Advertisement

Mechanical Behavior of Nickel Base Foams for Diesel Particle Filter Applications

  • M. Duchamp
  • J. D. Bartout
  • S. Forest
  • Y. Bienvenu
  • G. Walther
  • S. Saberi
  • A. Boehm
Part of the IUTAM Bookseries book series (IUTAMBOOK, volume 12)

Abstract

An original processing route by powder metallurgy was developped to alloy pure Ni foams so, that the foam becomes refractory for high temperature applications. The modelling of such a foam at high temperature starts from the behavior of the basic constitutive material, then we use micromechanical models to predict the mechanical properties under tension and in compression creep. A 3D finite element analysis of a volume analysed by X-ray tomography is performed to study the foam deformation mechanisms in both conditions.

Keywords

Powder Metallurgy Creep Test Diffusional Creep Representative Volume Element Size Alloyed Foam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Paserin, S. Marcuson, J. Shu, D.S. Wilkinson: CVD Technique for Inco Nickel Foam Production, Advanced Engineering Materials 6 No. 6 (2004).Google Scholar
  2. 2.
    J. Banhart: Manufacture, characterisation and application of cellular metals and metal foams, Progress in Materials Science 46 (2001) 559–632.CrossRefGoogle Scholar
  3. 3.
    T. Dillard, F.N’Guyen, E. Maire, L. Salvo, S. Forest, Y. Bienvenu, J.D Bartout, M. Croset, R. Dendievel, P. Cloetens: 3D quantitative image analysis of open-cell nickel foams under tension and compression loading using X-ray microtomography, Philosophical Magazine 85 No. 19 (July 2005), 2147–2175.CrossRefGoogle Scholar
  4. 4.
    A. Benouali, L. Froyen, T. Dillard, S. Forest, F. NGuyen: Investigation on the influence of cell shape anisotropy on the mechanical performance of closed cell aluminium foams using micro-computed tomography, Journal of Materials Science 40 (2005) 5801–5811.CrossRefGoogle Scholar
  5. 5.
    V. Goussery, Y. Bienvenu, S. Forest, A.F. Gourgues, C. Colin, J.D. Bartout: Grain Size Effects on the Mechanical Behavior of Open-cell Nickel Foams, Advanced Engineering Materials 6 No. 6 (2004).Google Scholar
  6. 6.
    X. Badiche, S. Forest, T. Guibert, Y. Bienvenu, J.D. Bartout, P. Ienny, M. Croset, H. Bernet: Mechanical properties and non-homogeneous deformation of open-cell nickel foams: application of the mechanics of cellular solids and of porous materials, Materials Science and Engineering A 289 (2000) 276–288.CrossRefGoogle Scholar
  7. 7.
    L.J. Gibson, M.F. Ashby: Cellular solids. Structure and properties — Second edition, Cambridge University Press, Cambridge (1997).Google Scholar
  8. 8.
    H.J. Frost, M.F Ashby: Deformation-Mechanism Maps: the Plasticity and Creep of Metals and Ceramics, Pergamon Press, New York (1982).Google Scholar
  9. 9.
    D.T. Queheillalt, D.D. Hass, D.J. Sypeck, H.N.G Wadley: Synthesis of open-cell metal foams by templated directed vapor deposition, Journal of Materials Research, 16 No. 4 (2001).Google Scholar
  10. 10.
    P. Quadbeck, J. Kaschta, R.F. Singer: Superalloy IN625 with Cellular Microstructure — Fabrication Route and Mechanical Properties, Advanced Engineering Materials 6 No. 8 (2004).Google Scholar
  11. 11.
    D.T. Queheillalt, Y. Katsumura, H.N.G Wadley: Synthesis of stochastic open cell Ni-based foams, Scripta Materialia, 50 (2004) 313–317.CrossRefGoogle Scholar
  12. 12.
    A. Hodge, D. Dunand: Measurement and Modelling of Creep in Open-Cell NiAl Foams, Metallurgical and Materials Transactions 34A (2003) 2353–2362.CrossRefGoogle Scholar
  13. 13.
    H. Choe, D. Dunand: Synthesis, structure, and mechanical properties of Ni-Al and Ni-Cr-Al superalloy foams, Acta Materialia 52 (2004) 1283–1295.CrossRefGoogle Scholar
  14. 14.
    H. Choe, D. Dunand: Mechanical properties of oxidation-resistant Ni-Cr foams, Materials Science and Engineering A 384 (2004) 184–193.Google Scholar
  15. 15.
    S. Youssef, E. Maire, R. Gaertner: Finite element modelling of the actual structure of cellular materials determined by X-ray tomography, Acta Materialia 53 (2005) 719–730.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V 2009

Authors and Affiliations

  • M. Duchamp
    • 1
  • J. D. Bartout
    • 1
  • S. Forest
    • 1
  • Y. Bienvenu
    • 1
  • G. Walther
    • 2
  • S. Saberi
    • 3
  • A. Boehm
    • 4
  1. 1.Centre des MateriauxMines Paris, Paristech, CNRS UMR 7633Evry CedexFrance
  2. 2.Fraunhofer-InstitutIFAMDresdenGermany
  3. 3.Inco SPMississaugaCanada
  4. 4.Inco GmbHMunichGermany

Personalised recommendations