Skip to main content

Abstract

Since genomic sequencing project launched, during in 1990s, biological research environments has been dramatically changed by developments of inter-disciplinary fields between biology and others such as chemistry, physics, information science, mathematics and engineering. Many high-throughput systems to obtain comprehensive analysis results have become available. As the result, accumulation of experimental data is now growing exponentially like sequence data in public databases. Experimental resources, such as plasmid clone and deletion mutant libraries, are the products of such high-throughput systems, and at the same time, motive force to generate further comprehensive information from xperimental analyses. In this manuscript, we summarize the situation about the experimental resources and how they have contributed in biology fields, especially in the 21st new generation of biology, such as systems biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aiba H, Baba T, Hayashi K et al. (1996) A 570-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 28.0–40.1 min region on the linkage map. DNA Res 3(6):363–77

    Article  PubMed  CAS  Google Scholar 

  • Arifuzzaman M, Maeda M, Itoh A et al. (2006) Large-scale identification of protein-protein interaction of Escherichia coli K-12. Genome Res 16(5):686–91

    Article  PubMed  CAS  Google Scholar 

  • Baba T, Ara T, Hasegawa M et al. (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2:2006 0008

    Google Scholar 

  • Baba T, Huan HC, Datsenko K et al. (2008) The applications of systematic in-frame, single-gene knockout mutant collection of Escherichia coli K-12. Methods Mol Biol 416:183–94

    Article  PubMed  CAS  Google Scholar 

  • Baba T, Mori H (2008) The construction of systematic in-frame, single-gene knockout mutant collection in Escherichia coli K-12. Methods Mol Biol 416:171–81

    Article  PubMed  Google Scholar 

  • Blattner FR, Plunkett G, 3rd, Bloch CA et al. (1997) The complete genome sequence of Escherichia coli K-12. Science 277(5331):1453–74

    Article  PubMed  CAS  Google Scholar 

  • Butland G, Babu M, Diaz-Mejia JJ et al. (2008) eSGA: E. coli synthetic genetic array analysis. Nat Methods

    Google Scholar 

  • Butland G, Peregrin-Alvarez JM, Li J et al. (2005) Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature 433(7025):531–7

    Article  PubMed  CAS  Google Scholar 

  • Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97(12):6640–5

    Article  PubMed  CAS  Google Scholar 

  • Dose H, Nakamichi T, Yoshino M et al. (2008) in preparation

    Google Scholar 

  • Gerdes SY, Scholle MD, Campbell JW et al. (2003) Experimental determination and system level analysis of essential genes in Escherichia coli MG1655. J Bacteriol 185(19):5673–84

    Article  PubMed  CAS  Google Scholar 

  • Giaever G, Chu AM, Ni L et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418(6896):387–91

    Article  PubMed  CAS  Google Scholar 

  • Goryshin IY, Naumann TA, Apodaca J et al. (2003) Chromosomal deletion formation system based on Tn5 double transposition: use for making minimal genomes and essential gene analysis. Genome Res 13(4):644–53

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto M, Ichimura T, Mizoguchi H et al. (2005) Cell size and nucleoid organization of engineered Escherichia coli cells with a reduced genome. Mol Microbiol 55(1):137–49

    Article  PubMed  CAS  Google Scholar 

  • Hayashi K, Morooka N, Yamamoto Y et al. (2006) Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110. Mol Syst Biol 2:2006 0007, http://www.invitrogen.com/http://www.shigen.nig.ac.jp/ecoli/strain/top/top.jsp

    Google Scholar 

  • Itoh T, Aiba H, Baba T et al. (1996) A 460-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 40.1–50.0 min region on the linkage map. DNA Res 3(6):379–92

    Article  PubMed  CAS  Google Scholar 

  • Kato J, Hashimoto M (2007) Construction of consecutive deletions of the Escherichia coli chromosome. Mol Syst Biol 3:132

    Article  PubMed  Google Scholar 

  • Kitagawa M, Ara T, Arifuzzaman M et al. (2005) Complete set of ORF clones of Escherichia coli ASKA library (A Complete Set of E. coli K-12 ORF Archive): Unique Resources for Biological Research. DNA Res 12:291–99

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi K, Ehrlich SD, Albertini A et al. (2003) Essential Bacillus subtilis genes. Proc Natl Acad Sci U S A 100(8):4678–83

    Article  PubMed  CAS  Google Scholar 

  • Kohara Y, Akiyama K, Isono K (1987) The physical map of the whole E. coli chromosome: application of a new strategy for rapid analysis and sorting of a large genomic library. Cell 50(3):495–508

    Article  PubMed  CAS  Google Scholar 

  • Kolisnychenko V, Plunkett G, 3rd, Herring CD et al. (2002) Engineering a reduced Escherichia coli genome. Genome Res 12(4):640–7

    Article  PubMed  CAS  Google Scholar 

  • Miki T, Yamamoto Y, Matsuda H (2008) A novel, simple, high-throughput method for isolation of genome-wide transposon insertion mutants of Escherichia coli K-12. Methods Mol Biol 416:195–204

    Article  PubMed  CAS  Google Scholar 

  • Nagai T, Ibata K, Park ES et al. (2002) A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol 20(1):87–90

    Article  PubMed  CAS  Google Scholar 

  • Niki H (in preparation)

    Google Scholar 

  • Oshima T, Aiba H, Baba T et al. (1996) A 718-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 12.7–28.0 min region on the linkage map. DNA Res 3(3):137–55

    Article  PubMed  CAS  Google Scholar 

  • Posfai G, Plunkett G, 3rd, Feher T et al. (2006) Emergent properties of reduced-genome Escherichia coli. Science 312(5776):1044–6

    Article  PubMed  CAS  Google Scholar 

  • Riley M, Abe T, Arnaud MB et al. (2006) Escherichia coli K-12: a cooperatively developed annotation snapshot–2005. Nucleic Acids Res 34(1):1–9

    Article  PubMed  CAS  Google Scholar 

  • Saka K, Tadenuma M, Nakade S et al. (2005) A complete set of Escherichia coli open reading frames in mobile plasmids facilitating genetic studies. DNA Res 12(1):63–8

    Article  PubMed  CAS  Google Scholar 

  • Typas A, Nichols RJ, Siegele DA et al. (2008) High-throughput, quantitative analyses of genetic interactions in E. coli. Nat Methods

    Google Scholar 

  • Van Dyk TK, Wei Y, Hanafey MK et al. (2001) A genomic approach to gene fusion technology. Proc Natl Acad Sci U S A 98(5):2555–60

    Article  PubMed  Google Scholar 

  • Yamamoto N, Nakamichi T, Yoshino M et al. (2008a) unpublished

    Google Scholar 

  • Yamamoto N, Nakamichi T, Yoshino M et al. (2008b) in preparation

    Google Scholar 

  • Yamamoto Y, Aiba H, Baba T et al. (1997) Construction of a contiguous 874-kb sequence of the Escherichia coli-K12 genome corresponding to 50.0–68.8 min on the linkage map and analysis of its sequence features. DNA Res 4(2):91–113

    Article  PubMed  Google Scholar 

  • Yu BJ, Sung BH, Koob MD et al. (2002) Minimization of the Escherichia coli genome using a Tn5-targeted Cre/loxP excision system. Nat Biotechnol 20(10):1018–23

    Article  PubMed  CAS  Google Scholar 

  • Zaslaver A, Bren A, Ronen M et al. (2006) A comprehensive library of fluorescent transcriptional reporters for Escherichia coli. Nat Methods 3(8):623–8

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirotada Mori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Mori, H., Yamamoto, N., Dose, H., Nakahigashi, K., Datsenko, K.A., Wanner, B.L. (2009). Resources for Escherichia coli Systems Biology. In: Lee, S.Y. (eds) Systems Biology and Biotechnology of Escherichia coli . Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9394-4_5

Download citation

Publish with us

Policies and ethics