Skip to main content

Glucose and Acetate Metabolism in E. coli – System Level Analysis and Biotechnological Applications in Protein Production Processes

  • Chapter
Book cover Systems Biology and Biotechnology of Escherichia coli

Abstract

Escherichia coli is the main bacterial producer of heterologous proteins. The current production strategies aim at growing the bacteria to high density in order to achieve high levels of desired proteins. The major obstacle for reaching high cell densities with high product titers is the tendency of the bacteria to accumulate acetate during the unrestricted growth on glucose. Moreover, the high demand for precursors and energy required for the biosynthesis of the heterologous protein causes the cells to readjust their anabolic and catabolic reactions which, most often, aggravate the acetate problem. Implementing fed-batch protocols and employing more robust strains, such as E. coli B instead of K, can reduce acetate formation. Another approach is to implement metabolic engineering to minimize acetate formation by: (a) turning off genes which directly lead to the formation of acetate, (b) introducing genes that channel the carbon flow away from acetate towards other pathways, and (c) by reducing the glucose uptake through deleting or replacing genes of the sugar uptake system. Results show that a more general approach that focuses on global regulators and/or gene sets, encoding multiple pathways will be required to construct a robust strain capable of efficiently executing the production of recombinant proteins at high growth rates without the formation of toxic byproducts such as acetic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdel-Hamid AM, Attwood MM, Guest JR (2001) Pyruvate oxidase contributes to the aerobic growth efficiency of Escherichia coli. Microbiology 147(Pt 6):1483–98

    Google Scholar 

  • Akesson M, Karlsson EN, Hagander P et al. (1999) On-line detection of acetate formation in Escherichia coli cultures using dissolved oxygen responses to feed transients. Biotechnol Bioeng 64(5):590–8

    Article  PubMed  CAS  Google Scholar 

  • Andersen KB, von Meyenburg K (1980) Are growth rates of Escherichia coli in batch cultures limited by respiration? J Bacteriol 144(1):114–23

    PubMed  CAS  Google Scholar 

  • Aristidou AA, San KY, Bennett GN (1994) Modification of central metabolic pathway in Escherichia coli to reduce acetate accumulation by heterologous expression of the Bacillus-Subtilis acetolactate synthase gene. Biotechnol Bioeng 44(8):944–51

    Article  PubMed  CAS  Google Scholar 

  • Aristidou AA, San KY, Bennett GN (1995) Metabolic engineering of Escherichia coli to enhance recombinant protein-production through acetate reduction. Biotechnol Prog 11(4):475–78

    Article  PubMed  CAS  Google Scholar 

  • Aristidou AA, San KY, Bennett GN (1999) Improvement of biomass yield and recombinant gene expression in Escherichia coli by using fructose as the primary carbon source. Biotechnol Prog 15(1):140–45

    Article  PubMed  CAS  Google Scholar 

  • Arora KK, Pedersen PL (1995) Glucokinase of Escherichia coli - induction in response to the stress of overexpressing foreign proteins. Arch Biochem Biophys 319(2):574–78

    Article  PubMed  CAS  Google Scholar 

  • Backlund E, Markland K, Larsson G (2008) Cell engineering of Escherichia coli allows high cell density accumulation without fed-batch process control. Bioprocess Biosyst Eng 31(1):11–20

    Article  PubMed  CAS  Google Scholar 

  • Barrett CL, Herring CD, Reed JL et al. (2005) The global transcriptional regulatory network for metabolism in Escherichia coli exhibits few dominant functional states. Proc Natl Acad Sci USA 102(52):19103–8

    Article  PubMed  CAS  Google Scholar 

  • Bauer KA, Ben-Bassat A, Dawson M et al. (1990) Improved expression of human interleukin-2 in high-cell-density fermentor cultures of Escherichia coli K-12 by a phosphotransacetylase mutant. Appl Environ Microbiol 56(5):1296–302

    PubMed  CAS  Google Scholar 

  • Bhattacharya SK, Dubey, AK (1997) Effects of dissolved oxygen and oxygen mass transfer on overexpression of target gene in recombinant E. coli. Enzyme Microb Technol 20:355–60

    Article  CAS  Google Scholar 

  • Blattner FR, Plunkett G, 3rd, Bloch CA et al. (1997) The complete genome sequence of Escherichia coli K-12. Science 277(5331):1453–74

    Article  PubMed  CAS  Google Scholar 

  • Bledig SA, Ramseier TM, Saier MH, Jr (1996) FruR mediates catabolite activation of pyruvate kinase (pykF) gene expression in Escherichia coli. J Bacteriol 178(1):280–3

    PubMed  CAS  Google Scholar 

  • Boonstra B, French CE, Wainwright I et al. (1999) The udhA gene of Escherichia coli encodes a soluble pyridine nucleotide transhydrogenase. J Bacteriol 181(3):1030–4

    PubMed  CAS  Google Scholar 

  • Brown SW, Meyer, HP, Fiechter, A. (1985) Continuous production of human leukocyte interferon with Escherichia coli and continuous cell lysis in a two stage chemostat. Appl Microbiol Biotechnol 23:5–9

    Article  CAS  Google Scholar 

  • Causey TB, Shanmugam KT, Yomano LP et al. (2004) Engineering Escherichia coli for efficient conversion of glucose to pyruvate. Proc Natl Acad Sci USA 101(8):2235–40

    Article  PubMed  CAS  Google Scholar 

  • Causey TB, Zhou S, Shanmugam KT et al. (2003) Engineering the metabolism of Escherichia coli W3110 for the conversion of sugar to redox-neutral and oxidized products: Homoacetate production. Proc Natl Acad Sci USA 100(3):825–32

    Article  PubMed  CAS  Google Scholar 

  • Chang DE, Shin S, Rhee JS et al. (1999) Acetate metabolism in a pta mutant of Escherichia coli W3110: importance of maintaining acetyl coenzyme A flux for growth and survival. J Bacteriol 181(21):6656–63

    PubMed  CAS  Google Scholar 

  • Chao YP, Liao JC (1994) Metabolic responses to substrate futile cycling in Escherichia coli. J Biol Chem 269(7):5122–6

    PubMed  CAS  Google Scholar 

  • Chen R, Yap WM, Postma PW et al. (1997) Comparative studies of Escherichia coli strains using different glucose uptake systems: Metabolism and energetics. Biotechnol Bioeng 56(5):583–90

    Article  PubMed  CAS  Google Scholar 

  • Choi JH, Keum KC, Lee SJ (2006) Production of recombinant proteins by high cell density culture of Escherichia coli. Chem Eng Sci 61:876–85

    Article  CAS  Google Scholar 

  • Chou CH, Bennett GN, San KY (1994) Effect of modified glucose-uptake using genetic-engineering techniques on high-level recombinant Protein-Production in Escherichia coli Dense Cultures. Biotechnol Bioeng 44(8):952–60

    Article  PubMed  CAS  Google Scholar 

  • Contiero J, Beatty C, Kumari S et al. (2000) Effects of mutations in acetate metabolism on high-cell-density growth of Escherichia coli. J Ind Microbiol Biotechnol 24(6):421–30

    Article  CAS  Google Scholar 

  • Cortay JC, Bleicher F, Duclos B et al. (1989) Utilization of acetate in Escherichia coli: structural organization and differential expression of the ace operon. Biochimie 71(9–10):1043–9

    Google Scholar 

  • De Anda R, Lara AR, Hernandez V et al. (2006) Replacement of the glucose phosphotransferase transport system by galactose permease reduces acetate accumulation and improves process performance of Escherichia coli for recombinant protein production without impairment of growth rate. Metab Eng 8(3):281–90

    Article  PubMed  CAS  Google Scholar 

  • De Mey M, De Maeseneire S, Soetaert W et al. (2007) Minimizing acetate formation in E. coli fermentations. J Ind Microbiol Biotechnol 34(11):689–700

    Article  PubMed  CAS  Google Scholar 

  • Death A, Ferenci T (1994) Between feast and famine: endogenous inducer synthesis in the adaptation of Escherichia coli to growth with limiting carbohydrates. J Bacteriol 176(16):5101–7

    PubMed  CAS  Google Scholar 

  • Delgado J, Liao JC (1997) Inverse flux analysis for reduction of acetate excretion in Escherichia coli. Biotechnol Prog 13(4):361–7

    Article  PubMed  CAS  Google Scholar 

  • Diaz-Ricci JC, Regan L, Bailey JE (1991) Effect of alteration of the acetic acid synthesis pathway on the fermentation pattern of Escherichia coli. Biotechnol Bioeng 38(11):1318–24

    Article  PubMed  CAS  Google Scholar 

  • Dittrich CR, Bennett GN, San KY (2005a) Characterization of the acetate-producing pathways in Escherichia coli. Biotechnol Prog 21(4):1062–7

    Article  PubMed  CAS  Google Scholar 

  • Dittrich CR, Vadali RV, Bennett GN et al. (2005b) Redistribution of metabolic fluxes in the central aerobic metabolic pathway of E. coli mutant strains with deletion of the ackA-pta and poxB pathways for the synthesis of isoamyl acetate. Biotechnol Prog 21(2):627–31

    Google Scholar 

  • Durrschmid K, Reischer H, Schmidt-Heck W et al. (2008) Monitoring of transcriptome and proteome profiles to investigate the cellular response of E. coli towards recombinant protein expression under defined chemostat conditions. J Biotechnol 135(1):34–44

    Article  PubMed  CAS  Google Scholar 

  • Eiteman MA, Altman E (2006) Overcoming acetate in Escherichia coli recombinant protein fermentations. Trends Biotechnol 24(11):530–6

    Article  PubMed  CAS  Google Scholar 

  • El-Mansi EM, Holms WH (1989) Control of carbon flux to acetate excretion during growth of Escherichia coli in batch and continuous cultures. J Gen Microbiol 135(11):2875–83

    PubMed  CAS  Google Scholar 

  • El-Mansi EM, MacKintosh C, Duncan K et al. (1987) Molecular cloning and over-expression of the glyoxylate bypass operon from Escherichia coli ML308. Biochem J 242(3):661–5

    PubMed  CAS  Google Scholar 

  • El-Mansi M (2004) Flux to acetate and lactate excretions in industrial fermentations: physiological and biochemical implications. J Ind Microbiol Biotechnol 31(7):295–300

    PubMed  CAS  Google Scholar 

  • El-Mansi M (2005) Free CoA-mediated regulation of intermediary and central metabolism: an hypothesis which accounts for the excretion of alpha-ketoglutarate during aerobic growth of Escherichia coli on acetate. Res Microbiol 156(8):874–9

    Article  PubMed  CAS  Google Scholar 

  • El-Mansi M, Cozzone AJ, Shiloach J et al. (2006) Control of carbon flux through enzymes of central and intermediary metabolism during growth of Escherichia coli on acetate. Curr Opin Microbiol 9(2):173–9

    Article  PubMed  CAS  Google Scholar 

  • Enfors SO, Jahic M, Rozkov A et al. (2001) Physiological responses to mixing in large scale bioreactors. J Biotechnol 85(2):175–85

    Article  PubMed  CAS  Google Scholar 

  • Farmer WR, Liao JC (1997) Reduction of aerobic acetate production by Escherichia coli. Appl Environ Microbiol 63(8):3205–10

    PubMed  CAS  Google Scholar 

  • Flores N, de Anda R, Flores S et al. (2004a) Role of pyruvate oxidase in Escherichia coli strains lacking the phosphoenolpyruvate:carbohydrate phosphotransferase system. J Mol Microbiol Biotechnol 8(4):209–21

    Article  PubMed  CAS  Google Scholar 

  • Flores N, Leal L, Sigala JC et al. (2007) Growth recovery on glucose under aerobic conditions of an Escherichia coli strain carrying a phosphoenolpyruvate:carbohydrate phosphotransferase system deletion by inactivating arcA and overexpressing the genes coding for glucokinase and galactose permease. J Mol Microbiol Biotechnol 13(1–3):105–16

    Google Scholar 

  • Flores S, de Anda-Herrera R, Gosset G et al. (2004b) Growth-rate recovery of Escherichia coli cultures carrying a multicopy plasmid, by engineering of the pentose-phosphate pathway. Biotechnol Bioeng 87(4):485–94

    Google Scholar 

  • Flores S, Gosset G, Flores N et al. (2002) Analysis of carbon metabolism in Escherichia coli strains with an inactive phosphotransferase system by (13)C labeling and NMR spectroscopy. Metab Eng 4(2):124–37

    Article  PubMed  CAS  Google Scholar 

  • Franchini AG, Egli T (2006) Global gene expression in Escherichia coli K-12 during short-term and long-term adaptation to glucose-limited continuous culture conditions. Microbiology 152(Pt 7):2111–27

    Google Scholar 

  • George HA, Powell AL, Dahlgren ME et al. (1992) Physiological-Effects of Tgf-Alpha-Pe40 Expression in Recombinant Escherichia coli Jm109. Biotechnol Bioeng 40(3):437–45

    Article  PubMed  CAS  Google Scholar 

  • Gosset G (2005) Improvement of Escherichia coli production strains by modification of the phosphoenolpyruvate:sugar phosphotransferase system. Microb Cell Fact 4(1):14

    Article  PubMed  CAS  Google Scholar 

  • Haddadin FT, Harcum SW (2005) Transcriptome profiles for high-cell-density recombinant and wild-type Escherichia coli. Biotechnol Bioeng 90(2):127–53

    Article  PubMed  CAS  Google Scholar 

  • Hahm DH, Pan J, Rhee JS (1994) Characterization and evaluation of a pta (phosphotransacetylase) negative mutant of Escherichia coli HB101 as production host of foreign lipase. Appl Microbiol Biotechnol 42(1):100–7

    Article  PubMed  CAS  Google Scholar 

  • Harcum SW, Haddadin FT (2006) Global transcriptome response of recombinant Escherichia coli to heat-shock and dual heat-shock recombinant protein induction. J Ind Microbiol Biotechnol 33(10):801–14

    Article  PubMed  CAS  Google Scholar 

  • Hernandez-Montalvo V, Martinez A, Hernandez-Chavez G et al. (2003) Expression of galP and glk in a Escherichia coli PTS mutant restores glucose transport and increases glycolytic flux to fermentation products. Biotechnol Bioeng 83(6):687–94

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann F, Rinas U (2001) On-line estimation of the metabolic burden resulting from the synthesis of plasmid-encoded and heat-shock proteins by monitoring respiratory energy generation. Biotechnol Bioeng 76(4):333–40

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann F, Rinas U (2004) Stress induced by recombinant protein production in Escherichia coli. Adv Biochem Eng Biotechnol 89:73–92

    PubMed  CAS  Google Scholar 

  • Hoffmann F, Weber J, Rinas U (2002) Metabolic adaptation of Escherichia coli during temperature-induced recombinant protein production: 1. Readjustment of metabolic enzyme synthesis. Biotechnol Bioeng 80(3):313–9

    CAS  Google Scholar 

  • Hua Q, Yang C, Baba T et al. (2003) Responses of the central metabolism in Escherichia coli to phosphoglucose isomerase and glucose-6-phosphate dehydrogenase knockouts. J Bacteriol 185(24):7053–67

    Article  PubMed  CAS  Google Scholar 

  • Jensen EB,Carlsen S (1990) Production of recombinant human growth hormone in Escherichia coli: Expression of different precursors and physiological effects of glucose, acetate, and salts. Biotechnol Bioeng 36(1):1–11

    Article  PubMed  CAS  Google Scholar 

  • Jurgen B, Lin HY, Riemschneider S et al. (2000) Monitoring of genes that respond to overproduction of an insoluble recombinant protein in Escherichia coli glucose-limited fed-batch fermentations. Biotechnol Bioeng 70(2):217–24

    Article  PubMed  CAS  Google Scholar 

  • Kaga N, Umitsuki G, Clark DP et al. (2002) Extensive overproduction of the AdhE protein by rng mutations depends on mutations in the cra gene or in the Cra-box of the adhE promoter. Biochem Biophys Res Commun 295(1):92–7

    Article  PubMed  CAS  Google Scholar 

  • Kao KC, Tran LM, Liao JC (2005) A global regulatory role of gluconeogenic genes in Escherichia coli revealed by transcriptome network analysis. J Biol Chem 280(43):36079–87

    Article  PubMed  CAS  Google Scholar 

  • Kayser A, Weber J, Hecht V et al. (2005) Metabolic flux analysis of Escherichia coli in glucose-limited continuous culture. I. Growth-ratedependent metabolic efficiency at steady state. Microbiology-Sgm 151:693–706

    CAS  Google Scholar 

  • Kim JY, Cha HJ (2003) Down-regulation of acetate pathway through antisense strategy in Escherichia coli: improved foreign protein production. Biotechnol Bioeng 83(7):841–53

    Article  PubMed  CAS  Google Scholar 

  • Kirkpatrick C, Maurer LM, Oyelakin NE et al. (2001) Acetate and formate stress: opposite responses in the proteome of Escherichia coli. J Bacteriol 183(21):6466–77

    Article  PubMed  CAS  Google Scholar 

  • Kitano H (2002) Systems biology: a brief overview. Science 295(5560):1662–4

    Article  PubMed  CAS  Google Scholar 

  • Korz DJ, Rinas U, Hellmuth K et al. (1995) Simple fed-batch technique for high cell density cultivation of Escherichia coli. J Biotechnol 39(1):59–65

    Article  PubMed  CAS  Google Scholar 

  • Krin E, Laurent-Winter C, Bertin PN et al. (2003) Transcription regulation coupling of the divergent argG and metY promoters in Escherichia coli K-12. J Bacteriol 185(10):3139–46

    Article  PubMed  CAS  Google Scholar 

  • Kumari S, Beatty CM, Browning DF et al. (2000) Regulation of acetyl coenzyme A synthetase in Escherichia coli. J Bacteriol 182(15):4173–9

    Article  PubMed  CAS  Google Scholar 

  • Lara AR, Caspeta L, Gosset G et al. (2008) Utility of an Escherichia coli strain engineered in the substrate uptake system for improved culture performance at high glucose and cell concentrations: an alternative to fed-batch cultures. Biotechnol Bioeng 99(4):893–901

    Article  PubMed  CAS  Google Scholar 

  • Lee SY (1996) High cell-density culture of Escherichia coli. Trends Biotechnol 14(3):98–105

    Article  PubMed  CAS  Google Scholar 

  • Li M, Ho PY, Yao S et al. (2006) Effect of lpdA gene knockout on the metabolism in Escherichia coli based on enzyme activities, intracellular metabolite concentrations and metabolic flux analysis by 13C-labeling experiments. J Biotechnol 122(2):254–66

    Article  PubMed  CAS  Google Scholar 

  • Li M, Yao SJ, Shimizu K (2007) Effect of poxB gene knockout on metabolism in Escherichia coli based on growth characteristics and enzyme activities. World J Microbiol Biotechnol 23(4):573–80

    Article  CAS  Google Scholar 

  • Lin HY, Mathiszik B, Xu B et al. (2001) Determination of the maximum specific uptake capacities for glucose and oxygen in glucose-limited fed-batch cultivations of Escherichia coli. Biotechnol Bioeng 73(5):347–57

    Article  PubMed  CAS  Google Scholar 

  • Lin HY, Neubauer P (2000) Influence of controlled glucose oscillations on a fed-batch process of recombinant Escherichia coli. J Biotechnol 79(1):27–37

    Article  PubMed  CAS  Google Scholar 

  • Luli GW, Strohl WR (1990) Comparison of growth, acetate production, and acetate inhibition of Escherichia coli strains in batch and fed-batch fermentations. Appl Environ Microbiol 56(4):1004–11

    PubMed  CAS  Google Scholar 

  • Luo YE, Fan DD, Shang LA et al. (2008) Analysis of metabolic flux in Escherichia coli expressing human-like collagen in fed-batch culture. Biotechnol Lett 30(4):637–43

    Article  PubMed  CAS  Google Scholar 

  • Majewski RA, Domach MM (1990) Simple constrained-optimization view of acetate overflow in E. coli. Biotechnol Bioeng 35(7):732–8

    Article  PubMed  CAS  Google Scholar 

  • March JC, Eiteman MA, Altman E (2002) Expression of an anaplerotic enzyme, pyruvate carboxylase, improves recombinant protein production in Escherichia coli. Appl Environ Microbiol 68(11):5620–4

    Article  PubMed  CAS  Google Scholar 

  • Meyer D, Schneider-Fresenius C, Horlacher R et al. (1997) Molecular characterization of glucokinase from Escherichia coli K-12. J Bacteriol 179(4):1298–306

    PubMed  CAS  Google Scholar 

  • Meyer HP, Leist, C, Fiechter, A (1984) Acetate formation in continuous culture of D1 on defined and complex media. J Biotechnol 1:355–58

    Article  CAS  Google Scholar 

  • Negre D, Bonod-Bidaud C, Geourjon C et al. (1996) Definition of a consensus DNA-binding site for the Escherichia coli pleiotropic regulatory protein, FruR. Mol Microbiol 21(2):257–66

    Article  PubMed  CAS  Google Scholar 

  • Nelson D, Cox M (2003) Lehninger: Principles of Biochemistry. Worth Publishers, New York

    Google Scholar 

  • Neubauer P, Lin HY, Mathiszik B (2003) Metabolic load of recombinant protein production: inhibition of cellular capacities for glucose uptake and respiration after induction of a heterologous gene in Escherichia coli. Biotechnol Bioeng 83(1):53–64

    Article  PubMed  CAS  Google Scholar 

  • Noronha SB, Yeh HJ, Spande TF et al. (2000) Investigation of the TCA cycle and the glyoxylate shunt in Escherichia coli BL21 and JM109 using (13)C-NMR/MS. Biotechnol Bioeng 68(3):316–27

    Article  PubMed  CAS  Google Scholar 

  • Oh MK, Liao JC (2000) DNA microarray detection of metabolic responses to protein overproduction in Escherichia coli. Metab Eng 2(3):201–9

    Article  PubMed  CAS  Google Scholar 

  • Oh MK, Rohlin L, Kao KC et al. (2002) Global expression profiling of acetate-grown Escherichia coli. J Biol Chem 277(15):13175–83

    Article  PubMed  CAS  Google Scholar 

  • Ow DS, Lee RM, Nissom PM et al. (2007) Inactivating FruR global regulator in plasmid-bearing Escherichia coli alters metabolic gene expression and improves growth rate. J Biotechnol 131(3):261–9

    Article  PubMed  CAS  Google Scholar 

  • Patnaik R, Roof WD, Young RF et al. (1992) Stimulation of glucose catabolism in Escherichia coli by a potential futile cycle. J Bacteriol 174(23):7527–32

    PubMed  CAS  Google Scholar 

  • Peng L, Arauzo-Bravo MJ, Shimizu K (2004) Metabolic flux analysis for a ppc mutant Escherichia coli based on 13C-labelling experiments together with enzyme activity assays and intracellular metabolite measurements. FEMS Microbiol Lett 235(1):17–23

    Article  PubMed  CAS  Google Scholar 

  • Peng LF, Shimizu K (2006) Effect of fadR gene knockout on the metabolism of Escherichia coli based on analyses of protein expressions, enzyme activities and intracellular metabolite concentrations. Enzyme Microb Technol 38(3–4):512–20

    Article  CAS  Google Scholar 

  • Perrenoud A, Sauer U (2005) Impact of global transcriptional regulation by ArcA, ArcB, Cra, Crp, Cya, Fnr, and Mlc on glucose catabolism in Escherichia coli. J Bacteriol 187(9):3171–79

    Article  PubMed  CAS  Google Scholar 

  • Phue JN, Kedem B, Jaluria P et al. (2007) Evaluating microarrays using a serniparametric approach: Application to the central carbon metabolism of Escherichia coli BL21 and JM109. Genomics 89(2):300–5

    Article  PubMed  CAS  Google Scholar 

  • Phue JN, Noronha SB, Bhattacharyya R et al. (2005) Glucose metabolism at high density growth of E. coli B and E. coli K: Differences in metabolic pathways are responsible for efficient glucose utilization in E. coli B as determined by microarrays and northern blot analyses (vol 90, pg 805, 2005). Biotechnol Bioeng 91(5):649–49

    Article  CAS  Google Scholar 

  • Phue JN, Shiloach J (2004) Transcription levels of key metabolic genes are the cause for different glucose utilization pathways in E. coli B (BL21) and E. coli K (JM109). J Biotechnol 109(1–2):21–30

    Article  PubMed  CAS  Google Scholar 

  • Phue JN, Shiloach J (2005) Impact of dissolved oxygen concentration on acetate accumulation and physiology of E. coli BL21, evaluating transcription levels of key genes at different dissolved oxygen conditions. Metab Eng 7(5–6):353–63

    Article  PubMed  CAS  Google Scholar 

  • Picon A, de Mattos MJT, Postma PW (2005) Reducing the glucose uptake rate in Escherichia coli affects growth rate but not protein production. Biotechnol Bioeng 90(2): 191–200

    Article  PubMed  CAS  Google Scholar 

  • Ponce E (1999) Effect of growth rate reduction and genetic modifications on acetate accumulation and biomass yields in Escherichia coli. J Biosci Bioeng 87(6):775–80

    Article  PubMed  CAS  Google Scholar 

  • Ponce E, Flores N, Martinez A et al. (1995) Cloning of the 2 Pyruvate-Kinase Isoenzyme Structural Genes from Escherichia coli - the Relative Roles of These Enzymes in Pyruvate Biosynthesis. J Bacteriol 177(19):5719–22

    PubMed  CAS  Google Scholar 

  • Ponce E, Martinez A, Bolivar F et al. (1998) Stimulation of glucose catabolism through the pentose pathway by the absence of the two pyruvate kinase isoenzymes in Escherichia coli. Biotechnol Bioeng 58(2–3):292–5

    Article  PubMed  CAS  Google Scholar 

  • Ramseier TM, Bledig S, Michotey V et al. (1995) The Global Regulatory Protein FruR Modulates the Direction of Carbon Flow in Escherichia coli. Mol Microbiol 16(6): 1157–69

    Article  PubMed  CAS  Google Scholar 

  • Ramseier TM, Negre D, Cortay JC et al. (1993) In vitro binding of the pleiotropic transcriptional regulatory protein, FruR, to the fru, pps, ace, pts and icd operons of Escherichia coli and Salmonella typhimurium. J Mol Biol 234(1):28–44

    Article  PubMed  CAS  Google Scholar 

  • Richmond CS, Glasner JD, Mau R et al. (1999) Genome-wide expression profiling in Escherichia coli K-12. Nucleic Acids Res 27(19):3821–35

    Article  PubMed  CAS  Google Scholar 

  • Rinas U, Hoffmann F (2004) Selective leakage of host-cell proteins during high-cell-density cultivation of recombinant and non-recombinant Escherichia coli. Biotechnol Prog 20(3):679–87

    Article  PubMed  CAS  Google Scholar 

  • Rinas U, Hoffmann F, Betiku E et al. (2007) Inclusion body anatomy and functioning of chaperone-mediated in vivo inclusion body disassembly during high-level recombinant protein production in Escherichia coli. J Biotechnol 127(2):244–57

    Article  PubMed  CAS  Google Scholar 

  • Rinas U, Kracke-Helm, HA, Schügerl, K. (1989) Glucose as a substrate in recombinant strain fermentation technology. By-product formation, degradation and intracellular accumulation of recombinant protein. Appl Microbiol Biotechnol 31:163–7

    Article  CAS  Google Scholar 

  • Rosenthal AZ, Kim Y, Gralla JD (2008) Regulation of transcription by acetate in Escherichia coli: in vivo and in vitro comparisons. Mol Microbiol 68(4):907–17

    Article  PubMed  CAS  Google Scholar 

  • Rydstrom J (1977) Energy-linked nicotinamide nucleotide transhydrogenases. Biochim Biophys Acta 463(2):155–84

    PubMed  CAS  Google Scholar 

  • Saier MH, Jr (1996) Cyclic AMP-independent catabolite repression in bacteria. FEMS Microbiol Lett 138(2–3):97–103

    Google Scholar 

  • Sauer U, Canonaco F, Heri S et al. (2004) The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli. J Biol Chem 279(8):6613–9

    Article  PubMed  CAS  Google Scholar 

  • Savinell JM, Palsson BO (1992) Optimal selection of metabolic fluxes for in vivo measurement. II. Application to Escherichia coli and hybridoma cell metabolism. J Theor Biol 155(2):215–42

    Article  PubMed  CAS  Google Scholar 

  • Schmidt M, Babu KR, Khanna N et al. (1999a) Temperature-induced production of recombinant human insulin in high-cell density cultures of recombinant Escherichia coli. J Biotechnol 68(1):71–83

    Article  PubMed  CAS  Google Scholar 

  • Schmidt M, Viaplana E, Hoffmann F et al. (1999b) Secretion-dependent proteolysis of heterologous protein by recombinant Escherichia coli is connected to an increased activity of the energy-generating dissimilatory pathway. Biotechnol Bioeng 66(1):61–7

    Article  PubMed  CAS  Google Scholar 

  • Shiloach J, Fass R (2005) Growing E. coli to high cell density–a historical perspective on method development. Biotechnol Adv 23(5):345–57

    Article  PubMed  CAS  Google Scholar 

  • Shiloach J, Kaufman J, Guillard AS et al. (1996) Effect of glucose supply strategy on acetate accumulation, growth, and recombinant protein production by Escherichia coli BL21 (lambdaDE3) and Escherichia coli JM109. Biotechnol Bioeng 49(4):421–8

    Article  PubMed  CAS  Google Scholar 

  • Shimizu N, Fukuzono, S, Fujimori, K (1988) Fed-batch cultures of recombinant Escherichia coli with inhibitory substance concentration monitoring. J Ferment Technol 66:187–91

    Article  CAS  Google Scholar 

  • Siddiquee KA, Arauzo-Bravo MJ, Shimizu K (2004) Effect of a pyruvate kinase (pykF-gene) knockout mutation on the control of gene expression and metabolic fluxes in Escherichia coli. FEMS Microbiol Lett 235(1):25–33

    Article  PubMed  CAS  Google Scholar 

  • Stouthamer AH (1977) Energetic aspects of the growth of micro-organisms. Symp Soc Gen Microbiol 27:285–315

    CAS  Google Scholar 

  • Stouthamer AH (1980) Energetic regulation of microbial growth. Vierteljahresschrift der Naturforschenden Gesellschaft in Zürich 125:43–60

    CAS  Google Scholar 

  • Stouthamer AH, van Verseveld HW (1986) Stoichiometry of microbial growth. Compr Biotechnol:215–238

    Google Scholar 

  • Tao H, Bausch C, Richmond C et al. (1999) Functional genomics: expression analysis of Escherichia coli growing on minimal and rich media. J Bacteriol 181(20):6425–40

    PubMed  CAS  Google Scholar 

  • Tomar A, Eiteman MA, Altman E (2003) The effect of acetate pathway mutations on the production of pyruvate in Escherichia coli. Appl Microbiol Biotechnol 62(1):76–82

    Article  PubMed  CAS  Google Scholar 

  • Vallejo LF, Brokelmann M, Marten S et al. (2002) Renaturation and purification of bone morphogenetic protein-2 produced as inclusion bodies in high-cell-density cultures of recombinant Escherichia coli. J Biotechnol 94(2):185–94

    Article  PubMed  CAS  Google Scholar 

  • Vallino J, Stephanopoulos G (1990) Flux determinaion in cellular bioreaction networks: applications to lysine fermentations. In: Todd P, et al. (ed) Frontiers in bioprocessing, CRC Press, Boca Raton, FL

    Google Scholar 

  • van de Walle M, Shiloach J (1998) Proposed mechanism of acetate accumulation in two recombinant Escherichia coli strains during high density fermentation. Biotechnol Bioeng 57(1):71–8

    Article  PubMed  Google Scholar 

  • Veit A, Polen T, Wendisch VF (2007) Global gene expression analysis of glucose overflow metabolism in Escherichia coli and reduction of aerobic acetate formation. Appl Microbiol Biotechnol 74(2):406–21

    Article  PubMed  CAS  Google Scholar 

  • Vemuri GN, Altman E, Sangurdekar DP et al. (2006a) Overflow metabolism in Escherichia coli during steady-state growth: transcriptional regulation and effect of the redox ratio. Appl Environ Microbiol 72(5):3653–61

    Article  PubMed  CAS  Google Scholar 

  • Vemuri GN, Eiteman MA, Altman E (2006b) Increased recombinant protein production in Escherichia coli strains with overexpressed water-forming NADH oxidase and a deleted ArcA regulatory protein. Biotechnol Bioeng 94(3):538–42

    Article  PubMed  CAS  Google Scholar 

  • Vemuri GN, Minning TA, Altman E et al. (2005) Physiological response of central metabolism in Escherichia coli to deletion of pyruvate oxidase and introduction of heterologous pyruvate carboxylase. Biotechnol Bioeng 90(1):64–76

    Article  PubMed  CAS  Google Scholar 

  • Wagner S, Baars L, Ytterberg AJ et al. (2007) Consequences of membrane protein overexpression in Escherichia coli. Mol Cell Proteomics 6(9):1527–50

    Article  PubMed  CAS  Google Scholar 

  • Weber J, Hoffmann F, Rinas U (2002) Metabolic adaptation of Escherichia coli during temperature-induced recombinant protein production: 2. Redirection of metabolic fluxes. Biotechnol Bioeng 80(3):320–30

    Article  PubMed  CAS  Google Scholar 

  • Wick LM, Quadroni M, Egli T (2001) Short- and long-term changes in proteome composition and kinetic properties in a culture of Escherichia coli during transition from glucose-excess to glucose-limited growth conditions in continuous culture and vice versa. Environ Microbiol 3(9):588–99

    Article  PubMed  CAS  Google Scholar 

  • Wittmann C, Weber J, Betiku E et al. (2007) Response of fluxome and metabolome to temperature-induced recombinant protein synthesis in Escherichia coli. J Biotechnol 132(4):375–84

    Article  PubMed  CAS  Google Scholar 

  • Wolfe AJ (2005) The acetate switch. Microbiol Mol Biol Rev 69(1):12–50

    Article  PubMed  CAS  Google Scholar 

  • Wong MS, Wu S, Causey TB et al. (2008) Reduction of acetate accumulation in Escherichia coli cultures for increased recombinant protein production. Metab Eng 10(2):97–108

    Article  PubMed  CAS  Google Scholar 

  • Zhu T, Phalakornkule C, Koepsel RR et al. (2001) Cell growth and by-product formation in a pyruvate kinase mutant of E. coli. Biotechnol Prog 17(4):624–8

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Shiloach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Shiloach, J., Rinas, U. (2009). Glucose and Acetate Metabolism in E. coli – System Level Analysis and Biotechnological Applications in Protein Production Processes. In: Lee, S.Y. (eds) Systems Biology and Biotechnology of Escherichia coli . Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9394-4_18

Download citation

Publish with us

Policies and ethics