Advertisement

The Frontier of Reionization: Theory and Forthcoming Observations

  • Abraham Loeb
Conference paper
  • 1k Downloads
Part of the Astrophysics and Space Science Proceedings book series (ASSSP)

Abstract

The cosmic microwave background provides an image of the Universe 0.4 million years after the Big Bang, when atomic hydrogen formed out of free electrons and protons. One of the primary goals of observational cosmology is to obtain follow-up images of the Universe during the epoch of reionization, hundreds of millions of years later, when cosmic hydrogen was ionized once again by the UV photons emitted from the first galaxies. To achieve this goal, new observatories are being constructed, including low-frequency radio arrays capable of mapping cosmic hydrogen through its redshifted 21 cm emission, as well as imagers of the first galaxies such as the James Webb Space Telescope (JWST) and large aperture ground-based telescopes. The construction of these observatories is being motivated by a rapidly growing body of theoretical work. Numerical simulations of reionization are starting to achieve the dynamical range required to resolve galactic sources across the scale of hundreds of comoving Mpc, larger than the biggest ionized regions.

Keywords

Black Hole Dark Matter Cosmic Microwave Background High Redshift Neutral Hydrogen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abel T, Bryan, G L, Norman M L (2002) Science 295,93CrossRefADSGoogle Scholar
  2. Allison A C, Dalgarno A (1969) ApJ 158, 423CrossRefADSGoogle Scholar
  3. Angulo R, Baugh C M, Frenk C S, Lacey C G (2007) ArXiv Astrophysics e-prints, arXiv:astro-ph/0702543Google Scholar
  4. Arons J, Wingert D W (1972) ApJ 177, 1CrossRefADSGoogle Scholar
  5. Barkana R, Loeb A (2004a) ApJ 601, 64Google Scholar
  6. Barkana R, Loeb A (2004b) ApJ 609, 474Google Scholar
  7. Barkana R, Loeb A (2005a) ApJL 624, L65Google Scholar
  8. Barkana R, Loeb A (2005b) ApJ 626, 1Google Scholar
  9. Barkana R, Loeb A (2005c) MNRAS 363, L36Google Scholar
  10. Bennett C L et al. (1996) ApJL 464, L1CrossRefADSGoogle Scholar
  11. Bertschinger E (2006) Phys Rev D74, 063509Google Scholar
  12. Bharadwaj S and Ali S S (2004) MNRAS 352, 142CrossRefADSGoogle Scholar
  13. Blake C, Glazebrook K (2003) ApJ 594, 665CrossRefADSGoogle Scholar
  14. Bouwens R J, Illingworth G D, Blakeslee J P, Franx M (2006) ApJ 653, 53CrossRefADSGoogle Scholar
  15. Bouwens R J, Illingworth G D (2006) Nature 443, 189CrossRefADSGoogle Scholar
  16. Bouwens R J, Illingworth G D, Franx M, Ford H (2007) ArXiv e-prints, 707, arXiv:0707.2080Google Scholar
  17. Bowman J D, Morales M F and Hewitt J N (2006) ApJ 638, 20CrossRefADSGoogle Scholar
  18. Bromm V, Kudritzki R P, Loeb A (2001) ApJ 552, 464CrossRefADSGoogle Scholar
  19. Bromm V, Larson R B (2004) Ann Rev Astron & Astrophys 42, 79CrossRefADSGoogle Scholar
  20. Bromm V, Loeb A (2003a) Nature 425, 812Google Scholar
  21. Bromm V, Loeb A (2003b) ApJ 596, 34Google Scholar
  22. Bromm V, Loeb A (2004) New Astronomy 9, 353CrossRefADSGoogle Scholar
  23. Ciardi B, Ferrara A, White S D M (2003) MNRAS 344 L7CrossRefADSGoogle Scholar
  24. Cole S, et al. (2005) 362, 505Google Scholar
  25. Cuby J-G, Hibon P, Lidman C, Le Fèvre O, Gilmozzi R, Moorwood A, van der Werf P (2007) A & A 461, 911ADSGoogle Scholar
  26. Ciardi B, Ferrara A, White S D M (2003) MNRAS 344, L7CrossRefADSGoogle Scholar
  27. Di Matteo T, Perna R, Abel T, Rees M J (2002) ApJ 564, 576CrossRefADSGoogle Scholar
  28. Dijkstra M, Haiman Z, Spaans M (2006) ApJ 649, 14CrossRefADSGoogle Scholar
  29. Dijkstra M, Lidz A, Wyithe J S B (2007) MNRAS 377, 1175CrossRefADSGoogle Scholar
  30. Diemand J, Moore B, Stadel J (2005) Nature 433, 389 (2 005)CrossRefADSGoogle Scholar
  31. Dow-Hygelund C C, et al. (2007) ApJ 660, 47CrossRefADSGoogle Scholar
  32. Eisenstein D, et al. (2005) ApJ 633, 560CrossRefADSGoogle Scholar
  33. Ellis R S (2007) ArXiv Astrophysics e-prints, arXiv:astro-ph/0701024Google Scholar
  34. Fan X, et al (2002) AJ, 123, 1247CrossRefADSGoogle Scholar
  35. Fan X, et al (2003) AJ 125, 1649CrossRefADSGoogle Scholar
  36. Fan X, et al. (2005) AJ 132, 117CrossRefADSGoogle Scholar
  37. Fan X, Carilli C L, Keating B (2006) Ann Rev Astron & Astrophys 44, 415CrossRefADSGoogle Scholar
  38. Field G B (1958) Proc IRE 46, 240CrossRefGoogle Scholar
  39. Field G B (1959) ApJ 129, 551CrossRefADSGoogle Scholar
  40. Frebel A, Johnson J L, Bromm V (2007) MNRAS 380, L40ADSGoogle Scholar
  41. Furlanetto S R, Loeb A (2004) ApJ 611, 642CrossRefADSGoogle Scholar
  42. Furlanetto S R, Oh S P, Briggs F H (2006) Phys Rep 433, 181CrossRefADSGoogle Scholar
  43. Furlanetto S R, Zaldarriaga M and Hernquist L (2004) ApJ 613 1CrossRefADSGoogle Scholar
  44. Fukugita M, Kawasaki M (1994), MNRAS 269, 563ADSGoogle Scholar
  45. Furlanetto S R, Loeb A (2003) ApJ 588, 18CrossRefADSGoogle Scholar
  46. Gehrels N, et al. (2004) ApJ 611, 1005CrossRefADSGoogle Scholar
  47. Glazebrook K, Blake C (2005) ApJ 631, 1CrossRefADSGoogle Scholar
  48. Haiman Z, Loeb A (1997) ApJ 483, 21CrossRefADSGoogle Scholar
  49. Haiman Z, Spaans M (1999) ApJ 518, 138CrossRefADSGoogle Scholar
  50. Haislip J, et al. (2006) Nature 440, 181CrossRefADSGoogle Scholar
  51. Heger A, Fryer C L, Woosley S E, Langer N, Hartmann D H (2003) ApJ 591, 288CrossRefADSGoogle Scholar
  52. Hirata C M (2006) MNRAS 367, 259CrossRefADSGoogle Scholar
  53. Hogan C J, Rees M J (1979) MNRAS 188, 791ADSGoogle Scholar
  54. Horton A, Parry I, Bland-Hawthorn J, Cianci S, King D, McMahon R, Medlen S (2004) Proc SPIE 5492, 1022CrossRefADSGoogle Scholar
  55. Hu W, Haiman Z (2003) Phys Rev D68, 063004ADSGoogle Scholar
  56. Iliev I T, Shapiro, P R, Mellema G, Pen U-L, McDonald P, Bond J R (2007) ArXiv e-prints, 708, arXiv:0708.3846Google Scholar
  57. Iye M, et al. (2006) Nature 443, 186CrossRefADSGoogle Scholar
  58. Kaiser N (1984) ApJL 284, 9CrossRefADSGoogle Scholar
  59. Kaiser N (1987) MNRAS 227, 1ADSGoogle Scholar
  60. Kamionkowski M, Spergel D N, Sugiyama N (1994), ApJL 426, 57CrossRefADSGoogle Scholar
  61. Kashikawa N, et al. (2006) ApJ 648, 7CrossRefADSGoogle Scholar
  62. Lamb D Q, Reichart D E (2000) ApJ 536, 1CrossRefADSGoogle Scholar
  63. Lewis A, Challinor A (2007), ArXiv Astrophysics e-prints, arXiv:astro-ph/0702600Google Scholar
  64. Lidz A, Oh S P, Furlanetto S R (2006), ApJL 639, 47CrossRefADSGoogle Scholar
  65. Loeb A (2006), “First Light”, extensive review for the SAAS-Fee 2006 Winter School, ArXiv Astrophysics e-prints, arXiv:astro-ph/0603360Google Scholar
  66. Loeb A, Rasio F A (1994) ApJ 432, 52CrossRefADSGoogle Scholar
  67. Loeb A, Rybicki G B (1999) ApJ 524, 527CrossRefADSGoogle Scholar
  68. Loeb A, Zaldarriaga M (2004) Phys Rev Lett 92, 211301CrossRefADSGoogle Scholar
  69. Loeb A, Zaldarriaga M (2005) Phys Rev D71, 103520ADSGoogle Scholar
  70. Madau P, Meiksin A, Rees M J (1997) ApJ 475,429CrossRefADSGoogle Scholar
  71. Malhotra S, Rhoads J E (2002) ApJL 565, L71CrossRefADSGoogle Scholar
  72. Malhotra S, Rhoads J E (2004) ApJL 617, L5CrossRefADSGoogle Scholar
  73. Mellema G, Iliev I T, Pen U-L, Shapiro P R (2006) MNRAS 372, 679CrossRefADSGoogle Scholar
  74. Mesinger A, Haiman Z (2004) ApJL 611, 69CrossRefADSGoogle Scholar
  75. Mesinger A, Furlanetto S (2007) ArXiv e-prints, 708, arXiv:0708.0006Google Scholar
  76. McQuinn M, Zahn O, Zaldarriaga M, Hernquist L, Furlanetto S R (2006) ApJ 653, 815CrossRefADSGoogle Scholar
  77. McQuinn M, Lidz A, Zahn O, Dutta S, Hernquist L, Zaldarriaga M (2007a) MNRAS 377, 1043Google Scholar
  78. McQuinn M, Hernquist L, Zaldarriaga M, Dutta S (2007b) MNRAS 381, 75Google Scholar
  79. McQuinn M, Lidz A, Zaldarriaga M, Hernquist L, Dutta S (2007c) ArXiv e-prints, 710, arXiv:0710.1018Google Scholar
  80. Naoz S and Barkana R (2005) MNRAS 362, 1047CrossRefADSGoogle Scholar
  81. Oh S P (2001) ApJ 553, 499CrossRefADSGoogle Scholar
  82. Pritchard J R, Furlanetto S R (2006) MNRAS 367, 1057CrossRefADSGoogle Scholar
  83. Pritchard J R, Furlanetto S R (2007) MNRAS 376, 1680CrossRefADSGoogle Scholar
  84. Prochaska J X, et al. (2007a) ApJS 168, 231Google Scholar
  85. Prochaska, J X, Chen H-W, Dessauges-Zavadsky M, Bloom J S (2007b) ApJ 666, 267Google Scholar
  86. Purcell E M and Field G B (1956) ApJ 124, 542CrossRefADSGoogle Scholar
  87. Rybicki G B, Loeb A (1999) ApJL 520, L79CrossRefADSGoogle Scholar
  88. Schneider R, Omukai K, Inoue A K, Ferrara A (2006) MNRAS 369, 1437CrossRefADSGoogle Scholar
  89. Scott D, Rees M J (1990) MNRAS 247, 510ADSGoogle Scholar
  90. Seo H-J, Eisenstein D J (2003) ApJ 598, 720CrossRefADSGoogle Scholar
  91. Seo H-J, Eisenstein, D J (2005) ApJ 633, 575; 665, 14CrossRefADSGoogle Scholar
  92. Shapiro P R, Giroux M L (1987) ApJL, 321, 107CrossRefADSGoogle Scholar
  93. Shapiro P R, Giroux M L, Babul A (1994) ApJ 427, 25CrossRefADSGoogle Scholar
  94. Spergel D N, et al. (2006) ApJS 170, 377CrossRefADSGoogle Scholar
  95. Stark D P, Ellis R S, Richard J, Kneib J-P, Smith G P, Santos M R (2007) ApJ 663, 10CrossRefADSGoogle Scholar
  96. Stark, D P, Loeb A, Ellis R S (2007) ApJ 668, 627CrossRefADSGoogle Scholar
  97. Taniguchi Y, et al. (2005) PASJ 57, 165ADSGoogle Scholar
  98. Tegmark M et al. (1997) ApJ 474, 1CrossRefADSGoogle Scholar
  99. Totani T, Kawai N, Kosugi G, Aoki K, Yamada T, Iye M, Ohta K, Hattori T (2006) PASJ 58, 485ADSGoogle Scholar
  100. Trac H, Cen R (2006) ArXiv Astrophysics e-prints, arXiv:astro-ph/0612406Google Scholar
  101. Tumlinson J, Shull J M (2000) ApJL 528, 65CrossRefADSGoogle Scholar
  102. Wouthuysen S A (1952) AJ 57, 31CrossRefGoogle Scholar
  103. White R L, Becker R H, Fan X, Strauss M A (2003) AJ 126, 1CrossRefADSGoogle Scholar
  104. Willis J P, Courbin F, Kneib J-P, Minniti D (2006) New Astronomy Review 50, 70CrossRefADSGoogle Scholar
  105. Willis J P, Courbin F, Kneib J P, Minniti D (2007) ArXiv e-prints, 709, arXiv:0709.1761Google Scholar
  106. Wyithe J S B, Loeb A (2004a) Nature 427, 815Google Scholar
  107. Wyithe J S B, Loeb A (2004b) Nature 432, 194Google Scholar
  108. Wyithe J S B, Loeb A, Barnes D G (2005) ApJ 634, 715Google Scholar
  109. Wyithe J S B, Loeb A (2007a) MNRAS 375, 1034Google Scholar
  110. Wyithe J S B, Loeb A (2007b) ArXiv e-prints, 708, arXiv:0708.3392Google Scholar
  111. Wyithe J S B, Loeb A, Schmidt B (2007a) ArXiv e-prints, 705, arXiv:0705.1825Google Scholar
  112. Wyithe J S B, Loeb A, Geil P (2007b) ArXiv e-prints, 709, arXiv:0709.2955Google Scholar
  113. Zahn O, Lidz A, McQuinn M, Dutta S, Hernquist L, Zaldarriaga M, Furlanetto S R (2006) ApJ 654, 12CrossRefADSGoogle Scholar
  114. Zhang W, Woosley S, MacFadyen A I (2003) ApJ 586, 356CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, B.V. 2009

Authors and Affiliations

  • Abraham Loeb
    • 1
  1. 1.Harvard University,CfACambridgeUSA

Personalised recommendations