Advertisement

Computer-Aided Integrated Design for Mechatronic Systems with Varying Dynamics

  • Maira M. da Silva
  • Olivier Brüls
  • Bart Paijmans
  • Wim Desmet
  • Hendrik Van Brussel
Conference paper

Abstract

Some mechatronic systems have different spatial configurations or operation positions, and, as a consequence, their dynamic behavior, described by their most significant eigenfrequencies and mode-shapes, may vary in the configuration space. This inevitably affects the performance and the stability of the control system. Regarding the design of mechatronic systems with variable configuration, two main issues are treated in this paper: (i) the derivation of a parametric model able to capture the varying dynamics and the control actions, (ii) the integrated design of the structure and the controller. To cope with these issues, a parametric model is derived using a flexible multibody system technique based on the finite element method. A global modal parameterization is applied for model-order reduction, yielding a concise description of the flexible multibody model. A linear parameter varying controller is derived via interpolation of local controllers for the reduced models. This methodology is applied to a pick-and-place assembly robot with a gripper carried by a flexible beam. Eventually, design tradeoffs are evaluated considering the performance of the active system for different structural configurations.

Keywords

Multibody System Linear Motor Mechatronic System Local Controller Multibody Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brüls O., Duysinx P., Golinval J.-C.: The global modal parameterization for non-linear model order reduction in flexible multibody dynamics. Int. J. Numer. Meth. Engng. 69 948–977 (2007).CrossRefGoogle Scholar
  2. 2.
    Brüls O., Golinval J.C.: The generalizedα method in mechatronic applications. J. Appl. Math. Mech. 86(10), 748–758 (2006).MATHGoogle Scholar
  3. 3.
    Cardona A., Klapka I., Géradin M.: Design of a new finite element programming environment. Eng. Comput. 11, 365–381 (1994).MATHCrossRefGoogle Scholar
  4. 4.
    Géradin M., Cardona A.: Flexible Multibody Dynamics: A Finite Element Approach. John Wiley & Sons, England (2001).Google Scholar
  5. 5.
    Paijmans B.: Interpolating gain-scheduling control for mechatronic systems with parameter dependent dynamics. PHD Thesis, Katholieke Universiteit Leuven, Belgium (2007).Google Scholar
  6. 6.
    Rieber J.M., Taylor D.G.: Integrated control system and mechanical design of a compliant two-axes mechanism. Mechatronics 14(9), 1069–1087 (2004).Google Scholar
  7. 7.
    Van Amerongen J., Breedveld P.: Modelling of physical systems for the design and control of mechatronic systems. Ann. Rev. Control 27, 87–117 (2003).CrossRefGoogle Scholar
  8. 8.
    Van Brussel H., Sas P., Németh I., De Fonseca P., Van den Braembussche P.: Towards a mechat ronic compiler. IEEE/ASME Trans. Mechatronics 6(1), 90–105 (2001).CrossRefGoogle Scholar
  9. 9.
    Van de Wal M., Van Baars G., Sperling F., Bosgra O.: Multivariable H∞/μ feedback control design for high precison waferstage motion. Control Engng. Pract. 10(7), 739–755 (2002).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Maira M. da Silva
    • 1
  • Olivier Brüls
    • 1
  • Bart Paijmans
    • 2
  • Wim Desmet
    • 1
  • Hendrik Van Brussel
    • 1
  1. 1.Department of Mechanical EngineeringKatholieke Universiteit LeuvenHeverlee (Leuven)Belgium
  2. 2.Flanders Mechatronics Technology CentreHeverlee (Leuven)Belgium

Personalised recommendations