Bounds on Metamaterials — Theoretical and Experimental Results

  • Gerhard Kristensson
  • Christer Larsson
  • Christian Sohl
  • Mats Gustafsson
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)


A dispersion relation for the combined effect of scattering and absorption of electromagnetic waves is employed. By invoking the optical theorem, the result states that the extinction cross section integrated over all frequencies is related to the static polarizability dyadics. In particular, it is established that the integrated extinction is the same for all materials having identical static properties, irrespectively whether the permittivity or the permeability have negative real parts at non-zero frequencies or not. The theory is illustrated numerically, and, moreover, it is verified experimentally on a sample consisting of a single-layer planar array of capacitive resonators claimed to form a negative permittivity metamaterial. It is concluded that the theory is in good agreement with measurements in the microwave region.


Frequency Interval Optical Theorem Extinction Cross Section Lorentz Model Herglotz Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. F. Bohren and D. R. Huffman. Absorption and Scattering of Light by Small Particles. Wiley, New York, 1983.Google Scholar
  2. 2.
    M. Gustafsson, C. Sohl, and G. Kristensson. Physical limitations on antennas of arbitrary shape. Proc. R. Soc. A, 463, 2589–2607, 2007.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    R. E. Kleinman and T. B. A. Senior. Rayleigh scattering. In V. V. Varadan and V. K. Varadan, editors, Low and High Frequency Asymptotics, volume 2 of Handbook on Acoustic, Electromagnetic and Elastic Wave Scattering, chapter 1, pages 1–70. Elsevier Science, Amsterdam, 1986.Google Scholar
  4. 4.
    E. F. Knott, J. F. Shaeffer, and M. T. Tuley. Radar Cross Section. SciTech, 5601 N. Hawthorne Way, Raleigh, NC 27613, 2004.Google Scholar
  5. 5.
    L. D. Landau and E. M. Lifshitz. Statistical Physics, Part 1. Butterworth-Heinemann, Oxford, third edition, 1980.Google Scholar
  6. 6.
    E. C. Levi. Complex-curve fitting. IRE Trans. on Automatic Control, 4, 37–44, 1969.Google Scholar
  7. 7.
    R. G. Newton. Scattering Theory of Waves and Particles. Dover Publications, New York, second edition, 2002.MATHGoogle Scholar
  8. 8.
    H. M. Nussenzveig. Causality and Dispersion Relations. Academic, London, 1972.Google Scholar
  9. 9.
    W. K. Panofsky and M. Phillips. Classical Electricity and Magnetism. Addison-Wesley, Reading, MA, second edition, 1962.MATHGoogle Scholar
  10. 10.
    B. Peterson and S. Ström. T-matrix for electromagnetic scattering from an arbitrary number of scatterers and representations of E(3). Phys. Rev. D, 8, 3661–3678, 1973.CrossRefMathSciNetGoogle Scholar
  11. 11.
    E. M. Purcell. On the absorption and emission of light by interstellar grains. J. Astrophys., 158, 433–440, 1969.CrossRefGoogle Scholar
  12. 12.
    G. T. Ruck, D. E. Barrick, W. D. Stuart, and C. K. Krichbaum. Radar Cross-Section Handbook, volumes 1 and 2. Plenum Press, New York, 1970.Google Scholar
  13. 13.
    D. Schurig, J. J. Mock, and D. R. Smith. Electric-field-coupled resonators for negative permittivity metamaterials. Appl. Phys. Lett., 88, 041109, 2006.CrossRefGoogle Scholar
  14. 14.
    C. Sohl and M. Gustafsson. A priori estimates on the partial realized gain of Ultra-Wideband (UWB) antennas. Quart. J. Mech. Appl. Math., 61(3), 415–430, 2008.MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    C. Sohl, M. Gustafsson, and G. Kristensson. Physical limitations on broadband scattering by heterogeneous obstacles. J. Phys. A: Math. Theor., 40, 11165–11182, 2007.MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    C. Sohl, M. Gustafsson, and G. Kristensson. Physical limitations on metamaterials: Restrictions on scattering and absorption over a frequency interval. J. Phys. D: Applied Phys., 40, 7146–7151, 2007.CrossRefMathSciNetGoogle Scholar
  17. 17.
    C. Sohl, C. Larsson, M. Gustafsson, and G. Kristensson. A scattering and absorption identity for metamaterials: experimental results and comparison with theory. J. Appl. Phys., 103(5), 054906, 2008.CrossRefGoogle Scholar
  18. 18.
    J. Van Bladel. Electromagnetic Fields. IEEE Press, Piscataway, NJ, second edition, 2007.Google Scholar
  19. 19.
    H. Wallén and A. Sihvola. Polarizability of conducting sphere-doublets using series of images. J. Appl. Phys., 96(4), 2330–2335, 2004.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Gerhard Kristensson
    • 1
  • Christer Larsson
    • 1
  • Christian Sohl
    • 1
  • Mats Gustafsson
    • 1
  1. 1.Department of Electrical and Information TechnologyLund UniversityLundSweden

Personalised recommendations