Skip to main content

Ball-Burnishing and Roller-Burnishing to Improve Fatigue Performance of Structural Alloys

  • Conference paper
Engineering Against Fracture

Abstract

The HCF response to burnishing of a number of structural materials is compared and contrasted. It is shown that alloys which exhibit marked work-hardening during burnishing respond very beneficially with regard to HCF performance while others which show little work-hardening may even react with losses in HCF strength. Possible explanations for such behavior are outlined in terms of mean stress and environmental sensitivities of the fatigue strengths of the various materials and microstructures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Schulze V. (2006), Modern Mechanical Surface Treatment, Wiley-VCH.

    Google Scholar 

  2. Wohlfahrt H. (1984), The Influence of Peening Conditions on The Resulting Distributions of Residual Stress, Shot Peening (H. O. Fuchs, ed.) American Shot Peening Society, 316.

    Google Scholar 

  3. Wohlfahrt H. (1987), Practical Aspects of the Application of Shot Peening to Improve the Fatigue Behaviour of Metals and Structural Components, Shot Peening (H. Wohlfahrt, R. Kopp and O. Vöhringer, eds.), DGM, Oberursel, Germany, 563.

    Google Scholar 

  4. Altenberger I. (2002), Alternative Mechanical Surface Treatments: Microstructures, Residual Stresses & Fatigue Behaviour, Shot Peening (L. Wagner, ed.) Wiley-VCH, ICSP8, Garmisch-Partenkirchen, 421.

    Google Scholar 

  5. Mhaede M. H., Wollmann M. and Wagner L. (2008), Influence of Ball-Burnishing on Stress Corrosion Cracking and Corrosion, Fatigue and Corrosion Fatigue of Al 2024 and Al 6082, ICSP10, Tokyo, 505.

    Google Scholar 

  6. Wagner L. and Wollmann M. (2008), Shot Peening of Non-Ferrous Alloys to Enhance Fatigue Performance, ICSP10, Tokyo, 355.

    Google Scholar 

  7. Burck C. H., Sullivan C. P. and Wells C. H. (1970), Fatigue of a Glass Bead Blasted Nickel-Base Superalloy, Met. Trans. 1A, 1595.

    Article  Google Scholar 

  8. Leverant G. R., Langer S., Yuen A. and Hopkins, S. W. (1979), Surface residual stresses, surface topography and the fatigue behavior of Ti-6AI-4V, Met. Trans. 10A, 251.

    CAS  Google Scholar 

  9. Wagner L. and Lütjering G. (1982), Influence of Shot Peening on the Fatigue Behavior of Ti-Alloys, Shot Peening, Pergamon Press, 453.

    Google Scholar 

  10. Hack J. E. and Leverant G. R. (1982), Influence of Compressive Residual Stress on the Crack-Opening Behavior of Part-Through Fatigue Cracks, Residual Stress Effects in Fatigue, ASTM STP 776, 204.

    Google Scholar 

  11. Muto Y., Fair G. H., Noble B. and Waterhouse R. B. (1987), The Effect of Residual Stresses Induced by Shot Peening on Fatigue Crack Propagation in Two High Strength Aluminum Alloys, Fat. and Fract. of Eng. Mat. and Struct. 10, 261.

    Article  Google Scholar 

  12. Nisitani H. and Fujimura K. (1997), Initiation and Growth Behaviour of a Fatigue Crack in Shot-Peened Steel, Computer Methods and Experimental Methods for Surface Treatment Effects 3, Oxford, Computational Mechanics Publications, (ROYAUME-UNI ed.), 13.

    Google Scholar 

  13. Wagner L. and Müller C. (1992), Effect of Shot Peening on Fatigue Behavior in Al-Alloys, J. Materials Manufacturing & Processing, 423.

    Google Scholar 

  14. Dörr T. and Wagner L. (1996), Fatigue Behavior of Shot Peened TIMETAL 1100: Effects of Microstructure and Stress Gradient, Surface Performance of Titanium Alloys (J. K. Gregory, H. J. Rack and D. Eylon, eds.) TMS AIME, 231.

    Google Scholar 

  15. Kocan M., Rack H. J. and Wagner L. (2005), Fatigue Performance of Metastable Beta Titanium Alloys: Effects of Microstructure and Surface Finish, Beta Titanium Alloys of the 00's (R. R. Boyer, R. F. Denkenberger, J. Fanning and H. J. Rack, eds.), JMEPEG 14, 765.

    Google Scholar 

  16. Schwarz T. and Kockelmann H. (1992), VDI Report 940, 99.

    Google Scholar 

  17. Gerdes C. and Lütjering G. (1984), Influence of Shot Peening on Notched Fatigue Strength of Ti-6Al-4V, Shot Peening (H. O. Fuchs, ed.) American Shot Peening Society, 175.

    Google Scholar 

  18. Gregory J. K., Müller C. and Wagner L. (1993), Bevorzugte Randschichtaushärtung: Neue Verfahren zur Verbesserung des Dauerschwingverhaltens mechanisch belasteter Bauteile, Metall 47, 915.

    CAS  Google Scholar 

  19. Rodopoulos C. A., Edwards R. E., Curtis S., Romero J. S., Choi J.-H., de los Rios E. and Levers A. (2002), Theoretical Analysis of Beneficial and Detrimental Effects of Controlled Shot Peening in High Strength Aluminium Alloys, Shot Peening (L. Wagner, ed.) Wiley-VCH, ICSP8, Garmisch-Partenkirchen, Germany, 547.

    Google Scholar 

  20. Zheng Y. (2002), Finite Element Simulation of Shot Peen Forming, Shot Peening (L. Wagner, ed.) Wiley-VCH, ICSP8, Garmisch-Partenkirchen, Germany, 554.

    Google Scholar 

  21. Holzwarth U., Kiese J. and Wagner L. (1999), Effects of Surface Finishing on Fatigue Performance of the Surgical Implant Alloy Ti-6Al-7Nb, Fatigue Behavior of Titanium Alloys, (R. R. Boyer, D. Eylon and G. Lütjering, eds.), TMS, 323.

    Google Scholar 

  22. Lindemann J. and Wagner L. (1997), Mean Stress Sensitivity in Fatigue in Alpha, (Alpha + Beta) and Beta Titanium Alloys, Materials Science and Engineering A 234–239, 1118.

    Article  Google Scholar 

  23. Zhang J., Lindemann J. and Wagner L. (2004), Influence of Prior Deformation on the Development of Duplex Microstructures and Fatigue Strengths in Ti-6242, Ti-2003 Science and Technology (G. Lütjering and J. Albrecht, eds.) Wiley-VCH, Weinheim, 1823.

    Google Scholar 

  24. Woodfield A. P., Gorman M. D., Sutliff J. A. and Corderman R. R. (1998), Effect of Microstructure on Dwell Fatigue Behavior of Ti-6242, Fatigue Behavior of Titanium Alloys (R. R. Boyer, D. Eylon, G. Lütjering, eds.) TMS, 111.

    Google Scholar 

  25. Gunkel J. (2008), Dauerschwingverhalten des metastabilen austenitischen Stahls X5CrNi18-10 nach dem Festwalzen im glatten und gekerbten Zustand, Diploma thesis, TU Clausthal, IWW, Germany.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lothar Wagner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V

About this paper

Cite this paper

Wagner, L., Ludian, T., Wollmann, M. (2009). Ball-Burnishing and Roller-Burnishing to Improve Fatigue Performance of Structural Alloys. In: Pantelakis, S., Rodopoulos, C. (eds) Engineering Against Fracture. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9402-6_1

Download citation

Publish with us

Policies and ethics