Optimization of Radar Absorber Structures Using Genetic Algorithms

  • Nadia Lassouaoui
  • Habiba Hafdallah Ouslimani
  • Alain Priou
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)


In this paper, a real-valued genetic algorithm (GA) is implemented to construct Radar Absorbing Materials RAM by searching the characteristics (thickness T, permittivityε, permeabilityμ and conductivity σ) which ensure the minimization of the reflectivity on a frequency band. The genetic algorithms used the reflectivity in fitness function to direct the research to the best configuration. Here in, we dealt with the narrowband absorbers (Salisbury screen and circuit “Analog” RAM) and the broadband absorbers (Jaumann screen). Numerical results are presented and showed the efficiency of the methods.


Genetic Algorithm Normal Incidence Resistive Sheet Radar Cross Section Frequency Selective Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rahmat-Samii, Y., Michielssen, E.: Electromagnetic Optimization by Genetic Algorithms. Wiley, New York (1999).MATHGoogle Scholar
  2. 2.
    Lohn, J., Crawford, J., Globus, A., Hornby, G., Kraus, W., Larchev, G., Pryor, A., Srivastava, D.: Evolvable systems for space applications. Proceedings of International Conference on Space Mission Challenges for Information Technology (2003).Google Scholar
  3. 3.
    Hall, J.M.: A novel, real-valued genetic algorithm for optimizing radar absorbing materials. NASA/CR-2004-212669 (2004).Google Scholar
  4. 4.
    Cui, S., Weile, D.S.: Robust design of absorbers using genetic algorithms and the finite element-boundary integral method. IEEE Transactions on Antennas and Propagation. Vol. 51, No. 12, pp. 3249–3258 (2003).CrossRefGoogle Scholar
  5. 5.
    Cui, S., Weile, D.S., Volakis, J.L.: Novel planar absorber designs using genetic algorithms. Antennas and Propagation Society International Symposium. Vol. 2B, pp. 271–274 (2005).Google Scholar
  6. 6.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading, MA (1989).MATHGoogle Scholar
  7. 7.
    Lassouaoui, N., Ouslimani, H., Priou, A.: Genetic Algorithms for Automated Design of the Multilayer Absorbers in the X-Band and Incident Angle Range. Progress in Electromagnetics Research Symposium PIERS'08. Hangzhou (2008).Google Scholar
  8. 8.
    Vinoy, K. J., JHA, R. M.: Radar Absorbing Materials. Kluwer, Dordrecht (1996).Google Scholar
  9. 9.
    Petit, R.: Electromagnetic Waves in Radio Electricity and Optics. Masson Edition, Paris (1992).Google Scholar
  10. 10.
    Lassouaoui, N., Ouslimani, H., Priou, A.: Differential Theory with Genetic Algorithms in Design Periodic Absorbers. Progress in Electromagnetics Research Symposium PIERS'08. Hangzhou (2008).Google Scholar
  11. 11.
    Neviere, M., Popov, E.: Light Propagation in Periodic Media, Differential Theory and Design. Marcel Dekker, New York (2003).Google Scholar
  12. 12.
    Lassouaoui, N., Ouslimani, H., Priou, A.: Development of Genetic Algorithms and C-Method for Optimizing a Scattering by Rough Surface. European Computing Conference. Springer, Greece (2007).Google Scholar
  13. 13.
    Granet, G., Edee, K., Felbacq, D.: Scattering of a plane wave by rough surfaces: A new curvilinear coordinate system based approach. Progress in Electromagnetics Research, PIER. Vol. 37, pp. 235–250 (2002).CrossRefGoogle Scholar
  14. 14.
    Rozanov, K. N.: Ultimate thickness to bandwidth ratio of radar absorbers. IEEE Transactions on Antennas and Propagation. Vol. 48, pp. 1230–1234 (2000).CrossRefGoogle Scholar
  15. 15.
    Vinogradov, A. P., Lagar'kov, A. N., Sarchev, A. K., Sterlina, I. G.: Multilayer absorbing structures from composite materials. Journal of Communications Technology & Electronics. Vol. 41, pp. 142–145 (1996).Google Scholar
  16. 16.
    Kazantsev, Y. N., Krasnozhen, A. P., Tikhonravov, A. V.: Multilayered absorbing structures with Debye dispersion of the permittivity. Soviet Journal of Communications Technology & Electronics. Vol. 36, pp. 19–25 (1991).Google Scholar
  17. 17.
    Knott, E. F., Shaeffer, J. F.: Tuley, Radar Cross Section: Its Prediction, Measurement and Reduction, Artech House, Dedham, MA, pp. 413–442 (1985).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Nadia Lassouaoui
    • 1
  • Habiba Hafdallah Ouslimani
    • 1
  • Alain Priou
    • 1
  1. 1.University Paris X, Nanterre, Pôle Scientifique et Technique de Ville d'AvrayGroupe Electromagnétisme AppliquéVille d'AvrayFrance

Personalised recommendations