with regard to drugs that are developed for the purpose of cognitive enhancement in schizophrenia. While focus sing on functional biomarkers, i.e., functional mag netic resonance imaging (fMRI) and electrophysiology (EEG), it will be clearly delineated what is currently feasible, what kind of limitations still exist and what needs to be done in the future to optimise the available functional biomarkers. In addition, those functional biomarkers are listed which are thought to qualify as biomarkers for cognitive defi cits in schizophrenia or which are at least close to what one may call a valid biomarker for drug development.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J DC, Spencer KM, Thaker GK, Winterer G, Hajós M. Neurophysiological biomarkers for drug development in schizophrenia. Nat Rev Drug Discov 2008;7:68–83

    Article  CAS  Google Scholar 

  2. DiMasi JA, Hansen RW, Grabowski HG. The price of inno vation: new estimates of drug development costs. J Health Econ 2003;22:151–185

    Article  PubMed  Google Scholar 

  3. Rawlins MD. Cutting the cost of drug development? Nat Rev Drug Discov 2004;3:360–364

    Article  PubMed  CAS  Google Scholar 

  4. Littman BH, Williams SH. The ultimate model organism: progress in experimental medicine. Nat Rev Drug Discov 2005;4:631–638

    Article  PubMed  CAS  Google Scholar 

  5. Borsook D, Becerra L, Hargreaves R. A role for fMRI in optimizing CNS drug development. Nat Rev Drug Discov 2006;5:411–424

    Article  PubMed  CAS  Google Scholar 

  6. Winterer G, Goldman D. Genetics of human prefrontal func tion. Brain Res Rev 2003;43:134–63

    Article  PubMed  CAS  Google Scholar 

  7. Sherwood CC, Subiaul F, Zawidzki TW. A natural history of the human mind: tracing evolutionary changes in brain and cognition. J Anat 2008;212:426–54

    Article  PubMed  Google Scholar 

  8. Winterer G, Carver FW, Musso F, Mattay V, Weinberger DR, Coppola R. Complex relationship between BOLD sig nal and synchronization/desynchronization of human brain MEG oscillations. Hum Brain Mapp 2007;28:805–816

    Article  PubMed  Google Scholar 

  9. Callicott JH, Mattay VS, Verchinski BA, Marenco S, Egan MF, Weinberger DR. Complexity of prefrontal cortical dys function in schizophrenia: more than up or down. Am J Psychiatry 2003;160:2209–2215

    Article  PubMed  Google Scholar 

  10. Bain LJ. A review of the “State of the Art” on mild cogni tive impairment: the fourth annual symposium. Alzheimers Dement 2006;2:246–256

    Article  PubMed  Google Scholar 

  11. Miller DH. Biomarkers and surrogate outcomes in neurode-generative disease: lessons from multiple sclerosis. NeuroRx 2004;1:284–294

    Article  PubMed  Google Scholar 

  12. Auer T, Schwarcz A, Horváth RA, Barsi P, Janszky J. Functional magnetic resonance imaging in neurology. Ideggyogy Sz 2008;61:16–23

    PubMed  Google Scholar 

  13. McFarland HF, Barkhof F, Antel J, Miller DH. The role of MRI as a surrogate outcome measure in multiple sclerosis. Mult Scler 2002;8:40–51

    PubMed  CAS  Google Scholar 

  14. Cho RY, Ford JM, Krystal JH, Laruelle M, Cuthbert B, Carter CS. Functional neuroimaging and electrophysiology biomarkers for clinical trials for cognition in schizophrenia. Schizophr Bull 2005;31:865–869

    Article  PubMed  Google Scholar 

  15. Prentice RL. Surrogate endpoints in clinical trials: defi nition and operational criteria. Stat Med 1989;8:431–440

    Article  PubMed  CAS  Google Scholar 

  16. Biomarkers Defi nitions Working Group. Biomarkers and surrogate endpoints: preferred defi nitions and conceptual framework. Clin Pharmacol Ther 2001;69:89–95

    Article  Google Scholar 

  17. McGuire P, Howes OD, Stone J, Fusar-Poli P. Functional neuroimaging in schizophrenia: diagnosis and drug discov ery. Trends Pharmacol Sci 2008;29:91–98

    Article  PubMed  CAS  Google Scholar 

  18. Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A. Neurophysiological investigation of the basis of the fMRI signal. Nature 2001;412:150–157

    Article  PubMed  CAS  Google Scholar 

  19. Calhoun VD, Kiehl KA, Pearlson GD. Modulation of tem porally coherent brain networks estimated using ICA at rest and during cognitive tasks. Hum Brain Mapp 2008 [epub ahead of print].

    Google Scholar 

  20. Tallon-Baudry C, Bertrand O. Oscillatory gamma activity in humans and its role in object representation. Trends Cogn Sci 1999;3:151–162

    Article  PubMed  Google Scholar 

  21. Rolls ET, Loh M, Deco G, Winterer G. Computational mod els of schizophrenia and dopamine modulation in the pre-frontal cortex. Nat Rev Neurosci 2008;9:696–708

    Article  PubMed  CAS  Google Scholar 

  22. Sehatpour P, Molholm S, Javitt DC, Foxe JJ. Spatiotemporal dynamics of human object recognition processing: an inte grated high-density electrical mapping and functional imaging study of “closure” processes. Neuroimage 2006;29:605–618

    Article  PubMed  Google Scholar 

  23. Hermandez L, Badre D, Noll D, Jonides J. Temporal sensitivity of event-related fMRI. Neuroimage 2002; 17:1018–1026

    Article  Google Scholar 

  24. Lin FH, Wald LL, Ahlfors SP, Hämäläinen MS, Kwong KK, Belliveau JW. Dynamic magnetic resonance inverse imaging of human brain function. Magn Reson Med 2006;56:787–802

    Article  PubMed  Google Scholar 

  25. Winterer G, McCarley RW. Electrophysiology of Schizo phrenia. In: Weinberger DR, Harrison PJ, eds. Schizophrenia. 3rd ed. Oxford, Cambridge, MA: Blackwell, 2008.

    Google Scholar 

  26. Turetsky BI, Calkins ME, Light GA, Olincy A, Radant AD, Swerdlow NR. Neurophysiological endophenotypes of schizo phrenia: the viability of selected candidate measures. Schizophrenia Bull 2007;33:69–94

    Article  Google Scholar 

  27. Swallow KM, Braver TS, Snyder AZ, Speer NK, Zacks JM. Reliability of functional localization using fMRI. Neuro-image 2003;20:1561–1577

    PubMed  Google Scholar 

  28. Vanduffel W, Fize D, Mandeville JB, Nelissen K, Van Hecke P, Rosen BR, Tootell RB, Orban GA. Visual motion pro cessing investigated using contrast agent-enhanced fMRI in awake behaving monkeys. Neuron 2001;32:565–577

    Article  PubMed  CAS  Google Scholar 

  29. Brewer AA, Press WA, Logothetis NK, Wandell BA. Visual areas in macaque cortex measured using functional mag netic resonance imaging. J Neurosci 2002;22:10416–10426

    PubMed  CAS  Google Scholar 

  30. Nelissen K, Luppino G, Vanduffel W, Rizzolatti G, Orban GA. Observing others: multiple action representation in the frontal lobe. Science 2005;310:332–336

    Article  PubMed  CAS  Google Scholar 

  31. Pinsk MA, DeSimone K, Moore T, Gross CG, Kastner S. Representations of faces and body parts in macaque tempo ral cortex: a functional MRI study. Proc Natl Acad Sci USA 2005;102:6996–7001

    Article  PubMed  CAS  Google Scholar 

  32. Op de Beeck HP, Deutsch JA, Vanduffel W, Kanwisher NG, Dicarlo JJ. A stable topography of selectivity for unfamiliar shape classes in monkey inferior temporal cortex. Cereb Cortex 2007 [epub ahead of print]

    Google Scholar 

  33. Febo M, Segarra AC, Nair G, Schmidt K, Duong TQ, Ferris CF. The neural consequences of repeated cocaine exposure revealed by functional MRI in awake rats. Neuropsycho-pharmacology 2005;30:936–943

    Article  CAS  Google Scholar 

  34. Attwell D, Iadecola C. The neural basis of functional brain imaging signals. Trends Neurosci 2002;25:621–625

    Article  PubMed  CAS  Google Scholar 

  35. Iannetti GD, Wise RG. BOLD functional MRI in disease and pharmacological studies: room for improvement? Magn Reson Imaging 2007;25:978–988

    Article  PubMed  CAS  Google Scholar 

  36. Mobascher A, Brinkmeyer J, Warbrick T, Musso F, Wittsack HJ, Stoermer R, Saleh A, Schnitzler A, Winterer G. Fluctuations in electrodermal activity reveal variations in single trial brain responses to painful laser stimuli — A fMRI/ EEG study. Neuroimage 2009;144:1081–1092

    Article  Google Scholar 

  37. Debener S, Ullsperger M, Siegel M, Fiehler K, von Cramon DY, Engel AK. Trial-by-trial coupling of concurrent electro encephalogram and functional magnetic resonance imagingidentifi es the dynamics of performance monitoring. J Neurosci 2005;25:11730–11737

    Article  PubMed  CAS  Google Scholar 

  38. Wenz F, Schad LR, Knopp MV, Baudendistel KT, Flömer F, Schröder J, van Kaick G. Functional magnetic resonance imaging at 1.5 T: activation pattern in schizophrenic patients receiving neuroleptic medication. Magn Reson Imaging 1994;12:975–982

    Article  PubMed  CAS  Google Scholar 

  39. Andreasen NC, Flashman L, Flaum M, Arndt S, Swayze V 2nd, O'Leary DS, Ehrhardt JC, Yuh WT. Regional brain abnormalities in schizophrenia measured with magnetic resonance imaging. JAMA 1994;272:1763–1769

    Article  PubMed  CAS  Google Scholar 

  40. Renshaw PF, Yurgelun-Todd DA, Cohen BM. Greater hemo-dynamic response to photic stimulation in schizophrenic patients: an echo planar MRI study. Am J Psychiatry 1994;151:1493–1495

    PubMed  CAS  Google Scholar 

  41. Ingvar DH, Franzén G. Abnormalities of cerebral blood flow distribution in patients with chronic schizophrenia. Acta Psychiatr Scand 1974;50:425–462

    Article  PubMed  CAS  Google Scholar 

  42. Weinberger DR, Berman KF, Illowsky BP. Physiological dysfunction of dorsolateral prefrontal cortex in schizophre nia. III. A new cohort and evidence for a monoaminergic mechanism. Arch Gen Psychiatry 1988;45:609–615

    CAS  Google Scholar 

  43. Desimone R, Duncan J. Neural mechanisms of selective visual attention. Annu Rev Neurosci 1995;18:193–222

    Article  PubMed  CAS  Google Scholar 

  44. Fuster JM. Memory in the cerebral cortex. MIT Press, Cambridge, MA; 1995

    Google Scholar 

  45. Fuster JM. Executive frontal functions. Exp Brain Res 2000;133:66–70

    Article  PubMed  CAS  Google Scholar 

  46. Deco G, Rolls ET. Attention, short-term memory, and action selection: a unifying theory. Prog Neurobiol 2005;76:236–256

    PubMed  Google Scholar 

  47. Fuster JM. Unit-activity in prefrontal cortex during delayed-response performance — neuronal correlates of transient memory. J Neurophysiol 1973;36:61–78

    PubMed  CAS  Google Scholar 

  48. Smith EE, Jonides J. Storage and executive processes in the frontal lobes. Science 1999;283:1657–1661

    Article  PubMed  CAS  Google Scholar 

  49. Lebedev MA, Messinger A, Kralik JD, Wise SP. Repre sentation of attended versus remembered locations in prefron-tal cortex. PLoS Biology 2004;2:1919–1935

    Article  CAS  Google Scholar 

  50. Tan HY, Sust S, Buckholtz JW, Mattay VS, Meyer-Lindenberg A, Egan MF, Weinberger DR, Callicott JH. Dysfunctional prefrontal regional specialization and com pensation in schizophrenia. Am J Psychiatry 2006;163: 1969–1977

    Article  PubMed  Google Scholar 

  51. Kiehl KA, Stevens MC, Celone K, Kurtz M, Krystal JH. Abnormal hemodynamics in schizophrenia during an audi tory oddball task. Biol Psychiatry 2005;57:1029–1040

    Article  PubMed  Google Scholar 

  52. Musso F, Konrad A, Vucurevic G, Schäffner C, Friedrich B, Frech P, Stoeter P, Winterer G. Distributed BOLD-response in association cortex vector state space predicts reaction time during selective attention. Neuroimage 2006;29: 1311–1318

    Article  PubMed  Google Scholar 

  53. Ariel RN, Golden CJ, Berg RA, Quaife MA, Dirksen JW, Forsell T, Wolson J, Graber B. Regional cerebral blood flow in schizophrenia with the 133-xenon inhalation method. Arch Gen Psychiatry 1983;40:258–263

    PubMed  CAS  Google Scholar 

  54. Callicott JH, Ramsey NF, Tallent K, Bertolino A, Knable MB, Coppola R, Goldberg T, van Gelderen P, Mattay VS, Frank JA, Moonen CT, Weinberger DR. Functional magnetic resonance imaging brain mapping in psychiatry: methodolog ical issues illustrated in a study of working memory in schizo phrenia. Neuropsychopharmacology 1998;18:186–196

    Article  PubMed  CAS  Google Scholar 

  55. Curtis VA, Bullmore ET, Morris RG, Brammer MJ, Williams SC, Simmons A, Sharma T, Murray RM, McGuire PK. Attenuated frontal activation in schizophrenia may be task dependent. Schizophr Res 1999;37:35–44

    Article  PubMed  CAS  Google Scholar 

  56. Rasser PE, Johnston P, Lagopoulos J, Ward PB, Schall U, Thienel R, Bender S, Toga AW, Thompson PM. Functional MRI BOLD response to Tower of London performance of fi rst-episode schizophrenia patients using cortical pattern matching. Neuroimage 2005;26:941–951

    Article  PubMed  Google Scholar 

  57. Volz H, Gaser C, Hager F, Rzanny R, Ponisch J, Mentzel H, Kaiser WA, Sauer H. Decreased frontal activation in schizo phrenics during stimulation with the continuous perfor mance test—a functional magnetic resonance imaging study. Eur Psychiatry 1999;14:17–24

    Article  PubMed  CAS  Google Scholar 

  58. Manoach DS, Press DZ, Thangaraj V, Searl MM, Goff DC, Halpern E, Saper CB, Warach S. Schizophrenic subjects activate dorsolateral prefrontal cortex during a working memory task, as measured by fMRI. Biol Psychiatry 1999;45:1128–1137

    Article  PubMed  CAS  Google Scholar 

  59. Manoach DS, Gollub RL, Benson ES, Seal MM, Goff DC, Halpern E, Saper CB, Rauch SL. Schizophrenic subjects show aberrant fMRI activation of dorsolateral prefrontal cortex and basal ganglia during working memory perfor mance. Biol Psychiatry 2000;48:99–109

    Article  PubMed  CAS  Google Scholar 

  60. Callicott JH, Bertolino A, Mattay VS, Langheim FJ, Duyn J, Coppola R, Goldberg TE, Weinberger DR. Physiological dysfunction of the dorsolateral prefrontal cortex in schizo phrenia revisited. Cereb Cortex 2000;10:1078–1092

    Article  PubMed  CAS  Google Scholar 

  61. Callicott JH, Mattay VS, Verchinski BA, Marenco S, Egan MF, Weinberger DR. Complexity of prefrontal cortical dys function in schizophrenia: more than up or down. Am J Psychiatry 2003;160:2209–2215

    Article  PubMed  Google Scholar 

  62. Gur RE, Turetsky BI, Loughead J, Snyder W, Kohler C, Elliott M, Pratiwadi R, Ragland JD, Bilker WB, Siegel SJ, Kanes SJ, Arnold SE, Gur RC. Visual attention circuitry in schizophrenia investigated with oddball event-related functional magnetic resonance imaging. Am J Psychiatry 2007;164:442–449

    Article  PubMed  Google Scholar 

  63. Liddle PF, Laurens KR, Kiehl KA, Ngan ET. Abnormal function of the brain system supporting motivated attention in medicated patients with schizophrenia: an fMRI study. Psychol Med 2006;36:1097–1108

    Article  PubMed  Google Scholar 

  64. Drobyshevsky A, Baumann SB, Schneider W. A rapid fMRI task battery for mapping of visual, motor, cognitive, and emotional function. Neuroimage 2006;31:732–744

    Article  PubMed  Google Scholar 

  65. Manoach DS, Halpern EF, Kramer TS, Chang Y, Goff DC, Rauch SL, Kennedy DN, Gollub RL. Test-retest reliability of a functional MRI working memory paradigm in normal and schizophrenic subjects. Am J Psychiatry 2001;158:955–958

    PubMed  CAS  Google Scholar 

  66. Winterer G, Musso F, Beckmann C, Mattay V, Egan MF, Jones DW, Callicott JH, Coppola R, Weinberger DR. Instability of prefrontal signal processing in schizophrenia. Am J Psychiatry 2006;163:1960–1968

    Article  PubMed  Google Scholar 

  67. Fox MD, Snyder AZ, Vincent JL, Raichle ME. Intrinsic fl uctuations within cortical systems account for intertrial variability in human behavior. Neuron 2007;56:171–184

    Article  PubMed  CAS  Google Scholar 

  68. Jafri MJ, Calhoun VD. Functional classifi cation of schizo phrenia using feed forward neural networks. Conf Proc IEEE Eng Med Biol Soc 2006;Suppl:6631–6634

    Google Scholar 

  69. Liu Y, Liang M, Zhou Y, He Y, Hao Y, Song M, Yu C, Liu H, Liu Z, Jiang T. Disrupted small-world networks in schizo phrenia. Brain 2008;131:945–961

    Article  PubMed  Google Scholar 

  70. Winterer G, Weinberger DR. Genes, dopamine and cortical signal-to-noise ratio in schizophrenia. Trends Neurosci 2004;27:683–690

    Article  PubMed  CAS  Google Scholar 

  71. Sawaguchi T, Goldman-Rakic PS. D1 dopamine receptors in prefrontal cortex: involvement in working memory. Science 191;251:947–950

    Article  Google Scholar 

  72. Williams GV, Goldman-Rakic PS. Modulation of memory fi elds by dopamine D1 receptors in prefrontal cortex. Nature 1995;376:572–575

    Article  PubMed  CAS  Google Scholar 

  73. Daniel DG, Weinberger DR, Jones DW, Zigun JR, Coppola R, Handel S, Bigelow LB, Goldberg TE, Berman KF, Kleinman JE. The effect of amphetamine on regional cere bral blood flow during cognitive activation in schizophre nia. J Neurosci 1991;11:1907–1917

    PubMed  CAS  Google Scholar 

  74. Mattay VS, Berman KF, Ostrem JL, Esposito G, Van Horn JD, Bigelow LB, Weinberger DR. Dextroamphetamine enhan ces “neural network-specifi c” physiological signals: a positron-emission tomography rCBF study. J Neurosci 1996; 16:4816–4822

    PubMed  CAS  Google Scholar 

  75. Mattay VS, Callicott JH, Bertolino A, Heaton I, Frank JA, Coppola R, Berman KF, Goldberg TE, Weinberger DR. Effects of dextroamphetamine on cognitive performance and cortical activation. Neuroimage 2000;12:268–275

    Article  PubMed  CAS  Google Scholar 

  76. Mattay VS, Goldberg TE, Fera F, Hariri AR, Tessitore A, Egan MF, Kolachana B, Callicott JH, Weinberger DR. Catechol O-methyltransferase val158-met genotype and individual variation in the brain response to amphetamine. Proc Natl Acad Sci USA 2003;100:6186–6191

    Article  PubMed  CAS  Google Scholar 

  77. Tipper CM, Cairo TA, Woodward TS, Phillips AG, Liddle PF, Ngan ET. Processing effi ciency of a verbal working memory system is modulated by amphetamine: an fMRI investigation. Psychopharmacology 2005;180:634–643

    Article  PubMed  CAS  Google Scholar 

  78. Dixon AL, Prior M, Morris PM, Shah YB, Joseph MH, Young AM. Dopamine antagonist modulation of amphet amine response as detected using pharmacological MRI. Neuropsychopharmacology 2005;48:236–245

    CAS  Google Scholar 

  79. Lawrence NS, Ross TJ, Stein EA. Cognitive mechanisms of nicotine on visual attention. Neuron 2002;36:539–548

    Article  PubMed  CAS  Google Scholar 

  80. Jacobsen LK, D'Souza DC, Mencl WE, Pugh KR, Skudlarski P, Krystal JH. Nicotine effects on brain function and func tional connectivity in schizophrenia. Biol Psychiatry 2004;55: 850–858

    Article  PubMed  CAS  Google Scholar 

  81. Thiel CM, Zilles K, Fink GR. Nicotine modulates reorienting of visuospatial attention and neural activity in human pari etal cortex. Neuropsychopharmacology 2005;30:810–820

    PubMed  CAS  Google Scholar 

  82. Musso F, Bettermann F, Vucurevic G, Stoeter P, Konrad A, Winterer G. Smoking impacts on prefrontal attentional net work function in young adult brains. Psychopharmacology 2007;191:159–169

    Article  PubMed  CAS  Google Scholar 

  83. Vossel S, Thiel CM, Fink GR. Behavioral and neural effects of nicotine on visuospatial attentional reorienting in non smoking subjects. Neuropsychopharmacology 2008;33: 731–738

    Article  PubMed  CAS  Google Scholar 

  84. Winterer G, Musso F, Konrad A, Vucurevic G, Stoeter P, Sander T, Gallinat J. Association of attentional network function with exon 5 variations of the CHRNA4 gene. Hum Mol Genetics 2007;16:2165–2174

    Article  CAS  Google Scholar 

  85. Näätänen R, Paavilainen P, Rinne T, Alho K. The mismatch negativity (MMN) in basic research of central auditory pro cessing: a review. Clin Neurophysiol 2007;118:2544–2590

    Article  PubMed  Google Scholar 

  86. Todd J, Michie PT, Schall U, Karayanidis F, Yabe H, Näätänen R. Deviant matters: duration, frequency, and intensity deviants reveal different patterns of mismatch negativity reduction in early and late schizophrenia. Biol Psychiatry 2008;63:58–64

    Article  PubMed  Google Scholar 

  87. Javitt DC, Shelley A-M, Silipo G, Lieberman JA. Defi cits in auditory and visual context-dependent processing in schizophrenia: defi ning the pattern. Arch Gen Psychiatry 2000;57:1131–1137

    Article  PubMed  CAS  Google Scholar 

  88. Salisbury DF, Shenton ME, Griggs CB, Bonner-Jackson A, McCarley RW. Mismatch Negativity in chronic schizo phrenia and fi rst-episode schizophrenia. Arch Gen Psychiatry 2002;59:686–694

    Article  PubMed  Google Scholar 

  89. Salisbury DF, Kuroki N, Kasai K, Shenton ME, McCarley RW. Progressive and interrelated functional and structural evidence for post-onset brain reduction in schizophrenia. Arch Gen Psych 2007;64:521–529

    Article  Google Scholar 

  90. Umbricht D, Koller R, Schmid L, Skrabo A, Grübel C., Huber T, Stassen H. How specifi c are defi cits in mismatch negativity generation to schizophrenia? Biol Psychiatry 2003;53:1120–1131

    Article  PubMed  Google Scholar 

  91. Kasai K, Shenton ME, Salisbury DF, Hirayasu Y, Onitsuka T, Spencer M, Yurgelun-Todd DA, Kikinis R, Jolesz FA, McCarley RW. Progressive decrease of left Heschl's gyrus and planum temporale gray matter volume in schizophre nia: a longitudinal MRI study of fi rst-episode patients. Arch Gen Psychiatry 2003;60:766–775

    Article  PubMed  Google Scholar 

  92. Turetsky BI, Calkins ME, Light GA, Olincy A, Radant AD, Swerdlow NR. Neurophysiological endophenotypes of schizophrenia: the viability of selected candidate mea sures. Schizophrenia Bull 2007;33:69–94

    Article  Google Scholar 

  93. Light GA, Braff DL. Stability of mismatch negativity defi-cits and their relationship to functional impairments in chronic schizophrenia. Am J Psychiatry 2005;162:9

    Article  Google Scholar 

  94. Umbricht D, Javitt D, Novak G, Bates J, Pollack S, Lieberman J, Kane J. Effects of clozapine on auditory event-related potentials in schizophrenia. Biol Psychiatry 1998;44:716–725

    Article  PubMed  CAS  Google Scholar 

  95. Hall MH, Rijsdijk F, Picchioni M, Schulze K, Ettinger U, Toulopoulou T, Bramon E, Murray RM, Sham P. Substantial shared genetic infl uences on schizophrenia and event-re lated potentials. Am J Psychiatry 2007;164:84–82

    Article  Google Scholar 

  96. Jessen F, Fries T, Kucharski C, Nishimura T, Hoenig K, Maier W, Falkai P, Heun R. Amplitude reduction of the mismatch negativity in fi rst-degree relatives of patients with schizophrenia. Neurosci Lett 2001;309:185–188

    Article  PubMed  CAS  Google Scholar 

  97. Michie PT, Innes-Brown H, Todd J, Jablensky AV. Duration mismatch negativity in biological relatives of patients with schizophrenia spectrum disorders. Biol Psychiatry 2002;52: 749–758

    Article  PubMed  Google Scholar 

  98. Bramon E, Rabe-Hesketh S, Shama P, Murray RM, Frangou S. Meta-analysis of the P300 and P50 waveforms in schizo phrenia. Schiz Res 2004;70:315–329

    Article  Google Scholar 

  99. Stone JM, Pilowsky LS. Novel targets for drugs in schizo phrenia. CNS Neurol Disord Drug Targets 2007;6:265–272

    Article  PubMed  CAS  Google Scholar 

  100. Javitt DC. Intracortical mechanisms of mismatch negativity dysfunction in schizophrenia. Audiol Neurootol 2000;5: 207–215

    Article  PubMed  CAS  Google Scholar 

  101. Javitt DC, Steinschneider M, Schroeder CE, Arezzo JC. Role of cortical N-methyl-D-aspartate receptors in audi tory sensory memory and mismatch negativity generation: implications for schizophrenia. Proc Natl Acad Sci U S A 1996;93:11962–11967

    Article  PubMed  CAS  Google Scholar 

  102. Javitt DC, Jayachandra M, Lindsley RW, Specht CM, Schroeder CE. Schizophrenia-like defi cits in auditory P1 and N1 refractoriness induced by the psychomimetic agent phen-cyclidine (PCP). Clin Neurophysiol 2000;111:833–836

    Article  PubMed  CAS  Google Scholar 

  103. Umbricht D, Schmid L, Koller R, Vollenweider FX, Hell D, Javitt DC. Ketamine-induced defi cits in auditory and visual context-dependent processing in healthy volunteers: impli cations for models of cognitive defi cits in schizophrenia. Arch Gen Psychiatry 2000;57:1139–1147

    Article  PubMed  CAS  Google Scholar 

  104. Tamminga CA. The neurobiology of cognition in schizo phrenia. J Clin Psychiatry 2006;67Suppl9:9–13

    Article  PubMed  CAS  Google Scholar 

  105. Slawecki CJ, Thomas JD, Riley EP, Ehlers CL. Neonatal nicotine exposure alters hippocampal EEG and event-related potentials (ERPs) in rats. Pharmacol Biochem Behav 2000;65:711–718

    Article  PubMed  CAS  Google Scholar 

  106. Ehlers CL, Somes C. Long latency event-related potentials in mice: effects of stimulus characteristics and strain. Brain Res 2002;957:117–128

    Article  PubMed  CAS  Google Scholar 

  107. Halgren E, Baudena P, Clarke JM, Heit G, Liégeois C, Chauvel P, Musolino A. Intracerebral potentials to rare tar get and distractor auditory and visual stimuli. I. Superior temporal plane and parietal lobe. Electroencephalogr Clin Neurophysiol 1995;94:191–220

    Article  PubMed  CAS  Google Scholar 

  108. Halgren E, Baudena P, Clarke JM, Heit G, Marinkovic K, Devaux B, Vignal JP, Biraben A. Intracerebral potentials to rare target and distractor auditory and visual stimuli. II. Medial, lateral and posterior temporal lobe. Electroence-phalogr Clin Neurophysiol 1995;94:229–250

    Article  CAS  Google Scholar 

  109. Baudena P, Halgren E, Heit G, Clarke JM. Intracerebral poten tials to rare target and distractor auditory and visual stimuli. III. Frontal cortex. Electroencephalogr Clin Neuro physiol 1995;94:251–264

    Article  CAS  Google Scholar 

  110. Linden DE, Prvulovic D, Formisano E, Völlinger M, Zanella FE, Goebel R, Dierks T. The functional neuroanat-omy of target detection: an fMRI study of visual and audi tory oddball tasks. Cereb Cortex 1999;9:815–823

    Article  PubMed  CAS  Google Scholar 

  111. Winterer G, Musso F, Konrad A, Vucurevic G, Stoeter P, Sander T, Gallinat J. Association of attentional network function with exon 5 variations of the CHRNA4 gene. Hum Mol Genet 2007;16:2165–2174

    Article  PubMed  CAS  Google Scholar 

  112. Winterer G, Mulert C, Mientus S, Gallinat J, Schlattmann P, Dorn H, Herrmann WM. P300 and LORETA: comparison of normal subjects and schizophrenic patients. Brain Topogr 2001;13:299–313

    Article  PubMed  CAS  Google Scholar 

  113. Pae JS, Kwon JS, Youn T, Park HJ, Kim MS, Lee B, Park KS. LORETA imaging of P300 in schizophrenia with indi vidual MRI and 128-channel EEG. Neuroimage 2003;20: 1552–1560

    Article  PubMed  Google Scholar 

  114. Roth WT, Cannon EH. Some features of the auditory evoked response in schizophrenics. Arch Gen Psychiatry 1972;27:466–471

    PubMed  CAS  Google Scholar 

  115. Ford JM, White P, Lim KO, Pfefferbaum A. Schizophrenics have fewer and smaller P300s: a single-trial analysis. Biol Psychiatry 1994;35:96–103

    Article  PubMed  CAS  Google Scholar 

  116. Salisbury DF, O'Donnell BF, McCarley RW, Nestor PG, Faux SF, Smith, RS. Parametric manipulations of auditory stimuli differentially affect P3 amplitude in schizophrenics and controls. Psychophysiology 1994;31:29–36

    Article  PubMed  CAS  Google Scholar 

  117. McCarley RW, Shenton ME, O'Donnell BF, Faux SF, Kikinis R, Nestor PG, Jolesz FA. Auditory P300 abnormali ties and left posterior superior temporal gyrus volume reduction in schizophrenia. Arch Gen Psychiatry 1993;50: 190–197

    PubMed  CAS  Google Scholar 

  118. Turetsky B, Colbath EA, Gur RE. P300 subcomponent abnormalities in schizophrenia: II. Longitudinal stability and relationship to symptom change. Biol Psychiatry 1998;43: 31–39

    Article  PubMed  CAS  Google Scholar 

  119. Gallinat J, Riedel M, Juckel G, Sokullu S, Frodl T, Moukhtieva R, Mavrogiorgou P, Nisslé S, Müller N, Danker-Hopfe H, Hegerl U. P300 and symptom improvement in schizo phrenia. Psychopharmacology (Berl) 2001;158:55–65

    Article  CAS  Google Scholar 

  120. Frodl T, Meisenzahl EM, Müller D, Holder J, Juckel G, Möller HJ, Hegerl U. P300 subcomponents and clinical symptoms in schizophrenia. Int J Psychophysiol 2002;43: 237–246

    Article  PubMed  Google Scholar 

  121. Morstyn RM, Duffy FH, McCarley RW. Altered P300 topography in schizophrenia. Arch Gen Psych 1983;40: 729–734

    CAS  Google Scholar 

  122. Strik WK, Dierks T, Franzek E, Maurer K, Beckmann H. Differences in P300 amplitudes and topography between cycloid psychosis and schizophrenia in Leonhard's classi-fi cation. Acta Psychiatr Scand 1993;87:179–183

    Article  PubMed  CAS  Google Scholar 

  123. Salisbury DF, Shenton ME, McCarley RW. P300 topogra phy differs in schizophrenia and manic psychosis. Biol Psychiatry 1999;45:98–106

    Article  PubMed  CAS  Google Scholar 

  124. O'Donnell BF, Vohs JL, Hetrick WP, Carroll CA, Shekhar A. Auditory event-related potential abnormalities in bipolar dis order and schizophrenia. Int J Psychophysiol 2004;53:45–55

    Article  PubMed  Google Scholar 

  125. Donchin E, Callaway E, Jones RT. Auditory evoked poten tial variability in schizophrenia. II. The application of dis criminant analysis. Electroencephalogr Clin Neurophysiol 1970;29:429–440

    Article  PubMed  CAS  Google Scholar 

  126. Callaway E, Jones RT, Donchin E. Auditory evoked poten tial variability in schizophrenia. Electroencephalogr Clin Neurophysiol 1970;29:421–428

    Article  PubMed  Google Scholar 

  127. Roth WT, Pfefferbaum A, Kelly AF, Berger PA, Kopell BS. Auditory event-related potentials in schizophrenia and depression. Psychiatry Res 1981;4:199–212

    Article  PubMed  CAS  Google Scholar 

  128. Ford JM, White P, Lim KO, Pfefferbaum A. Schizophrenics have fewer and smaller P300s: a single-trial analysis. Biol Psychiatry 1994;35:96–103

    Article  PubMed  CAS  Google Scholar 

  129. Röschke J, Wagner P, Mann K, Fell J, Grözinger M, Frank C. Single trial analysis of event related potentials: a compari son between schizophrenics and depressives. Biol Psychia try 1996;40:844–852

    Article  Google Scholar 

  130. Roth A, Roesch-Ely D, Bender S, Weisbrod M, Kaiser S. Increased event-related potential latency and amplitude variability in schizophrenia detected through wavelet-based single trial analysis. Int J Psychophysiol;66:244–254

    Google Scholar 

  131. Spencer KM. Averaging, detection, and classifi cation of single-trial ERPs. In: Handy T, ed. Event-Related Potentials: A Methods Handbook. Cambridge, MA: MIT Press, 2004, pp. 209–227

    Google Scholar 

  132. Winterer G, Egan MF, Raedler T, Sanchez C, Jones DW, Coppola R, Weinberger DR. P300 and genetic risk for schizophrenia. Arch Gen Psychiatry 2003;60:1158–1167

    Article  PubMed  Google Scholar 

  133. Mathalon DH, Ford JM, Pfefferbaum A. Trait and state aspects of P300 amplitude reduction in schizophrenia: aretrospective longitudinal study. Biol Psychiatry 2000;47: 434–449

    Article  PubMed  CAS  Google Scholar 

  134. Winterer G, Coppola R, Goldberg TE, Egan MF, Jones DW, Sanchez CE, Weinberger DR. Prefrontal broadband noise, working memory, and genetic risk for schizophre nia. Am J Psychiatry 2004;161:490–500

    Article  PubMed  Google Scholar 

  135. Gallinat J, Götz T, Kalus P, Bajbouj M, Sander T, Winterer G. Genetic variations of the NR3A subunit of the NMDA receptor modulate prefrontal cerebral activity in humans. J Cogn Neurosci 2007;19:59–68

    Article  PubMed  Google Scholar 

  136. Hill SY, Locke J, Zezza N, Kaplan B, Neiswanger K, Steinhauer SR, Wipprecht G, Xu J. Genetic association between reduced P300 amplitude and the DRD2 dopamine receptor A1 allele in children at high risk for alcoholism. Biol Psychiatry 1998:43;40–51

    Article  PubMed  CAS  Google Scholar 

  137. Anokhin AP, Todorov AA, Madden PA, Grant JD, Heath AC. Brain event-related potentials, dopamine D2 receptor gene polymorphism, and smoking. Genet Epidemiol 1999;17Suppl1:S37–S42

    PubMed  Google Scholar 

  138. Mulert C, Juckel G, Giegling I, Pogarell O, Leicht G, Karch S, Mavrogiorgou P, Möller HJ, Hegerl U, Rujescu D. A Ser9Gly polymorphism in the dopamine D3 receptor gene (DRD3) and event-related P300 potentials. Neuropsychopharma-cology 2004;31:1335–1344

    Google Scholar 

  139. Berman SM, Noble EP, Antolin T, Sheen C, Conner BT, Ritchie T. P300 development during adolescence: effects of DRD2 genotype. Clin Neurophysiol 2006;117:649–659

    Article  PubMed  Google Scholar 

  140. Gallinat J, Bajbouj M, Sander T, Schlattmann P, Xu K, Ferro EF, Goldman D, Winterer G. Association of the G1947A COMT (Val(108/158)Met) gene polymorphism with prefrontal P300 during information processing. Biol Psychiatry 2003;54:40–48

    Article  PubMed  CAS  Google Scholar 

  141. Golimbet V, Gritsenko I, Alfimova M, Lebedeva I, Lezheiko T, Abramova L, Kaleda V, Ebstein R. Association study of COMT gene Val158Met polymorphism with auditory P300 and performance on neurocognitive tests in patients with schizophrenia and their relatives. World J Biol Psychiatry 2006:7;238–245

    Article  PubMed  Google Scholar 

  142. Ehlis AC, Reif A, Herrmann MJ, Lesch KP, Fallgatter AJ. Impact of catechol-O-methyltransferase on prefrontal brain functioning in schizophrenia spectrum disorders. Neuropsy-chopharmacology 2007;32:162–170

    Article  CAS  Google Scholar 

  143. Lin CH, Yu YW, Chen TJ, Tsa SJ, Hong CJ. Association analysis for dopamine D2 receptor Taq1 polymorphism with P300 event-related potential for normal young females. Psychiatr Genet 2001;11:165–168

    Article  PubMed  CAS  Google Scholar 

  144. Tsai SJ, Yu YW, Chen TJ, Chen MC, Hong CJ. Association analysis for dopamine D3 receptor, dopamine D4 receptor and dopamine transporter genetic polymorphisms and P300 event-related potentials for normal young females. Psychiatr Genet 2003;13:51–53

    Article  PubMed  Google Scholar 

  145. Bramon E, Dempster E, Frangou S, McDonald C, Schoenberg P, MacCabe JH, Walshe M, Sham P, Collier D, Murray RM. Is there an association between the COMT gene and P300 endophenotypes? Eur Psychiatry 2006;21:70–73

    Article  PubMed  CAS  Google Scholar 

  146. Oranje B, Gispen-de Wied CC, Westenberg HG, Kemner C, Verbaten MN, Kahn RS. No effects of l-dopa and bro-mocriptine on psychophysiological parameters of human selective attention. J Psychopharmacol 2006;20:789–798

    Article  PubMed  CAS  Google Scholar 

  147. López J, López V, Rojas D, Carrasco X, Rothhammer P, García R, Rothhammer F, Aboitiz F. Effect of psychostimu-lants on distinct attentional parameters in attentional defi cit/ hyperactivity disorder. Biol Res 2004;37:461–468

    Article  PubMed  Google Scholar 

  148. Niznikiewicz MA, Patel JK, McCarley R, Sutton J, Chau DT, Wojcik J, Green AI. Clozapine action on auditory P3 response in schizophrenia. Schizophr Res 2005;76:19–21

    Article  Google Scholar 

  149. Hollander E, Davidson M, Mohs RC, Horvath TB, Davis BM, Zemishlany Z, Davis KL. RS 86 in the treatment of Alzheimer's disease: cognitive and biological effects. Biol Psychiatry 1987;22:1067–1078

    Article  PubMed  CAS  Google Scholar 

  150. Dierks T, Frölich L, Ihl R, Maurer K. Event-related poten tials and psychopharmacology. Cholinergic modulation of P300. Pharmacopsychiatry 1994;27:72–74

    Article  PubMed  CAS  Google Scholar 

  151. Anokhin AP, Vedeniapin AB, Sirevaag EJ, Bauer LO, O'Connor SJ, Kuperman S, Porjesz B, Reich T, Begleiter H, Polich J, Rohrbaugh JW. The P300 brain potential is reduced in smokers. Psychopharmacology (Berl) 2000;149:409–413

    Article  CAS  Google Scholar 

  152. Thomas A, Iacono D, Bonanni L, D'Andreamatteo G, Onofrj M. Donepezil, rivastigmine, and vitamin E in Alzheimer disease: a combined P300 event-related poten-tials/neuropsychologic evaluation over 6 months. Clin Neuropharmacol 2000;24:31–42

    Article  Google Scholar 

  153. Knott V, Mohr E, Mahoney C, Engeland C, Ilivitsky V. Effects of acute nicotine administration on cognitive event-related potentials in tacrine-treated and non-treated patients with Alzheimer's disease. Neuropsychobiology 2002;45: 156–160

    Article  PubMed  CAS  Google Scholar 

  154. Neuhaus A, Bajbouj M, Kienast T, Kalus P, von Haebler D, Winterer G, Gallinat J. Persistent dysfunctional frontal lobe activation in former smokers. Psychophamacology (Berl) 2006;186:191–200

    Article  CAS  Google Scholar 

  155. Werber AE, Klein C, Rabey JM. Evaluation of cholinergic treatment in demented patients by P300 evoked related potentials. Neurol Neurochir Pol 2001;35 Suppl 3:37–43

    PubMed  Google Scholar 

  156. Harrison JB, Buchwald JS, Kaga K, Woolf NJ, Butcher LL. ‘Cat P300’ disappears after septal lesions. Electroence-phalogr Clin Neurophysiol 1988;69:55–64

    Article  CAS  Google Scholar 

  157. Fries P, Nikolic D, Singer W. The gamma cycle. Trends Neurosci 2007;30:309–316

    Article  PubMed  CAS  Google Scholar 

  158. Spencer KM, Salisbury DF, Shenton ME, McCarley RW. Gamma-band steady-state responses are impaired in first episode psychosis. Soc Neurosci Abstr 2006;36:122

    Google Scholar 

  159. Ford JM, Roach BJ, Faustman WO, Mathalon DH. Out-of-synch and Out-of-sorts: dysfunction of motor-sensory communicatio in schizophrenia. Biol Psychiatry [epub ahead of print]

    Google Scholar 

  160. Spencer KM, Nestor PG, Perlmutter R, Niznikiewicz MA, Klump MC, Frumin M, Shenton ME, McCarley RW. Neural synchrony indexes disordered perception and cognition in schizophrenia. Proc Natl Acad Sci USA 2004;101: 17288–17293

    Article  PubMed  CAS  Google Scholar 

  161. Selemon LD, Goldman-Rakic PS. The reduced neuropil hypothesis: a circuit based model of schizophrenia. Biol Psychiatry 1999;45:17–25

    Article  PubMed  CAS  Google Scholar 

  162. Kopell N, Ermentrout GB, Whittington MA, Traub RD. Gamma rhythms and beta rhythms have different synchro nization properties. Proc Natl Acad Sci USA 2000;97: 1867–1872

    Article  PubMed  CAS  Google Scholar 

  163. Uhlhaas P, Silverstein SM, Phillips WA, Lovell PG. Evidence for impaired visual context processing in schizotypy with thought disorder. Schizophr Res 2004;68:249–260

    Article  PubMed  Google Scholar 

  164. Gallinat J, Winterer G, Herrmann CS, Senkowski D. Reduced oscillatory gamma-band responses in unmedicated schizophrenic patients indicate impaired frontal network processing. Clin Neurophysiol 2004; 115:1863–1874

    Article  PubMed  Google Scholar 

  165. Hong L, Summerfelt A, McMahon R, et al. Evoked gamma band synchronization and the liability for schizophrenia. Schizophr Res. 2004;70:293–302

    Article  PubMed  Google Scholar 

  166. Van der Stelt O, Belger A, Lieberman JA. Macroscopic fast neuronal oscillations and synchrony in schizophrenia. Proc Natl Acad Sci USA 2004;101:17567–17568

    Article  PubMed  CAS  Google Scholar 

  167. Herrmann CS, Demiralp T. Human EEG gamma oscilla tions in neuropsychiatric disorders. Clin Neurophysiol 2005;116:2719–2733

    Article  PubMed  CAS  Google Scholar 

  168. Brenner CA, Sporns O, Lysaker PH, O'Donnell BF. EEG synchronization to modulated auditory tones in schizo phrenia, schizoaffective disorder, and schizotypal person ality disorder. Am J Psychiatry 2003;160:2238–2240

    Article  PubMed  Google Scholar 

  169. Lewis DA, Hashimoto T, Volk DW. Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci 2005;6: 312–324

    Article  PubMed  CAS  Google Scholar 

  170. Cunningham MO, Hunt J, Middleton S, LeBeau FE, Gillies MG, Davies CH, Maycox PR, Whittington MA, Racca C. Region-specific reduction in entorhinal gamma oscillations and parvalbumin-immunoreactive neurons in animal mod els of psychiatric illness. J Neurosci 2006;26:2767–2776

    Article  PubMed  CAS  Google Scholar 

  171. Grunze HC, Rainnie DG, Hasselmo ME, Barkai E, Hearn EF, McCarley RW, Greene RW. NMDA-dependent modula tion of CA1 local circuit inhibition. J Neurosci 1996;1: 2034–2043

    Google Scholar 

  172. Rujescu D, Bender A, Keck M, Hartmann AM, Ohl F, Raeder H, Giegling I, Genius J, McCarley RW, Möller H-Y, Grunze H. A pharmacological model for psychosis based on N-methyl-D-aspartate receptor hypofunction: molecular, cellular, functional and behavioral abnormali ties. Biol Psychiatry 2006;59:721–729

    Article  PubMed  CAS  Google Scholar 

  173. Buzsaki G. Theta oscillations in the hippocampus. Neuron 2002;33:325–340

    Article  PubMed  CAS  Google Scholar 

  174. Hasselmo ME. What is the function of hippocampal theta rhythm?—Linking behavioral data to phasic properties of fi eld potential and unit recording data. Hippocampus 2005;15:936–949

    Article  PubMed  Google Scholar 

  175. Vertes RP. Hippocampal theta rhythm: a tag for short-term memory. Hippocampus 2005;15:923–935

    Article  PubMed  CAS  Google Scholar 

  176. Miller R. Discovery and general behavioural correlates of the hippocampal theta rhythm in several species. In: Miller R, ed. Corticohippocampal Interplay and the Representation of Context in the Brain. Berlin: Springer, 1991

    Google Scholar 

  177. Leung L-WS, Borst JGG. Electrical activity of the cingu-late cortex. 1. generating mechanisms and relations to behavior. Brain Res 1987;407:68–80

    Article  PubMed  CAS  Google Scholar 

  178. Borst JGG, Leung L-WS, MacFabe DF Electrical activity of the cingulate cortex. II. Cholinergic modulation. Brain Res 1987;407:81–93

    Google Scholar 

  179. Talk A, Kang E, Gabriel M. Independent generation of theta rhythm in the hippocampus and posterior cingulate cortex. Brain Res 2004;1015:15–24

    Article  PubMed  CAS  Google Scholar 

  180. Tsujimoto T, Shimazu H, Isomura Y. Direct recording of theta oscillations in primate prefrontal and anterior cingu-late cortices. J Neurophysiol 2006;95:2987–3000

    Article  PubMed  Google Scholar 

  181. Cantero JL, Atienza M, Stickgold R, Kahana MJ, Madsen JR, Kocsis B. Sleep-dependent theta oscillations in the human hip pocampus and neocortex. J Neurosci 2003;23:10897–10903

    PubMed  CAS  Google Scholar 

  182. Guderian S, Düzel E. Induced theta oscillations mediate large-scale synchrony with mediotemporal areas during recollection in humans. Hippocampus 2005;15:901–912

    Article  PubMed  Google Scholar 

  183. Winterer G, Ziller M, Dorn H, Frick K, Mulert C, Dahhan N, Herrmann WM, Coppola R. Cortical activation, signal-to-noise ratio and stochastic resonance during information pro cessing in man. Clin Neurophysiol 1999;110:1193–1203

    Article  PubMed  CAS  Google Scholar 

  184. Ishihara T, Yoshii N. Multivariate analytic study of EEG and mental activity in juvenile delinquents. Electroence-phalogr Clin Neurophysiol 1972;33:71–80

    Article  CAS  Google Scholar 

  185. Gevins A, Smith ME, McEvoy L, Yu D. High-resolution EEG mapping of cortical activation related to working memory: effects of task diffi culty, type of processing, and practice. Cereb Cortex 1997;7:374–385

    Article  PubMed  CAS  Google Scholar 

  186. Gevins A, Smith ME. Neurophysiological measures of working memory and individual differences in cognitive ability and cognitive style. Cereb Cortex 2000;10:829–839

    Article  PubMed  CAS  Google Scholar 

  187. Jensen O, Lisman JE. Hippocampal sequence-encoding driven by a cortical multi-item working memory buffer. Trends Neurosci 2005;28:67–72

    Article  PubMed  CAS  Google Scholar 

  188. Jensen O, Colgin LL. Cross-frequency coupling between neuronal oscillations. Trends Cogn Sci 2007;11:267–269

    Article  PubMed  Google Scholar 

  189. Jones MW, Wilson MA. Theta rhythms coordinate hip-pocampal-prefrontal interactions in a spatial memory task. PLoS Biol 2005;3:e402

    Article  PubMed  CAS  Google Scholar 

  190. Jacobs J, Kahana MJ, Ekstrom AD, Fried I. Brain oscilla tions control timing of single-neuron activity in humans. J Neurosci 2007;27:3839–3844

    Article  PubMed  CAS  Google Scholar 

  191. Hyman JM, Zilli EA, Paley AM, Hasselmo ME. Medial pre-frontal cortex cells show dynamic modulation with the hippocampal theta rhythm dependent on behavior. Hippo campus 2005;15:739–749

    Google Scholar 

  192. Winterer G, Ziller M, Dorn H, Frick K, Mulert C, Wuebben Y, Herrmann WM, Coppola R. Schizophrenia: reduced signal-to-noise ratio and impaired phase-locking during informa tion processing. Clin Neurophysiol 2000;111: 837–849

    Article  PubMed  CAS  Google Scholar 

  193. Krishnan GP, Vohs JL, Hetrick WP, Carroll CA, Shekhar A, Bockbrader MA, O'Donnell BF. Steady state visual evoked potential abnormalities in schizophrenia. Clin Neurophysiol 2004;116:614–624

    Article  Google Scholar 

  194. Uhlhaas P, Rodriguez R, Roux F, Haenschel C, Maurer K, Singer W. Neuronal synchrony as a pathophysiological mechanism in schizophrenia. 1st European Conference on Schizophrenia Research (oral presentation) 2007.

    Google Scholar 

  195. Winterer G, Musso F, Beckmann C, Mattay V, Egan MF, Jones DW, Callicott JH, Coppola R, Weinberger DR. Instability of prefrontal signal processing in schizophrenia. Am J Psychiatry 2006;163:1960–1968

    Article  PubMed  Google Scholar 

  196. Fitch TE, Sahr RN, Eastwood BJ, Zhou FC, Yang CR. Dopamine D1/D5 receptor modulation of fi ring rate and bidirectional theta burst fi ring in medial septal/vertical limb of diagonal band neurons in vivo. J Neurophysiol 2006;95:2808–2820

    Article  PubMed  CAS  Google Scholar 

  197. Winterer G, Egan MF, Kolachana BS, Goldberg TE, Coppola R, Weinberger DR. Prefrontal electrophysiologic “noise” and catechol-O-methyltransferase genotype in schizophrenia. Biol Psychiatry 2006;60:578–584

    Article  PubMed  CAS  Google Scholar 

  198. Tan HY, Callicott JH, Weinberger DR. Dysfunctional and compensatory prefrontal cortical systems, genes and the patho-genesis of schizophrenia. Cereb Cortex 2007;Suppl1:171–181

    Article  Google Scholar 

  199. Winterer G, Musso F, Vucurevic G, Stoeter P, Konrad A, Seker B, Gallinat J, Dahmen N, Weinberger DR. COMT genotype predicts BOLD signal and noise characteristics in prefrontal circuits. Neuroimage 2006;32:1722–1732

    Article  PubMed  Google Scholar 

  200. Winterer G, Weinberger DR. Genes, dopamine and cortical signal-to-noise ratio in schizophrenia. Trends Neurosci 2004;27:683–690

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Winterer, G. (2009). Translational Medicine: Functional Biomarkers for Drug Development of “Cognitive Enhancers” in Schizophrenia. In: Ritsner, M.S. (eds) The Handbook of Neuropsychiatric Biomarkers, Endophenotypes and Genes. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9464-4_4

Download citation

Publish with us

Policies and ethics