Advertisement

The Future of Ultracool Dwarf Science with JWST

  • Mark S. Marley
  • S.K. Leggett
Conference paper
Part of the Astrophysics and Space Science Proceedings book series (ASSSP)

Abstract

Ultracool dwarfs exhibit a remarkably varied set of characteristics which hint at the complex physical processes acting in their atmospheres and interiors. Spectra of these objects not only depend upon their mass and effective temperature, but also their atmospheric chemistry, weather, and dynamics. As a consequence divining their mass, metallicity and age solely from their spectra has been a challenge. JWST, by illuminating spectral blind spots and observing objects with constrained masses and ages should finally unearth a sufficient number of ultracool dwarf Rosetta Stones to allow us to decipher the processes underlying the complex brown dwarf cooling sequence. In addition the spectra of objects invisible from the ground, including very low mass objects in clusters and nearby cold dwarfs from the disk population, will be seen for the first time. In combination with other groundand space-based assets and programs, JWST will usher in a new golden era of brown dwarf science and discovery.

Keywords

Spectral Sequence Effective Temperature Water Cloud Giant Planet Brown Dwarf 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackerman, A. S., & Marley, M. S. 2001, ApJ, 556, 872CrossRefADSGoogle Scholar
  2. Barshay, S. S., & Lewis, J. S. 1978, Icarus, 33, 593CrossRefADSGoogle Scholar
  3. Bouy, H., et al. 2004, A&A, 423, 341CrossRefADSGoogle Scholar
  4. Bouy, H., et al. 2008, A&A, 481, 757CrossRefADSGoogle Scholar
  5. Burgasser, A. J., et al. 1999, ApJL, 522, L65CrossRefADSGoogle Scholar
  6. Burgasser, A. J., et al. 2002a, ApJ, 564, 421Google Scholar
  7. Burgasser, A. J., Marley, M. S., Ackerman, A. S., Saumon, D., Lodders, K., Dahn, C. C., Harris, H. C., & Kirkpatrick, J. D. 2002b, ApJL, 571, L151Google Scholar
  8. Burgasser, A. J., Geballe, T. R., Leggett, S. K., Kirkpatrick, J. D., & Golimowski, D. A. 2006, ApJ, 637, 1067CrossRefADSGoogle Scholar
  9. Burrows, A., et al. 1997, ApJ, 491, 856CrossRefADSGoogle Scholar
  10. Burrows, A., Marley, M. S., & Sharp, C. M. 2000, ApJ, 531, 438CrossRefADSGoogle Scholar
  11. Burrows, A., Hubbard, W. B., Lunine, J. I., & Liebert, J. 2001, Reviews of Modern Physics, 73, 719CrossRefADSGoogle Scholar
  12. Burrows, A., Sudarsky, D., & Lunine, J. I. 2003, ApJ, 596, 587CrossRefADSGoogle Scholar
  13. Burrows, A., 2005, Nature, 433, 261CrossRefADSGoogle Scholar
  14. Burrows, A., Sudarsky, D., & Hubeny, I. 2006, ApJ, 640, 1063CrossRefADSGoogle Scholar
  15. Casewell, S. L., Dobbie, P. D., Hodgkin, S. T., Moraux, E., Jameson, R. F., Hambly, N. C., Irwin, J., & Lodieu, N. 2007, MNRAS, 378, 1131CrossRefADSGoogle Scholar
  16. Cooper, C. S., Sudarsky, D., Milsom, J. A., Lunine, J. I., & Burrows, A. 2003, ApJ, 586, 1320CrossRefADSGoogle Scholar
  17. Cushing, M. C., et al. 2006, ApJ, 648, 614CrossRefADSGoogle Scholar
  18. Cushing, M. C., et al. 2008, ApJ, 678, 1372CrossRefADSGoogle Scholar
  19. Dahn, C. C., et al. 2002, AJ, 124, 1170CrossRefADSGoogle Scholar
  20. Fegley, B. J., & Lodders, K. 1994, Icarus, 110, 117CrossRefADSGoogle Scholar
  21. Fegley, B., Jr., & Prinn, R. G. 1985, ApJ, 299, 1067CrossRefADSGoogle Scholar
  22. Fegley, B. J., & Lodders, K. 1996, ApJL, 472, L37CrossRefADSGoogle Scholar
  23. Freedman, R. S., Marley, M. S., & Lodders, K. 2008, ApJSup, 174, 504CrossRefADSGoogle Scholar
  24. Geballe, T. R., et al. 2002, ApJ, 564, 466CrossRefADSGoogle Scholar
  25. Golimowski, D. A., et al. 2004, AJ, 127, 3516CrossRefADSGoogle Scholar
  26. Griffith, C. A., & Yelle, R. V. 1999, ApJL, 519, L85CrossRefADSGoogle Scholar
  27. Hanner, M. S., Lynch, D. K., & Russell, R. W. 1994, ApJ, 425, 274CrossRefADSGoogle Scholar
  28. Hauschildt, P. H., Allard, F., Alexander, D. R., & Baron, E. 1997, ApJ, 488, 428CrossRefADSGoogle Scholar
  29. Helling, Ch., Thi, W.-F., Woitke, P., & Fridlund, M. 2006, A &A, 451, L9ADSGoogle Scholar
  30. Helling, Ch., & Woitke, P. 2006, Astron. Astroph., 455, 325CrossRefADSGoogle Scholar
  31. Helling, Ch., et al. 2008a, MNRAS, in press, arXiv:0809.3657Google Scholar
  32. Helling, Ch., Dehn, M., Woitke, P., & Hauschildt, P. H. 2008b, ApJL, 675, L105Google Scholar
  33. Hinz, P. M., Heinze, A. N., Sivanandam, S., Miller, D. L., Kenworthy, M. A., Brusa, G., Freed, M., & Angel, J. R. P. 2006, ApJ, 653, 1486CrossRefADSGoogle Scholar
  34. Hubeny, I., & Burrows, A. 2007, ApJ, 669, 1248CrossRefADSGoogle Scholar
  35. Kirkpatrick, J. D., et al. 1999, ApJ, 519, 802CrossRefADSGoogle Scholar
  36. Kirkpatrick, J. D. 2005, Ann. Rev. Astron. & Astrophys., 43, 195CrossRefADSGoogle Scholar
  37. Kirkpatrick, J. D. 2008, 14th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun, 384, 85ADSGoogle Scholar
  38. Knapp, G. R., et al. 2004, AJ, 127, 3553CrossRefADSGoogle Scholar
  39. Kunde, V. G., et al. 2004, Science, 305, 1582CrossRefADSGoogle Scholar
  40. Leggett, S. K., et al. 2000, ApJL, 536, L35CrossRefADSGoogle Scholar
  41. Leggett, S. K., Marley, M. S., Freedman, R., Saumon, D., Liu, M. C., Geballe, T. R., Golimowski, D. A., & Stephens, D. C., 2007a, ApJ, 667, 537Google Scholar
  42. Leggett, S. K., Saumon, D., Marley, M. S., Geballe, T. R., Golimowski, D. A., Stephens, D., & Fan, X. 2007b, ApJ, 655, 1079Google Scholar
  43. Liu, M. C., Leggett, S. K., Golimowski, D. A., Chiu, K., Fan, X., Geballe, T. R., Schneider, D. P., & Brinkmann, J. 2006, ApJ, 647, 1393CrossRefADSGoogle Scholar
  44. Lodders, K., & Fegley, B. 2002, Icarus, 155, 393CrossRefADSGoogle Scholar
  45. Lodders, K., & Fegley, B., Jr. 2006, Astrophysics Update 2, 1CrossRefADSGoogle Scholar
  46. Lodieu, N., et al. 2007, MNRAS, 379, 1423CrossRefADSGoogle Scholar
  47. Luhman, K. L., et al. 2007, ApJ, 654, 570CrossRefADSGoogle Scholar
  48. Mainzer, A. K., et al. 2007, ApJ, 662, 1245CrossRefADSGoogle Scholar
  49. Marley, M. S., Saumon, D., Guillot, T., Freedman, R. S., Hubbard, W. B., Burrows, A., & Lunine, J. I. 1996, Science, 272, 1919CrossRefADSGoogle Scholar
  50. Marley, M. 2000, From Giant Planets to Cool Stars, 212, 152ADSGoogle Scholar
  51. Marley, M. S., Fortney, J., Seager, S., & Barman, T. 2007, Protostars and Planets V, 733Google Scholar
  52. Metchev, S. & Hillenbrand, L. A. 2006, ApJ, 651, 1166CrossRefADSGoogle Scholar
  53. Mugrauer, M., Seifahrt, A., Neuhäuser, R., & Mazeh, T. 2006, MNRAS, 373, L31ADSGoogle Scholar
  54. Nakajima, T., Oppenheimer, B. R., Kulkarni, S. R., Golimowski, D. A., Matthews, K., & Durrance, S. T. 1995, Nature, 378, 463CrossRefADSGoogle Scholar
  55. Noll, K. S., Knacke, R. F., Geballe, T. R., & Tokunaga, A. T. 1988, ApJL, 324, 1210CrossRefADSGoogle Scholar
  56. Noll, K. S., Geballe, T. R., & Marley, M. S. 1997, ApJL, 489, L87CrossRefADSGoogle Scholar
  57. Noll, K. S., Geballe, T. R., Leggett, S. K., & Marley, M. S. 2000, ApJL, 541, L75CrossRefADSGoogle Scholar
  58. Oppenheimer, B. R., Kulkarni, S. R., Matthews, K., & van Kerkwijk, M. H. 1998, ApJ, 502, 932CrossRefADSGoogle Scholar
  59. Patten, B. M., et al. 2006, ApJ, 651, 502CrossRefADSGoogle Scholar
  60. Prinn, R. G., & Barshay, S. S. 1977, Science, 198, 1031CrossRefADSGoogle Scholar
  61. Roellig, T. L., et al. 2004, ApJS, 154, 418CrossRefADSGoogle Scholar
  62. Saumon, D., Geballe, T. R., Leggett, S. K., Marley, M. S., Freedman, R. S., Lodders, K., Fegley, B., Jr., & Sengupta, S. K. 2000, ApJ, 541, 374CrossRefADSGoogle Scholar
  63. Saumon, D., Marley, M. S., Cushing, M. C., Leggett, S. K., Roellig, T. L., Lodders, K., & Freedman, R. S. 2006, ApJ, 647, 552CrossRefADSGoogle Scholar
  64. Saumon, D., et al. 2007, ApJ, 656, 1136CrossRefADSGoogle Scholar
  65. Schweitzer, A., Hauschildt, P. H., & Baron, E. 2000, ApJ, 541, 1004CrossRefADSGoogle Scholar
  66. Sharp, C. M., & Burrows, A. 2007, ApJSup, 168, 140CrossRefADSGoogle Scholar
  67. Skrutskie, M. F., et al. 2006, AJ, 131, 1163CrossRefADSGoogle Scholar
  68. Strauss, M. A., et al. 1999, ApJL, 522, L61CrossRefADSGoogle Scholar
  69. Tinney, C. G., Burgasser, A. J., & Kirkpatrick, J. D. 2003, AJ, 126, 975CrossRefADSGoogle Scholar
  70. Toppani, A., Libourel, G., Robert, F., Ghanbaja, J., & Zimmermann, L. 2004, Lunar and Planetary Institute Conference Abstracts, 35, 1726ADSGoogle Scholar
  71. Tsuji, T. 2002, ApJ, 575, 264CrossRefADSGoogle Scholar
  72. Tsuji, T., & Nakajima, T. 2003, ApJL, 585, L151CrossRefADSGoogle Scholar
  73. Tsuji, T., Nakajima, T., & Yanagisawa, K. 2004, ApJ, 607, 511CrossRefADSGoogle Scholar
  74. Tsuji, T. 2005, ApJ, 621, 1033CrossRefADSGoogle Scholar
  75. Vrba, F. J., et al. 2004, AJ, 127, 2948CrossRefADSGoogle Scholar
  76. Warren, S. J., et al. 2007, MNRAS, 381, 1400CrossRefADSGoogle Scholar
  77. Woitke, P., & Helling, Ch. 2003, A & A, 399, 297ADSGoogle Scholar
  78. York, D. G., et al. 2000, AJ, 120, 1579CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, B.V. 2009

Authors and Affiliations

  • Mark S. Marley
    • 1
  • S.K. Leggett
    • 2
  1. 1.NASA Ames Research CenterMoffett FieldUSA
  2. 2.Gemini ObservatoryUSA

Personalised recommendations