Advertisement

Genome-Scale Reconstruction, Modeling, and Simulation of E. coli℉s Metabolic Network

  • Adam M. Feist
  • Ines Thiele
  • Bernhard Ø Palsson

Abstract

Since the release of the first genome-scale metabolic reconstruction of the E. coli metabolic network in 2000, there has been a growing number of researchers around the world adapting it for a broad range of studies (Feist 2008). The uses range from practical applications to obtaining basic biological understanding of cellular behavior. This range of uses is further expected to expand as the reconstruction broadens in scope and as new in silico methods are developed, implemented, and put to use.

In this chapter, we will describe foundational concepts central to the reconstruction process and model formulation, the history of reconstruction of the E. coli metabolic network, the development of reconstruction technology, genome-scale constraint based modeling with key exemplary case studies of uses of the E. coli metabolic reconstruction, and insights into the future of the field. As such, this chapter should serve as a guide to those interested in either expanding the application of the E. coli reconstruction or adapting established applications to other organisms.

Keywords

Metabolic Network Transcriptional Regulatory Network Metabolic Reconstruction Extreme Pathway Reconstruction Technology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen TE, Palsson BO (2003) Sequenced-Based Analysis of Metabolic Demands for Protein Synthesis in Prokaryotes. J Theor Biol 220(1):1–18PubMedCrossRefGoogle Scholar
  2. Almaas E, Kovacs B, Vicsek T et al. (2004) Global organization of metabolic fluxes in the bacterium Escherichia coli. Nature 427(6977):839–43PubMedCrossRefGoogle Scholar
  3. Alper H, Jin YS, Moxley JF et al. (2005a) Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli. Metab Eng 7(3):155–64PubMedCrossRefGoogle Scholar
  4. Alper H, Miyaoku K, Stephanopoulos G (2005b) Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets. Nat Biotechnol 23(5):612–6PubMedCrossRefGoogle Scholar
  5. Baart GJ, Zomer B, de Haan A et al. (2007) Modeling Neisseria meningitidis metabolism: from genome to metabolic fluxes. Genome Biol 8(7):R136PubMedCrossRefGoogle Scholar
  6. Baba T, Ara T, Hasegawa M et al. (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2:2006.0008Google Scholar
  7. Becker SA, Feist AM, Mo ML et al. (2007) Quantitative prediction of cellular metabolism with constraint-based models: The COBRA Toolbox. Nat Protocols 2(3):727–38CrossRefGoogle Scholar
  8. Becker SA, Palsson BO (2005) Genome-scale reconstruction of the metabolic network in Staphylococcus aureus N315: an initial draft to the two-dimensional annotation. BMC Microbiol 5(1):8PubMedCrossRefGoogle Scholar
  9. Berman HM, Westbrook J, Feng Z et al. (2000) The Protein Data Bank. Nucleic Acids Res 28(1):235–42PubMedCrossRefGoogle Scholar
  10. Beste DJ, Hooper T, Stewart G et al. (2007) GSMN-TB: a web-based genome-scale network model of Mycobacterium tuberculosis metabolism. Genome Biol 8(5):R89PubMedCrossRefGoogle Scholar
  11. Blattner FR, Plunkett G, 3rd, Bloch CA et al. (1997) The complete genome sequence of Escherichia coli K-12. Science 277(5331):1453–74PubMedCrossRefGoogle Scholar
  12. Borodina I, Krabben P, Nielsen J (2005) Genome-scale analysis of Streptomyces coelicolor A3(2) metabolism. Genome Res 15(6):820–9PubMedCrossRefGoogle Scholar
  13. Breitling R, Vitkup D, Barrett MP (2008) New surveyor tools for charting microbial metabolic maps. Nat Rev Microbiol 6(2):156–61PubMedCrossRefGoogle Scholar
  14. Chavali AK, Whittemore JD, Eddy JA et al. (2008) Systems analysis of metabolism in the pathogenic trypanosomatid Leishmania major. Mol Syst Biol 4:177PubMedCrossRefGoogle Scholar
  15. Chen L, Vitkup D (2006) Predicting genes for orphan metabolic activities using phylogenetic profiles. Genome Biol 7(2):R17PubMedCrossRefGoogle Scholar
  16. Cho BK, Knight EM, Barrett CL et al. (2008) Genome-wide Analysis of Fis Binding in Escherichia coli Indicates a Causative Role for A-/AT-tracts. Genome Res 18(6):900–10PubMedCrossRefGoogle Scholar
  17. Covert MW, Knight EM, Reed JL et al. (2004) Integrating high-throughput and computational data elucidates bacterial networks. Nature 429(6987):92–6PubMedCrossRefGoogle Scholar
  18. David H, Ozcelik IS, Hofmann G et al. (2008) Analysis of Aspergillus nidulans metabolism at the genome-scale. BMC Genomics 9:163PubMedCrossRefGoogle Scholar
  19. Duarte NC, Becker SA, Jamshidi N et al. (2007) Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc Natl Acad Sci USA 104(6):1777–82PubMedCrossRefGoogle Scholar
  20. Duarte NC, Herrgard MJ, Palsson B (2004) Reconstruction and Validation of Saccharomyces cerevisiae iND750, a Fully Compartmentalized Genome-Scale Metabolic Model. Genome Res 14(7):1298–309PubMedCrossRefGoogle Scholar
  21. Edwards JS, and Palsson, B.O. (2000a) Metabolic flux balance analysis and the in silico analysis of Escherichia coli K-12 gene deletions. BMC Bioinformatics 1(1)Google Scholar
  22. Edwards JS, Ibarra RU, Palsson BO (2001) In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat Biotechnol 19(2):125–30PubMedCrossRefGoogle Scholar
  23. Edwards JS, Palsson BO (1999) Systems properties of the Haemophilus influenzae Rd metabolic genotype. J Biol Chem 274(25):17410–6PubMedCrossRefGoogle Scholar
  24. Edwards JS, Palsson BO (2000b) The Escherichia coli MG1655 in silico metabolic genotype: Its definition, characteristics, and capabilities. Proc Natl Acad Sci USA 97(10):5528–33PubMedCrossRefGoogle Scholar
  25. Feist AM, Henry CS, Reed JL et al. (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol Syst Biol 3(121)Google Scholar
  26. Feist AM, Herrgard MJ, Thiele I et al. (2009) Reconstruction of biochemical networks in microbial organisms. Nat Rev Microbiol 7(2)Google Scholar
  27. Feist AM, Palsson BO (2008) The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli. Nat Biotech 26(6):659–67CrossRefGoogle Scholar
  28. Feist AM, Scholten JCM, Palsson BO et al. (2006) Modeling methanogenesis with a genome-scale metabolic reconstruction of Methanosarcina barkeri. Mol Syst Biol 2(2006.0004):1–14CrossRefGoogle Scholar
  29. Fong SS, Palsson BO (2004) Metabolic gene-deletion strains of Escherichia coli evolve to computationally predicted growth phenotypes. Nat Genet 36(10):1056–58PubMedCrossRefGoogle Scholar
  30. Forster J, Famili I, Fu PC et al. (2003) Genome-Scale Reconstruction of the Saccharomyces cerevisiae Metabolic Network. Genome Res 13(2):244–53PubMedCrossRefGoogle Scholar
  31. Frazier ME, Johnson GM, Thomassen DG et al. (2003) Realizing the potential of the Genome Revolution: The Genomes to life Program. Science 300(5617):290–3PubMedCrossRefGoogle Scholar
  32. Fuhrer T, Chen L, Sauer U et al. (2007) Computational prediction and experimental verification of the gene encoding the NAD+/NADP+-dependent succinate semialdehyde dehydrogenase in Escherichia coli. J Bacteriol 189(22):8073–8PubMedCrossRefGoogle Scholar
  33. Gianchandani EP, Papin JA, Price ND et al. (2006) Matrix Formalism to Describe Functional States of Transcriptional Regulatory Systems. PLoS Comput Biol 2(8):e101PubMedCrossRefGoogle Scholar
  34. Gonzalez O, Gronau S, Falb M et al. (2008) Reconstruction, modeling & analysis of Halobacterium salinarum R-1 metabolism. Mol Biosyst 4(2):148–59PubMedCrossRefGoogle Scholar
  35. Heinemann M, Kummel A, Ruinatscha R et al. (2005) In silico genome-scale reconstruction and validation of the Staphylococcus aureus metabolic network. Biotechnol Bioeng 92(7):850–64PubMedCrossRefGoogle Scholar
  36. Herrgard MJ, Covert MW, Palsson BO (2004) Reconstruction of Microbial Transcriptional Regulatory Networks. Curr Opin Biotechnol 15(1):70–7PubMedCrossRefGoogle Scholar
  37. Holden C (2002) Alliance launched to model E. coli. Science 297(5586):1459–60PubMedCrossRefGoogle Scholar
  38. Ibarra RU, Edwards JS, Palsson BO (2002) Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth. Nature 420(6912):186–9PubMedCrossRefGoogle Scholar
  39. Jamshidi N, Palsson BO (2007) Investigating the metabolic capabilities of Mycobacterium tuberculosis H37Rv using the in silico strain iNJ661 and proposing alternative drug targets. BMC Syst Biol 1:26PubMedCrossRefGoogle Scholar
  40. Joyce AR, Palsson BO (2006) The model organism as a system: integrating ‘omics’ data sets. Nat Rev Mol Cell Biol 7(3):198–210PubMedCrossRefGoogle Scholar
  41. Joyce AR, Reed JL, White A et al. (2006) Experimental and Computational Assessment of Conditionally Essential Genes in Escherichia coli. J Bacteriol 188(23):8259–71PubMedCrossRefGoogle Scholar
  42. Kümmel A, Panke S, Heinemann M (2006) Putative regulatory sites unraveled by network-embedded thermodynamic analysis of metabolome data. Mol Syst Biol 2:2006.0034Google Scholar
  43. Keseler IM, Collado-Vides J, Gama-Castro S et al. (2005) EcoCyc: a comprehensive database resource for Escherichia coli. Nucleic Acids Res 33(Database Issue):D334–7PubMedCrossRefGoogle Scholar
  44. Kharchenko P, Chen L, Freund Y et al. (2006) Identifying metabolic enzymes with multiple types of association evidence. BMC Bioinformatics 7(177)Google Scholar
  45. Kharchenko P, Vitkup D, Church GM (2004) Filling gaps in a metabolic network using expression information. Bioinformatics 20(Suppl 1):I178-I185PubMedCrossRefGoogle Scholar
  46. Kim HU, Kim TY, Lee SY (2008) Metabolic flux analysis and metabolic engineering of microorganisms. Mol BioSyst 4(2):113–20PubMedCrossRefGoogle Scholar
  47. Kim TY, Kim HU, Park JM et al. (2007) Genome-scale analysis of Mannheimia succiniciproducens metabolism. Biotechnol Bioeng 97(4):657–71PubMedCrossRefGoogle Scholar
  48. Kuepfer L, Sauer U, Blank LM (2005) Metabolic functions of duplicate genes in Saccharomyces cerevisiae. Genome Res 15(10):1421–30PubMedCrossRefGoogle Scholar
  49. Lee J, Yun H, Feist AM et al. (2008) Genome-scale reconstruction and in silico analysis of the Clostridium acetobutylicum ATCC 824 metabolic network. Appl Microbiol Biotechnol 80(5):849–52PubMedCrossRefGoogle Scholar
  50. Lee KH, Park JH, Kim TY et al. (2007) Systems metabolic engineering of Escherichia coli for L-threonine production. Mol Syst Biol 3:149PubMedCrossRefGoogle Scholar
  51. Lee SY, Woo HM, Lee D-Y et al. (2005) Systems-level analysis of genome-scale in silico metabolic models using MetaFluxNet. Biotechnol Bioproc Eng 10:425–31CrossRefGoogle Scholar
  52. Lee TI, Rinaldi NJ, Robert F et al. (2002) Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298(5594):799–804.PubMedCrossRefGoogle Scholar
  53. Mahadevan R, Bond DR, Butler JE et al. (2006) Characterization of Metabolism in the Fe(III)-Reducing Organism Geobacter sulfurreducens by Constraint-Based Modeling. Appl Environ Microbiol 72(2):1558–68PubMedCrossRefGoogle Scholar
  54. Majewski RA, Domach MM (1990) Simple constrained optimization view of acetate overflow in E. coli. Biotechnol Bioeng 35:732–8PubMedCrossRefGoogle Scholar
  55. Mehra A, Hatzimanikatis V (2006) An algorithmic framework for genome-wide modeling and analysis of translation networks. Biophys J 90(4):1136–46PubMedCrossRefGoogle Scholar
  56. Nogales J, Thiele, I.*, Palsson, B. Ø. (2008) A genome-scale metabolic reconstruction for P. putida KT2440: iJN746 as cell factoryGoogle Scholar
  57. Oberhardt MA, Puchalka J, Fryer KE et al. (2008) Genome-scale metabolic network analysis of the opportunistic pathogen Pseudomonas aeruginosa PAO1. J Bacteriol 190(8):2790–803PubMedCrossRefGoogle Scholar
  58. Oh YK, Palsson BO, Park SM et al. (2007) Genome-scale reconstruction of metabolic network in bacillus subtilis based on high-throughput phenotyping and gene essentiality data. J Biol Chem 282(89):28791–9PubMedCrossRefGoogle Scholar
  59. Oliveira AP, Nielsen J, Forster J (2005) Modeling Lactococcus lactis using a genome-scale flux model. BMC Microbiol 5:39PubMedCrossRefGoogle Scholar
  60. Pal C, Papp B, Lercher MJ (2005a) Adaptive evolution of bacterial metabolic networks by horizontal gene transfer. Nat Genet 37(12):1372–5PubMedCrossRefGoogle Scholar
  61. Pal C, Papp B, Lercher MJ (2005b) Horizontal gene transfer depends on gene content of the host. Bioinformatics 21 Suppl 2:ii222–3PubMedCrossRefGoogle Scholar
  62. Pal C, Papp B, Lercher MJ et al. (2006) Chance and necessity in the evolution of minimal metabolic networks. Nature 440(7084):667–70PubMedCrossRefGoogle Scholar
  63. Palsson BO (2004) Two-dimensional annotation of genomes. Nat Biotechnol 22(10):1218–9PubMedCrossRefGoogle Scholar
  64. Palsson BO (2006) Systems biology: properties of reconstructed networks. Cambridge University Press, New YorkGoogle Scholar
  65. Papin JA, Hunter T, Palsson BO et al. (2005) Reconstruction of cellular signalling networks and analysis of their properties. Nat Rev Mol Cell Biol 6(2):99–111PubMedCrossRefGoogle Scholar
  66. Papin JA, Price ND, Palsson BO (2002) Extreme pathway lengths and reaction participation in genome-scale metabolic networks. Genome Res 12(12):1889–900PubMedCrossRefGoogle Scholar
  67. Park JH, Lee KH, Kim TY et al. (2007) Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation. Proc Natl Acad Sci USA 104(19):7797–802PubMedCrossRefGoogle Scholar
  68. Pramanik J, Keasling JD (1997) Stoichiometric model of Escherichia coli metabolism: Incorporation of growth-rate dependent biomass composition and mechanistic energy requirements. Biotechnol Bioeng 56(4):398–421PubMedCrossRefGoogle Scholar
  69. Pramanik J, Keasling JD (1998) Effect of Escherichia coli biomass composition on central metabolic fluxes predicted by a stoichiometric model. Biotechnol Bioeng 60(2):230–8PubMedCrossRefGoogle Scholar
  70. Price ND, Reed JL, Palsson BO (2004a) Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat Rev Microbiol 2(11):886–97PubMedCrossRefGoogle Scholar
  71. Price ND, Schellenberger J, Palsson BO (2004b) Uniform Sampling of Steady State Flux Spaces: Means to Design Experiments and to Interpret Enzymopathies. Biophys J 87(4):2172–86PubMedCrossRefGoogle Scholar
  72. Price ND, Reed JL, Papin JA et al. (2003) Analysis of metabolic capabilities using singular value decomposition of extreme pathway matrices. Biophys J 84(2):794–804PubMedCrossRefGoogle Scholar
  73. Reed JL, Famili I, Thiele I et al. (2006a) Towards multidimensional genome annotation. Nat Rev Genet 7(2):130–41PubMedCrossRefGoogle Scholar
  74. Reed JL, Palsson BO (2003) Thirteen Years of Building Constraint-Based In Silico Models of Escherichia coli. J Bacteriol 185(9):2692–9PubMedCrossRefGoogle Scholar
  75. Reed JL, Patel TR, Chen KH et al. (2006b) Systems approach to refining genome annotation. Proc Natl Acad Sci USA 103(46):17480–4PubMedCrossRefGoogle Scholar
  76. Reed JL, Vo TD, Schilling CH et al. (2003) An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol 4(9):R54.1–R54.12CrossRefGoogle Scholar
  77. Resendis-Antonio O, Reed JL, Encarnacion S et al. (2007) Metabolic reconstruction and modeling of nitrogen fixation in Rhizobium etli. PLoS Comput Biol 3(10):1887–95PubMedCrossRefGoogle Scholar
  78. Riley M, Abe T, Arnaud MB et al. (2006) Escherichia coli K-12: a cooperatively developed annotation snapshot-2005. Nucleic Acids Res 34(1):1–9PubMedCrossRefGoogle Scholar
  79. Schilling CH, Covert MW, Famili I et al. (2002) Genome-scale metabolic model of Helicobacter pylori 26695. J Bacteriol 184(16):4582–93PubMedCrossRefGoogle Scholar
  80. Schilling CH, Palsson BO (2000) Assessment of the Metabolic Capabilities of Haemophilus influenzae Rd through a Genome-scale Pathway Analysis. J Theor Biol 203(3):249–83PubMedCrossRefGoogle Scholar
  81. Segre D, Vitkup D, Church GM (2002) Analysis of optimality in natural and perturbed metabolic networks. Proc Natl Acad Sci USA 99(23):15112–7PubMedCrossRefGoogle Scholar
  82. Senger RS, Papoutsakis ET (2008) Genome-scale model for Clostridium acetobutylicum. Part 1: Metabolic network resolution and analysis. Biotechnol Bioeng 101(5):1036–52PubMedCrossRefGoogle Scholar
  83. Serres MH, Gopal S, Nahum LA et al. (2001) A functional update of the Escherichia coli K-12 genome. Genome Biol 2(9):RESEARCH0035PubMedCrossRefGoogle Scholar
  84. Sheikh K, Forster J, Nielsen LK (2005) Modeling hybridoma cell metabolism using a generic genome-scale metabolic model of Mus musculus. Biotechnol Prog 21(1):112–21PubMedCrossRefGoogle Scholar
  85. Shlomi T, Berkman O, Ruppin E (2005) Regulatory on/off minimization of metabolic flux changes after genetic perturbations. Proc Natl Acad Sci USA 102(21):7695–700PubMedCrossRefGoogle Scholar
  86. Suthers PF, Burgard AP, Dasika MS et al. (2007) Metabolic flux elucidation for large-scale models using 13C labeled isotopes. Metab Eng 9(5–6):387–405PubMedCrossRefGoogle Scholar
  87. Teusink B, Wiersma A, Molenaar D et al. (2006) Analysis of growth of Lactobacillus plantarum WCFS1 on a complex medium using a genome-scale metabolic model. J Biol Chem 281(52):40041–8PubMedCrossRefGoogle Scholar
  88. Thiele I, Jamshidi N, Fleming RMT et al. (2009) Genome-scale reconstruction of E. coli’s transcriptional and translational machinery: A knowledge-base its mathematical formulation, and its functional characterization. PLOS Comp Biol. In pressGoogle Scholar
  89. Thiele I, Price ND, Vo TD et al. (2005a) Candidate metabolic network states in human mitochondria: Impact of diabetes, ischemia, and diet. J Biol Chem 280(12):11683–95PubMedCrossRefGoogle Scholar
  90. Thiele I, Vo TD, Price ND et al. (2005b) An Expanded Metabolic Reconstruction of Helicobacter pylori (iIT341 GSM/GPR): An in silico genome-scale characterization of single and double deletion mutants. J Bacteriol 187(16):5818–30PubMedCrossRefGoogle Scholar
  91. Thomas R, Paredes CJ, Mehrotra S et al. (2007) A model-based optimization framework for the inference of regulatory interactions using time-course DNA microarray expression data. BMC Bioinformatics 8:228PubMedCrossRefGoogle Scholar
  92. Varma A, Boesch BW, Palsson BO (1993a) Biochemical production capabilities of Escherichia coli. Biotechnol Bioeng 42(1):59–73PubMedCrossRefGoogle Scholar
  93. Varma A, Boesch BW, Palsson BO (1993b) Stoichiometric interpretation of Escherichia coli glucose catabolism under various oxygenation rates. Appl Environ Microbiol 59(8):2465–73PubMedGoogle Scholar
  94. Varma A, Palsson BO (1993) Metabolic capabilities of Escherichia coli: I. Synthesis of biosynthetic precursors and cofactors. J Theor Biol 165(4):477–502Google Scholar
  95. Varma A, Palsson BO (1994) Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Appl Environ Microbiol 60(10):3724–31PubMedGoogle Scholar
  96. Varma A, Palsson BO (1995) Parametric sensitivity of stoichiometric flux balance models applied to wild-type Escherichia coli metabolism. Biotechnol Bioeng 45(1):69–79PubMedCrossRefGoogle Scholar
  97. Wiback SJ, Famili I, Greenberg HJ et al. (2004) Monte Carlo Sampling Can Be Used to Determine the Size and Shape of the Steady State Flux Space. J Theor Biol 228(4):437–47PubMedCrossRefGoogle Scholar
  98. Wunderlich Z, Mirny LA (2006) Using the topology of metabolic networks to predict viability of mutant strains. Biophys J 91(6):2304–11PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Adam M. Feist
    • 1
  • Ines Thiele
    • 1
  • Bernhard Ø Palsson
    • 1
  1. 1.Department of BioengineeringUniversity of California San DiegoLa JollaUSA

Personalised recommendations