Skip to main content

Part of the book series: Focus on Structural Biology ((FOSB,volume 7))

Abstract

Accumulation of misfolded proteins in the endoplasmic reticulum triggers a cellular stress response called the unfolded protein response (UPR) that protects the cell against the toxic buildup of misfolded proteins. Neurodegenerative disorders like Alzheimer’s disease, Parkinson’s disease, prion disease, Huntington’s disease, frontotemporal dementia, and amyotrophic lateral sclerosis are characterized by the accumulation and aggregation of misfolded proteins. In this chapter we will discuss the different levels of protein quality control systems in the endoplasmic reticulum. The role of these systems and especially the UPR will be reviewed in view of current data about the expression and role of the UPR markers in the pathology of neurodegenerative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Richter-Landsberg C, Goldbaum O (2003) Stress proteins in neural cells: functional roles in health and disease. Cell Mol Life Sci 60:337–349

    PubMed  CAS  Google Scholar 

  2. Lee S, Tsai FT (2005) Molecular chaperones in protein quality control. J Biochem Mol Biol 38:259–265

    PubMed  CAS  Google Scholar 

  3. Mayer MP, Bukau B (2005) Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62:670–684

    PubMed  CAS  Google Scholar 

  4. Senderek J, Krieger M, Stendel C et al (2005) Mutations in SIL1 cause Marinesco-Sjogren syndrome, a cerebellar ataxia with cataract and myopathy. Nat Genet 37:1312–1314

    PubMed  CAS  Google Scholar 

  5. Zhao L, Longo-Guess C, Harris BS et al (2005) Protein accumulation and neurodegeneration in the woozy mutant mouse is caused by disruption of SIL1, a cochaperone of BiP. Nat Genet 37:974–979

    PubMed  CAS  Google Scholar 

  6. Tyson JR, Stirling CJ (2000) LHS1 and SIL1 provide a lumenal function that is essential for protein translocation into the endoplasmic reticulum. EMBO J 19:6440–6452

    PubMed  CAS  Google Scholar 

  7. Meusser B, Hirsch C, Jarosch E et al (2005) ERAD: the long road to destruction. Nat Cell Biol 7:766–772

    PubMed  CAS  Google Scholar 

  8. Nakatsukasa K, Brodsky JL (2008) The recognition and retrotranslocation of misfolded proteins from the endoplasmic reticulum. Traffic 9:861–870.

    PubMed  CAS  Google Scholar 

  9. Denic V, Quan EM, Weissman JS (2006) A luminal surveillance complex that selects misfolded glycoproteins for ER-associated degradation. Cell 126:349–359

    PubMed  CAS  Google Scholar 

  10. Carvalho P, Goder V, Rapoport TA (2006) Distinct ubiquitin-ligase complexes define convergent pathways for the degradation of ER proteins. Cell 126:361–373

    PubMed  CAS  Google Scholar 

  11. Molinari M (2007) N-glycan structure dictates extension of protein folding or onset of disposal. Nat Chem Biol. 3:313–320

    PubMed  CAS  Google Scholar 

  12. Molinari M, Calanca V, Galli C et al (2003) Role of EDEM in the release of misfolded glycoproteins from the calnexin cycle. Science 299:1397–1400

    PubMed  CAS  Google Scholar 

  13. Rapoport TA (2007) Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes. Nature 450:663–669

    PubMed  CAS  Google Scholar 

  14. Johnson AE, Haigh NG (2000) The ER translocon and retrotranslocation: is the shift into reverse manual or automatic? Cell 102:709–712

    PubMed  CAS  Google Scholar 

  15. Lilley BN, Ploegh HL (2004) A membrane protein required for dislocation of misfolded proteins from the ER. Nature 429:834–840

    PubMed  CAS  Google Scholar 

  16. Wahlman J, DeMartino GN, Skach WR et al (2007) Real-time fluorescence detection of ERAD substrate retrotranslocation in a mammalian in vitro system. Cell 129:943–955

    PubMed  CAS  Google Scholar 

  17. Katiyar S, Joshi S, Lennarz WJ (2005) The retrotranslocation protein Derlin-1 binds peptide: N-glycanase to the endoplasmic reticulum. Mol Biol Cell 16:4584–4594

    PubMed  CAS  Google Scholar 

  18. Rabinovich E, Kerem A, Frohlich KU et al (2002) AAA-ATPase p97/Cdc48p, a cytosolic chaperone required for endoplasmic reticulum-associated protein degradation. Mol Cell Biol 22:626–634

    PubMed  CAS  Google Scholar 

  19. Kalies KU, Allan S, Sergeyenko T et al (2005) The protein translocation channel binds proteasomes to the endoplasmic reticulum membrane. EMBO J 24:2284–2293

    PubMed  CAS  Google Scholar 

  20. Ng W, Sergeyenko T, Zeng N et al (2007) Characterization of the proteasome interaction with the Sec61 channel in the endoplasmic reticulum. J Cell Sci 120:682–691

    PubMed  CAS  Google Scholar 

  21. Oyadomari S, Yun C, Fisher EA et al (2006) Cotranslocational degradation protects the stressed endoplasmic reticulum from protein overload. Cell 126:727–739

    PubMed  CAS  Google Scholar 

  22. Goldberg AL (2003) Protein degradation and protection against misfolded or damaged proteins. Nature 426:895–899

    PubMed  CAS  Google Scholar 

  23. Varshavsky A (2005) Regulated protein degradation. Trends Biochem Sci 30:283–286

    PubMed  CAS  Google Scholar 

  24. Hol EM, Fischer DF, Ovaa H et al (2006) Ubiquitin proteasome system as a pharmacological target in neurodegeneration. Expert Rev Neurother 6:1337–1347

    PubMed  CAS  Google Scholar 

  25. Gao M, Karin M (2005) Regulating the regulators: control of protein ubiquitination and ubiquitin-like modifications by extracellular stimuli. Mol Cell 19:581–593

    PubMed  CAS  Google Scholar 

  26. Hicke L, Schubert HL, Hill CP (2005) Ubiquitin-binding domains. Nat Rev Mol Cell Biol 6:610–621

    PubMed  CAS  Google Scholar 

  27. Imai Y, Soda M, Inoue H et al (2001) An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of Parkin. Cell 105: 891–902

    PubMed  CAS  Google Scholar 

  28. Ciechanover A (2005) Intracellular protein degradation: from a vague idea thru the lysosome and the ubiquitin–proteasome system and onto human diseases and drug targeting. Cell Death Differ 12:1178–1190

    PubMed  CAS  Google Scholar 

  29. Elsasser S, Finley D (2005) Delivery of ubiquitinated substrates to protein-unfolding machines. Nat Cell Biol 7:742–749

    PubMed  CAS  Google Scholar 

  30. Richly H, Rape M, Braun S et al (2005) A series of ubiquitin binding factors connects CDC48/p97 to substrate multiubiquitylation and proteasomal targeting. Cell 120:73–84

    PubMed  CAS  Google Scholar 

  31. Pickart CM, Cohen RE (2004) Proteasomes and their kin: proteases in the machine age. Nat Rev Mol Cell Biol 5:177–187

    PubMed  CAS  Google Scholar 

  32. Reggiori F, Klionsky DJ (2005) Autophagosomes: biogenesis from scratch? Curr Opin Cell Biol 17:415–422

    PubMed  CAS  Google Scholar 

  33. Mizushima N, Yoshimori T (2007) How to interpret LC3 immunoblotting. Autophagy 3:542–545

    PubMed  CAS  Google Scholar 

  34. Levine B, Yuan J (2005) Autophagy in cell death: an innocent convict? J Clin Invest 115:2679–2688

    PubMed  CAS  Google Scholar 

  35. Hara T, Nakamura K, Matsui M et al (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441:885–889

    PubMed  CAS  Google Scholar 

  36. Komatsu M, Waguri S, Chiba T et al (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441:880–884

    PubMed  CAS  Google Scholar 

  37. Mizushima N, Hara T (2006) Intracellular quality control by autophagy: how does autophagy prevent neurodegeneration? Autophagy 2:302–304

    PubMed  CAS  Google Scholar 

  38. Iwata A, Riley BE, Johnston JA et al (2005) HDAC6 and microtubules are required for autophagic degradation of aggregated huntingtin. J Biol Chem 280:40282–40292

    PubMed  CAS  Google Scholar 

  39. Iwata A, Christianson JC, Bucci M et al (2005) Increased susceptibility of cytoplasmic over nuclear polyglutamine aggregates to autophagic degradation. Proc Natl Acad Sci USA 102:13135–13140

    PubMed  CAS  Google Scholar 

  40. Ding WX, Yin XM (2008) Sorting, recognition and activation of the misfolded protein degradation pathways through macroautophagy and the proteasome. Autophagy 4: 141–150

    PubMed  CAS  Google Scholar 

  41. Ding WX, Ni HM, Gao W et al (2007) Differential effects of endoplasmic reticulum stress-induced autophagy on cell survival. J Biol Chem 282:4702–4710

    PubMed  CAS  Google Scholar 

  42. Ding WX, Ni HM, Gao W et al (2007) Linking of autophagy to ubiquitin–proteasome system is important for the regulation of endoplasmic reticulum stress and cell viability. Am J Pathol 171:513–524

    PubMed  CAS  Google Scholar 

  43. Schroder M, Kaufman RJ (2005) The mammalian unfolded protein response. Annu Rev Biochem 74:739–789

    PubMed  Google Scholar 

  44. Scheuner D, Song B, McEwen E et al (2001) Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol Cell 7:1165–1176

    PubMed  CAS  Google Scholar 

  45. Wek RC, Cavener DR (2007) Translational control and the unfolded protein response. Antioxid Redox Signal 9:2357–2371

    PubMed  CAS  Google Scholar 

  46. Szegezdi E, Logue SE, Gorman AM et al (2006) Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep 7:880–885

    PubMed  CAS  Google Scholar 

  47. Lee K, Tirasophon W, Shen X et al (2002) IRE1-mediated unconventional mRNA splicing and S2P-mediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response. Genes Dev 16:452–466

    PubMed  CAS  Google Scholar 

  48. Yoshida H (2007) Unconventional splicing of XBP-1 mRNA in the unfolded protein response. Antioxid Redox Signal 9:2323–2333

    PubMed  CAS  Google Scholar 

  49. Yoshida H, Oku M, Suzuki M et al (2006) pXBP1(U) encoded in XBP1 pre-mRNA negatively regulates unfolded protein response activator pXBP1(S) in mammalian ER stress response. J Cell Biol 172:565–575

    PubMed  CAS  Google Scholar 

  50. Yoshida H, Matsui T, Hosokawa N et al (2003) A time-dependent phase shift in the mammalian unfolded protein response. Dev Cell 4:265–271

    PubMed  CAS  Google Scholar 

  51. Yamamoto K, Sato T, Matsui T et al (2007) Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6alpha and XBP1. Dev Cell 13:365–376

    PubMed  CAS  Google Scholar 

  52. Hitomi J, Katayama T, Eguchi Y et al (2004) Involvement of caspase-4 in endoplasmic reticulum stress-induced apoptosis and Abeta-induced cell death. J Cell Biol 165:347–356

    PubMed  CAS  Google Scholar 

  53. Nakagawa T, Zhu H, Morishima N et al (2000) Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403:98–103

    PubMed  CAS  Google Scholar 

  54. Oyadomari S, Mori M (2004) Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 11:381–389

    PubMed  CAS  Google Scholar 

  55. Zinszner H, Kuroda M, Wang X et al (1998) CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev 12:982–995

    PubMed  CAS  Google Scholar 

  56. Boyce M, Bryant KF, Jousse C et al (2005) A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress. Science 307:935–939

    PubMed  CAS  Google Scholar 

  57. Nishitoh H, Matsuzawa A, Tobiume K et al (2002) ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev 16:1345–1355

    PubMed  CAS  Google Scholar 

  58. Dahlmann B (2007) Role of proteasomes in disease. BMC Biochem 8(Suppl 1):S3

    Google Scholar 

  59. Katzman R (1986) Alzheimer’s disease. N Engl J Med 314:964–973

    PubMed  CAS  Google Scholar 

  60. Butterfield DA, Kanski J (2001) Brain protein oxidation in age-related neurodegenerative disorders that are associated with aggregated proteins. Mech Ageing Dev 122:945–962

    PubMed  CAS  Google Scholar 

  61. Taylor JP, Hardy J, Fischbeck KH (2002) Toxic proteins in neurodegenerative disease. Science 296:1991–5

    PubMed  CAS  Google Scholar 

  62. Hamos JE, Oblas B, Pulaski-Salo D et al (1991) Expression of heat shock proteins in Alzheimer’s disease. Neurology 41:345–50

    PubMed  CAS  Google Scholar 

  63. Hoozemans JJ, Veerhuis R, Van Haastert ES et al (2005) The unfolded protein response is activated in Alzheimer’s disease. Acta Neuropathol (Berl) 110:165–172

    CAS  Google Scholar 

  64. Unterberger U, Hoftberger R, Gelpi E et al (2006) Endoplasmic reticulum stress features are prominent in Alzheimer disease but not in prion diseases in vivo. J Neuropathol Exp Neurol 65:348–357

    PubMed  CAS  Google Scholar 

  65. Katayama T, Imaizumi K, Sato N et al (1999) Presenilin-1 mutations downregulate the signalling pathway of the unfolded-protein response. Nat Cell Biol 1:479–485

    PubMed  CAS  Google Scholar 

  66. Sato N, Urano F, Yoon Leem J et al (2000) Upregulation of BiP and CHOP by the unfolded-protein response is independent of presenilin expression. Nat Cell Biol 2:863–870

    PubMed  CAS  Google Scholar 

  67. Chang RC, Wong AK, Ng HK et al (2002) Phosphorylation of eukaryotic initiation factor-2alpha (eIF2alpha) is associated with neuronal degeneration in Alzheimer’s disease. Neuroreport 13:2429–2432

    PubMed  CAS  Google Scholar 

  68. Scheper W, Hoozemans JJ, Hoogenraad CC et al (2007) Rab6 is increased in Alzheimer’s disease brain and correlates with endoplasmic reticulum stress. Neuropathol Appl Neurobiol 33:523–532

    PubMed  CAS  Google Scholar 

  69. Scheper W, Hol EM (2005) Protein quality control in Alzheimer’s disease: a fatal saviour. Curr Drug Targets CNS Neurol Disord 4:283–292

    PubMed  CAS  Google Scholar 

  70. Nadav E, Shmueli A, Barr H et al (2003) A novel mammalian endoplasmic reticulum ubiquitin ligase homologous to the yeast Hrd1. Biochem Biophys Res Commun 303: 91–97

    PubMed  CAS  Google Scholar 

  71. Hou HL, Shen YX, Zhu HY et al (2006) Alterations of hHrd1 expression are related to hyperphosphorylated tau in the hippocampus in Alzheimer’s disease. J Neurosci Res 84:1862–1870

    PubMed  CAS  Google Scholar 

  72. Piccini A, Fassio A, Pasqualetto E et al (2004) Fibroblasts from FAD-linked presenilin 1 mutations display a normal unfolded protein response but overproduce Abeta42 in response to tunicamycin. Neurobiol Dis 15:380–386

    PubMed  CAS  Google Scholar 

  73. Perry G, Friedman R, Shaw G et al (1987) Ubiquitin is detected in neurofibrillary tangles and senile plaque neurites of Alzheimer disease brains. Proc Natl Acad Sci USA 84:3033–3036

    PubMed  CAS  Google Scholar 

  74. van Leeuwen FW, de Kleijn DP, van den Hurk HH et al (1998) Frameshift mutants of beta amyloid precursor protein and ubiquitin-B in Alzheimer’s and Down patients. Science 279:242–247

    PubMed  Google Scholar 

  75. Cook DG, Forman MS, Sung JC et al (1997) Alzheimer’s A beta(1-42) is generated in the endoplasmic reticulum/intermediate compartment of NT2N cells. Nat Med 3:1021–1023

    PubMed  CAS  Google Scholar 

  76. Hartmann T, Bieger SC, Bruhl B et al (1997) Distinct sites of intracellular production for Alzheimer’s disease A beta40/42 amyloid peptides. Nat Med 3:1016–1020

    PubMed  CAS  Google Scholar 

  77. Suen KC, Lin KF, Elyaman W et al (2003) Reduction of calcium release from the endoplasmic reticulum could only provide partial neuroprotection against beta-amyloid peptide toxicity. J Neurochem 87:1413–26

    PubMed  CAS  Google Scholar 

  78. Yu Z, Luo H, Fu W et al (1999) The endoplasmic reticulum stress-responsive protein GRP78 protects neurons against excitotoxicity and apoptosis: suppression of oxidative stress and stabilization of calcium homeostasis. Exp Neurol 155:302–314

    PubMed  CAS  Google Scholar 

  79. Chafekar SM, Hoozemans JJ, Zwart R et al (2007) Abeta 1–42 induces mild endoplasmic reticulum stress in an aggregation state-dependent manner. Antioxid Redox Signal 9: 2245–2254

    PubMed  CAS  Google Scholar 

  80. Suen KC, Yu MS, So KF et al (2003) Upstream signaling pathways leading to the activation of double-stranded RNA-dependent serine/threonine protein kinase in beta-amyloid peptide neurotoxicity. J Biol Chem 278:49819–49827

    PubMed  CAS  Google Scholar 

  81. Rao RV, Bredesen DE (2004) Misfolded proteins, endoplasmic reticulum stress and neurodegeneration. Curr Opin Cell Biol 16:653–662

    PubMed  CAS  Google Scholar 

  82. Polymeropoulos MH, Lavedan C, Leroy E et al (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276:2045–2047

    PubMed  CAS  Google Scholar 

  83. Kruger R, Kuhn W, Muller T et al (1998) Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet 18:106–108

    PubMed  CAS  Google Scholar 

  84. Chartier-Harlin MC, Kachergus J, Roumier C et al (2004) Alpha-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet 364:1167–1169

    PubMed  CAS  Google Scholar 

  85. Ibanez P, Bonnet AM, Debarges B et al (2004) Causal relation between alpha-synuclein gene duplication and familial Parkinson’s disease. Lancet 364:1169–1171

    PubMed  CAS  Google Scholar 

  86. Ryu EJ, Harding HP, Angelastro JM et al (2002) Endoplasmic reticulum stress and the unfolded protein response in cellular models of Parkinson’s disease. J Neurosci 22: 10690–10698

    PubMed  CAS  Google Scholar 

  87. Shimura H, Hattori N, Kubo S et al (2000) Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet 25:302–305

    PubMed  CAS  Google Scholar 

  88. Cooper AA, Gitler AD, Cashikar A et al (2006) Alpha-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson’s models. Science 313:324–328

    PubMed  CAS  Google Scholar 

  89. Hoozemans JJ, Van Haastert ES, Eikelenboom P et al (2007) Activation of the unfolded protein response in Parkinson’s disease. Biochem Biophys Res Commun 354:707–711

    PubMed  CAS  Google Scholar 

  90. Tanaka Y, Engelender S, Igarashi S et al (2001) Inducible expression of mutant alpha-synuclein decreases proteasome activity and increases sensitivity to mitochondria-dependent apoptosis. Hum Mol Genet 10:919–926

    PubMed  CAS  Google Scholar 

  91. Stefanis L, Larsen KE, Rideout HJ et al (2001) Expression of A53T mutant but not wild-type alpha-synuclein in PC12 cells induces alterations of the ubiquitin-dependent degradation system, loss of dopamine release, and autophagic cell death. J Neurosci 21:9549–9560

    PubMed  CAS  Google Scholar 

  92. Silva RM, Ries V, Oo TF et al (2005) CHOP/GADD153 is a mediator of apoptotic death in substantia nigra dopamine neurons in an in vivo neurotoxin model of parkinsonism. J Neurochem 95:974–986

    PubMed  CAS  Google Scholar 

  93. Hetz C, Russelakis-Carneiro M, Maundrell K et al (2003) Caspase-12 and endoplasmic reticulum stress mediate neurotoxicity of pathological prion protein. EMBO J 22: 5435–5445

    PubMed  CAS  Google Scholar 

  94. Drisaldi B, Stewart RS, Adles C et al (2003) Mutant PrP is delayed in its exit from the endoplasmic reticulum, but neither wild-type nor mutant PrP undergoes retrotranslocation prior to proteasomal degradation. J Biol Chem 278:21732–21743

    PubMed  CAS  Google Scholar 

  95. Jin T, Gu Y, Zanusso G et al (2000) The chaperone protein BiP binds to a mutant prion protein and mediates its degradation by the proteasome. J Biol Chem 275:38699–38704

    PubMed  CAS  Google Scholar 

  96. Hetz C, Russelakis-Carneiro M, Walchli S et al (2005) The disulfide isomerase Grp58 is a protective factor against prion neurotoxicity. J Neurosci 25:2793–2802

    PubMed  CAS  Google Scholar 

  97. Komori T (1999) Tau-positive glial inclusions in progressive supranuclear palsy, corticobasal degeneration and Pick’s disease. Brain Pathol 9:663–679

    PubMed  CAS  Google Scholar 

  98. Song L, De Sarno P, Jope RS (2002) Central role of glycogen synthase kinase-3beta in endoplasmic reticulum stress-induced caspase-3 activation. J Biol Chem 277:44701–44708

    PubMed  CAS  Google Scholar 

  99. Brewster JL, Linseman DA, Bouchard RJ et al (2006) Endoplasmic reticulum stress and trophic factor withdrawal activate distinct signaling cascades that induce glycogen synthase kinase-3 beta and a caspase-9-dependent apoptosis in cerebellar granule neurons. Mol Cell Neurosci 32:242–253

    PubMed  CAS  Google Scholar 

  100. Jope RS, Johnson GV (2004) The glamour and gloom of glycogen synthase kinase-3. Trends Biochem Sci 29:95–102

    PubMed  CAS  Google Scholar 

  101. Seyb KI, Ansar S, Bean J et al (2006) beta-Amyloid and endoplasmic reticulum stress responses in primary neurons: effects of drugs that interact with the cytoskeleton. J Mol Neurosci 28:111–123

    PubMed  CAS  Google Scholar 

  102. Kouroku Y, Fujita E, Jimbo A et al (2002) Polyglutamine aggregates stimulate ER stress signals and caspase-12 activation. Hum Mol Genet 11:1505–1515

    PubMed  CAS  Google Scholar 

  103. Bence NF, Sampat RM, Kopito RR (2001) Impairment of the ubiquitin–proteasome system by protein aggregation. Science 292:1552–1555

    PubMed  CAS  Google Scholar 

  104. Cross AJ, Crow TJ, Johnson JA et al (1985) Loss of endoplasmic reticulum-associated enzymes in affected brain regions in Huntington’s disease and Alzheimer-type dementia. J Neurol Sci 71:137–143

    PubMed  CAS  Google Scholar 

  105. Bruijn LI, Miller TM, Cleveland DW (2004) Unraveling the mechanisms involved in motor neuron degeneration in ALS. Annu Rev Neurosci 27:723–749

    PubMed  CAS  Google Scholar 

  106. Bruijn LI, Becher MW, Lee MK et al (1997) ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions. Neuron 18:327–338

    PubMed  CAS  Google Scholar 

  107. Bruijn LI, Houseweart MK, Kato S et al (1998) Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1. Science 281:1851–1854

    PubMed  CAS  Google Scholar 

  108. Kikuchi H, Almer G, Yamashita S et al (2006) Spinal cord endoplasmic reticulum stress associated with a microsomal accumulation of mutant superoxide dismutase-1 in an ALS model. Proc Natl Acad Sci USA 103:6025–6030

    PubMed  CAS  Google Scholar 

  109. Wootz H, Hansson I, Korhonen L et al (2004) Caspase-12 cleavage and increased oxidative stress during motoneuron degeneration in transgenic mouse model of ALS. Biochem Biophys Res Commun 322:281–286

    PubMed  CAS  Google Scholar 

  110. Nagata T, Ilieva H, Murakami T et al (2007) Increased ER stress during motor neuron degeneration in a transgenic mouse model of amyotrophic lateral sclerosis. Neurol Res 29:767–771

    PubMed  Google Scholar 

  111. Lu F, Selak M, O’Connor J et al (2000) Oxidative damage to mitochondrial DNA and activity of mitochondrial enzymes in chronic active lesions of multiple sclerosis. J Neurol Sci 177:95–103

    PubMed  CAS  Google Scholar 

  112. Werner P, Pitt D, Raine CS (2001) Multiple sclerosis: altered glutamate homeostasis in lesions correlates with oligodendrocyte and axonal damage. Ann Neurol 50:169–180

    PubMed  CAS  Google Scholar 

  113. Mhaille AN, McQuaid S, Windebank A et al (2008) Increased expression of endoplasmic reticulum stress-related signaling pathway molecules in multiple sclerosis lesions. J Neuropathol Exp Neurol 67:200–211

    PubMed  CAS  Google Scholar 

  114. Lin W, Bailey SL, Ho H et al (2007) The integrated stress response prevents demyelination by protecting oligodendrocytes against immune-mediated damage. J Clin Invest 117: 448–456

    PubMed  CAS  Google Scholar 

  115. van der Knaap MS, Barth PG, Gabreels FJ et al (1997) A new leukoencephalopathy with vanishing white matter. Neurology 48:845–855

    PubMed  Google Scholar 

  116. van der Knaap MS, Leegwater PA, Konst AA et al (2002) Mutations in each of the five subunits of translation initiation factor eIF2B can cause leukoencephalopathy with vanishing white matter. Ann Neurol 51:264–270

    PubMed  Google Scholar 

  117. Van Haren K, van der Voorn JP, Peterson DR et al (2004) The life and death of oligodendrocytes in vanishing white matter disease. J Neuropathol Exp Neurol 63:618–630

    PubMed  Google Scholar 

  118. van der Voorn JP, van Kollenburg B, Bertrand G et al (2005) The unfolded protein response in vanishing white matter disease. J Neuropathol Exp Neurol 64:770–775

    PubMed  Google Scholar 

  119. van Kollenburg B, van Dijk J, Garbern J et al (2006) Glia-specific activation of all pathways of the unfolded protein response in vanishing white matter disease. J Neuropathol Exp Neurol 65:707–715

    PubMed  Google Scholar 

  120. Soti C, Nagy E, Giricz Z et al (2005) Heat shock proteins as emerging therapeutic targets. Br J Pharmacol 146:769–780

    PubMed  CAS  Google Scholar 

  121. Kieran D, Kalmar B, Dick JR et al (2004) Treatment with arimoclomol, a coinducer of heat shock proteins, delays disease progression in ALS mice. Nat Med 10:402–405

    PubMed  CAS  Google Scholar 

  122. Wiseman RL, Balch WE (2005) A new pharmacology–drugging stressed folding pathways. Trends Mol Med 11:347–350

    PubMed  CAS  Google Scholar 

  123. Smith WW, Jiang H, Pei Z et al (2005) Endoplasmic reticulum stress and mitochondrial cell death pathways mediate A53T mutant alpha-synuclein-induced toxicity. Hum Mol Genet 14:3801–3811

    PubMed  CAS  Google Scholar 

  124. Zhu Y, Fenik P, Zhan G et al (2008) Eif-2a protects brainstem motoneurons in a murine model of sleep apnea. J Neurosci 28:2168–2178

    PubMed  CAS  Google Scholar 

  125. Wang JF, Bown C, Young LT (1999) Differential display PCR reveals novel targets for the mood-stabilizing drug valproate including the molecular chaperone GRP78. Mol Pharmacol 55:521–527

    PubMed  CAS  Google Scholar 

  126. Bown CD, Wang JF, Young LT (2000) Increased expression of endoplasmic reticulum stress proteins following chronic valproate treatment of rat C6 glioma cells. Neuropharmacology 39:2162–2169

    PubMed  CAS  Google Scholar 

  127. Kim AJ, Shi Y, Austin RC et al (2005) Valproate protects cells from ER stress-induced lipid accumulation and apoptosis by inhibiting glycogen synthase kinase-3. J Cell Sci 118:89–99

    PubMed  CAS  Google Scholar 

  128. Kondo S, Murakami T, Tatsumi K et al (2005) OASIS, a CREB/ATF-family member, modulates UPR signalling in astrocytes. Nat Cell Biol 7:186–194

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Hoozemans, J.J., Scheper, W. (2009). Endoplasmic Reticulum Stress in Neurodegeneration. In: Ovádi, J., Orosz, F. (eds) Protein Folding and Misfolding: Neurodegenerative Diseases. Focus on Structural Biology, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9434-7_5

Download citation

Publish with us

Policies and ethics