Skip to main content

Small Crack in a Simulated Columnar Polycrystalline Aggregate with Random 2D and 3D Lattice Orientations

  • Conference paper
Engineering Against Fracture

Abstract

The behaviour of microstructurally small cracks is heavily dependent upon the microstructural features in its immediate surroundings such as grain boundaries, crystallographic orientations, phases, etc. Crystallographic orientations of grains is one such feature and it’s influence on the crack tip opening displacements (CTOD) of a small crack is investigated in presented work. The principal objective is to ascertain the difference in influence of crystallographic orientations between 2D lattice rotations (2D models) and full 3D lattice rotations (3D models). A finite-element based model that accounts for randomly shaped and sized grains is used. A small, inclined surface crack is introduced in a selected surface grain. Since a Stage I crack is assumed, the crack is always placed in a slip plane. Models are then loaded monotonically in uniaxial tension up to a maximum load of 1.12 yield stress. The influence that a random grain structure imposes on a Stage I crack is then assessed by calculating the CTOD values for single crystal and polycrystal models. It is shown that crystallographic orientations significantly impact the crack tip displacements for both 2D and 3D models. In some cases this effect is more pronounced for the 3D models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. K. J. Miller. The behaviour of short fatigue cracks and their initiation. Part II-A general summary. Fatigue & Fracture of Engineering Materials & Structures, 10(2):93–113, 1987.

    Article  Google Scholar 

  2. K. Hussain. Short fatigue crack behaviour and analytical models: a review. Engineering Fracture Mechanics, 58(4):327–354, November 1997.

    Article  MathSciNet  Google Scholar 

  3. K. Hussain, E. R. de los Rios, and A. Navarro. A two-stage micromechanics model for short fatigue cracks. Engineering Fracture Mechanics, 44(3):425–436, February 1993.

    Article  ADS  Google Scholar 

  4. W. L. Morris, O. Buck, and H. L. Marcus. Fatigue crack initiation and early propagation in Al 2219-T851. Metallurgical Transactions A, 7A:1161–1165, August 1976.

    Article  ADS  CAS  Google Scholar 

  5. Y. H. Zhang and L. Edwards. On the blocking effect of grain boundaries on small crystallographic fatigue crack growth. Materials Science and Engineering A, 188(1–2):121–132, November 1994.

    Article  Google Scholar 

  6. O. Dber, B. Knkler, U. Krupp, H.-J. Christ, and C.-P. Fritzen. Experimental characterization and two-dimensional simulation of short-crack propagation in an austenitic-ferritic duplex steel. International Journal of Fatigue, 28(9):983–992, September 2006.

    Article  CAS  Google Scholar 

  7. S. Suresh. Fatigue of materials. Cambridge University Press, Cambridge, 1991.

    Google Scholar 

  8. V. Tvergaard, Y. Wei, and J. W. Hutchinson. Edge cracks in plastically deforming surface grains. European Journal of Mechanics — A/Solids, 20(5):731–738, September–October 2001.

    Article  MATH  ADS  Google Scholar 

  9. T. Zhai, A. J. Wilkinson, and J. W. Martin. A crystallographic mechanism for fatigue crack propagation through grain boundaries. Acta Materialia, 48(20):4917–4927, December 2000.

    Article  CAS  Google Scholar 

  10. H. Riesch-Oppermann. VorTess generation of 2-D random Poisson—Voronoi mosaics as framework for micromechanical modeling of polycrystalline materials-algorithm and subroutines description. Technical Report FZKA 6325, Forschungszentrum Karlsruhe, 1999.

    Google Scholar 

  11. S. Weyer, A. Frohlich, H. Riesch-Oppermann, L. Cizelj, and M. Kovač. Automatic finite element meshing of planar voronoi tessellations. Engineering Fracture Mechanics, 69(8):945–958, May 2002.

    Article  Google Scholar 

  12. I. Simonovski. Mechanisms for thermal fatigue initiation and crack propagation in NPP components. 2nd mid term report. Technical Report, Jožef Stefan Institute, DG-JRC, Institute for Energy (accessible through www.rcp.ijs.si/isimonovski/Papers/Simonovski2005 2.pdf), 2005.

  13. G. P. Potirniche and S. R. Daniewicz. Analysis of crack tip plasticity for microstructurally small cracks using crystal plasticity theory. Engineering Fracture Mechanics, 70(13):1623–1643, September 2003.

    Article  Google Scholar 

  14. V. P. Bennett and D. L. McDowell. Crack tip displacements of microstructurally small surface cracks in single phase ductile polycrystals. Engineering Fracture Mechanics, 70(2):185–207, January 2003.

    Article  Google Scholar 

  15. R. Hill and J. R. Rice. Constitutive analysis of elastic-plastic crystals at arbitrary strain. Journal of the Mechanics and Physics of Solids, 20(6):401–413, 1972.

    Article  MATH  ADS  Google Scholar 

  16. J. R. Rice. On the structure of stress-strain relations of time-dependent plastic deformation in metals. Journal of Applied Mechanics, 37:728–737, 1970.

    Article  Google Scholar 

  17. A. Needleman. Computational mechanics at the mesoscale. Acta Materialia, 48(1):105–124, January 2000.

    Article  CAS  MathSciNet  Google Scholar 

  18. D. Peirce, R. J. Asaro, and A. Needleman. Material rate dependence and localized deformation in crystalline solids. Acta Metallurgica, 31(12):1951–1976, December 1983.

    Article  CAS  Google Scholar 

  19. Yonggang Huang. A user-material subroutine incorporating single crystal plasticity in the ABAQUS finite element program. Technical Report, Division of Applied Sciences, Harvard University (accessible through www.columbia.edu/~jk2079/fem/umat_documentation.pdf), 1991.

  20. I. Simonovski, K.-F. Nilsson, and L. Cizelj. Material properties calibration for 316L steel using polycrystalline model. In 13th International Conference on Nuclear Engineering, May 16–20, 2005, Beijing, China, May 2005.

    Google Scholar 

  21. S. Weyer. Experimentelle Untersuchung und Mikromechanische Modellierung des Schdigungsverhaltens von Aluminiumoxid unter Druckbeanspruchung. Ph.D. thesis, Universitt Karlsruhe, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Simonovski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V

About this paper

Cite this paper

Simonovski, I., Cizelj, L. (2009). Small Crack in a Simulated Columnar Polycrystalline Aggregate with Random 2D and 3D Lattice Orientations. In: Pantelakis, S., Rodopoulos, C. (eds) Engineering Against Fracture. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9402-6_19

Download citation

Publish with us

Policies and ethics