Skip to main content

Plasmid Regulation and Systems-Level Effects on Escherichia coli Metabolism

  • Chapter
Systems Biology and Biotechnology of Escherichia coli

Abstract

ColE1-type plasmids are multicopy extra-chromosomal vectors with wide-spread applications in many areas of genetic engineering and biotechnology. While the regulation of ColE1 replication is primarily effected by plasmid-encoded factors, the continual discovery of new host-encoded factors modulating ColE1 replication such as RNases and exoribonucleases reveals that the Escherichia coli host could exert a considerable effect on plasmid replication as well. On the other hand, the presence of plasmids also imposes a metabolic burden impeding host growth and metabolism. The basis of this metabolic burden is multifaceted and appears to involve both the plasmid-related drain of cellular resources from the host cell and the perturbation of cellular regulatory state mediated by global transcriptional regulators. Through the systems-level analysis by “omics” tools and in-silico modeling, we are gaining better understanding of plasmid-host interactions. This chapter will discuss the interaction of host-encoded factors with the regulation of ColE1-type plasmid replication and the systems-level effects of these multicopy plasmids on metabolism of the E. coli host.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson RJ, Schneider J (2007) Plasmid DNA and viral vector-based vaccines for the treatment of cancer. Vaccine 25 Suppl 2:B24–34

    Google Scholar 

  • Andersson L, Yang S, Neubauer P et al. (1996) Impact of plasmid presence and induction on cellular responses in fed batch cultures of Escherichia coli. J Biotechnol 46(3):255–63

    Article  PubMed  CAS  Google Scholar 

  • Apirion D (1978) Isolation, genetic mapping and some characterization of a mutation in Escherichia coli that affects the processing of ribonuleic acid. Genetics 90(4):659–71

    PubMed  CAS  Google Scholar 

  • Babitzke P, Granger L, Olszewski J et al. (1993) Analysis of mRNA decay and rRNA processing in Escherichia coli multiple mutants carrying a deletion in RNase III. J Bacteriol 175(1):229–39

    PubMed  CAS  Google Scholar 

  • Babu MM, Luscombe NM, Aravind L et al. (2004) Structure and evolution of transcriptional regulatory networks. Curr Opin Struct Biol 14(3):283–91

    Article  PubMed  CAS  Google Scholar 

  • Balbas P, Soberon X, Merino E et al. (1986) Plasmid vector pBR322 and its special-purpose derivatives–a review. Gene 50(1–3):3–40

    Article  PubMed  CAS  Google Scholar 

  • Bentley WE, Mirjalili N, Andersen DC et al. (1990) Plasmid-encoded protein: The principal factor in the “metabolic burden” associated with recombinant bacteria. Biotechnol Bioeng 35(7): 668–81

    Article  PubMed  CAS  Google Scholar 

  • Binnie U, Wong K, McAteer S et al. (1999) Absence of RNASE III alters the pathway by which RNAI, the antisense inhibitor of ColE1 replication, decays. Microbiology 145(Pt 11): 3089–100

    PubMed  CAS  Google Scholar 

  • Birnbaum S, Bailey JE (1991) Plasmid presence changes the relative levels of many host cell proteins and ribosome components in recombinant Escherichia coli. Biotechnol Bioeng 37(8):736–45

    Article  PubMed  CAS  Google Scholar 

  • Bolivar F, Rodriguez RL, Greene PJ et al. (1977) Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. Gene 2(2):95–113

    CAS  Google Scholar 

  • Botsford JL, Harman JG (1992) Cyclic AMP in prokaryotes. Microbiol Rev 56(1):100–22

    PubMed  CAS  Google Scholar 

  • Brendel V, Perelson AS (1993) Quantitative model of ColE1 plasmid copy number control. J Mol Biol 229(4):860–72

    Article  PubMed  CAS  Google Scholar 

  • Cabello F, Timmis K, Cohen SN (1976) Replication control in a composite plasmid constructed by in vitro linkage of two distinct replicons. Nature 259(5541):285–90

    Article  PubMed  CAS  Google Scholar 

  • Cashel M, Gentry DR, Hernandez VJ et al. (1996) The stringent response. In: (ed) In Escherichia coli and Salmonella, Cellular and molecular biology. Neidhardt FC

    Google Scholar 

  • Celesnik H, Deana A, Belasco JG (2007) Initiation of RNA decay in Escherichia coli by 5′ pyrophosphate removal. Mol Cell 27(1):79–90

    Article  PubMed  CAS  Google Scholar 

  • Cesareni G, Helmer-Citterich M, Castagnoli L (1991) Control of ColE1 plasmid replication by antisense RNA. Trends Genet 7(7):230–5

    Article  PubMed  CAS  Google Scholar 

  • Cesareni G, Muesing MA, Polisky B (1982) Control of ColE1 DNA replication: the rop gene product negatively affects transcription from the replication primer promoter. Proc Natl Acad Sci USA 79(20):6313–7

    Article  PubMed  CAS  Google Scholar 

  • Chan PT, Ohmori H, Tomizawa J et al. (1985) Nucleotide sequence and gene organization of ColE1 DNA. J Biol Chem 260(15):8925–35

    PubMed  CAS  Google Scholar 

  • Cheah UE, Weigand WA, Stark BC (1987) Effects of recombinant plasmid size on cellular processes in Escherichia coli. Plasmid 18(2):127–34

    Article  PubMed  CAS  Google Scholar 

  • Cohen HJ (1973) Peroxide detoxification affecting the production of immunoglobulin by mouse myeloma tumor cells in vitro. Experientia 29(10):1285–7

    Article  PubMed  CAS  Google Scholar 

  • Cohen SN (1993) Bacterial plasmids: their extraordinary contribution to molecular genetics. Gene 135(1–2):67–76

    Article  PubMed  CAS  Google Scholar 

  • Cohen SN, Chang AC, Hsu L (1972) Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. Proc Natl Acad Sci USA 69(8):2110–4

    Article  PubMed  CAS  Google Scholar 

  • Cserjan-Puschmann M, Kramer W, Duerrschmid E et al. (1999) Metabolic approaches for the optimisation of recombinant fermentation processes. Appl Microbiol Biotechnol 53(1):43–50

    Article  PubMed  CAS  Google Scholar 

  • da Silva NA, Bailey JE (1986) Theoretical growth yield estimates for recombinant cells. Biotechnol Bioeng 28(5):741–6

    Article  PubMed  Google Scholar 

  • Davison J (1984) Mechanism of control of DNA replication and incompatibility in ColE1-type plasmids–a review. Gene 28(1):1–15

    Article  PubMed  CAS  Google Scholar 

  • Deana A, Celesnik H, Belasco JG (2008) The bacterial enzyme RppH triggers messenger RNA degradation by 5 pyrophosphate removal. Nature 451(7176):355–8

    Article  PubMed  CAS  Google Scholar 

  • Diaz-Ricci JC, Bode J, Rhee JI et al. (1995) Gene expression enhancement due to plasmid maintenance. J Bacteriol 177(22):6684–7

    PubMed  CAS  Google Scholar 

  • Diaz-Ricci JC, Tsu M, Bailey JE (1992) Influence of expression of the pet operon on intracellular metabolic fluxes of Escherichia coli. Biotechnol Bioeng 39(1):59–65

    Article  PubMed  CAS  Google Scholar 

  • Diaz Ricci JC, Hernandez ME (2000) Plasmid effects on Escherichia coli metabolism. Crit Rev Biotechnol 20(2):79–108

    Article  PubMed  CAS  Google Scholar 

  • Donovan WP, Kushner SR (1986) Polynucleotide phosphorylase and ribonuclease II are required for cell viability and mRNA turnover in Escherichia coli K-12. Proc Natl Acad Sci USA 83(1):120–4

    Article  PubMed  CAS  Google Scholar 

  • Flores S, de Anda-Herrera R, Gosset G et al. (2004) Growth-rate recovery of Escherichia coli cultures carrying a multicopy plasmid, by engineering of the pentose-phosphate pathway. Biotechnol Bioeng 87(4):485–94

    Article  PubMed  CAS  Google Scholar 

  • Fraenkel DG (1996) Glycolysis. In: Neidhardt F (ed) Escherichia coli and Salmonella, American Society for Microbiology, Washington, D.C

    Google Scholar 

  • Glick BR (1995) Metabolic load and heterologous gene expression. Biotechnol Adv 13(2):247–61

    Article  PubMed  CAS  Google Scholar 

  • Gottesman S (1984) Bacterial regulation: global regulatory networks. Annu Rev Genet 18:415–41

    Article  PubMed  CAS  Google Scholar 

  • Hayes W (1953) Observations on a transmissible agent determining sexual differentiation in Bacterium coli. J Gen Microbiol 8(1):72–88

    PubMed  CAS  Google Scholar 

  • Holms H (1996) Flux analysis and control of the central metabolic pathways in Escherichia coli. FEMS Microbiol Rev 19(2):85–116

    Article  PubMed  CAS  Google Scholar 

  • Itoh T, Tomizawa J (1979) Initiation of replication of plasmid ColE1 DNA by RNA polymerase, ribonuclease H, and DNA polymerase I. Cold Spring Harb Symp Quant Biol 43(Pt 1):409–17

    PubMed  CAS  Google Scholar 

  • Joseleau-Petit D, Thevenet D, D’Ari R (1994) ppGpp concentration, growth without PBP2 activity, and growth-rate control in Escherichia coli. Mol Microbiol 13(5):911–7

    Article  PubMed  CAS  Google Scholar 

  • Kaberdin VR, Chao YH, Lin-Chao S (1996) RNase E cleaves at multiple sites in bubble regions of RNA I stem loops yielding products that dissociate differentially from the enzyme. J Biol Chem 271(22):13103–9

    Article  PubMed  CAS  Google Scholar 

  • Kahn M, Kolter R, Thomas C et al. (1979) Plasmid cloning vehicles derived from plasmids ColE1, F, R6K, and RK2. Methods Enzymol 68:268–80

    Article  PubMed  CAS  Google Scholar 

  • Khosravi M, Ryan W, Webster DA et al. (1990) Variation of oxygen requirement with plasmid size in recombinant Escherichia coli. Plasmid 23(2):138–43

    Article  PubMed  CAS  Google Scholar 

  • Kues U, Stahl U (1989) Replication of plasmids in gram-negative bacteria. Microbiol Rev 53(4):491–516

    PubMed  CAS  Google Scholar 

  • Lambert CM, Wrighton CJ, Strike P (1987) Characterization of the drug resistance plasmid NTP16. Plasmid 17(1):26–36

    Article  PubMed  CAS  Google Scholar 

  • Lederberg J (1998) Plasmid (1952–1997). Plasmid 39(1):1–9

    Article  PubMed  CAS  Google Scholar 

  • Lederberg J, Cavalli LL, Lederberg EM (1952) Sex Compatibility in Escherichia coli. Genetics 37(6):720–30

    PubMed  CAS  Google Scholar 

  • Ledley FD (1995) Nonviral gene therapy: the promise of genes as pharmaceutical products. Hum Gene Ther 6(9):1129–44

    Article  PubMed  CAS  Google Scholar 

  • Lee CL, Ow DS, Oh SK (2006) Quantitative real-time polymerase chain reaction for determination of plasmid copy number in bacteria. J Microbiol Methods 65(2):258–67

    Article  PubMed  CAS  Google Scholar 

  • Lee K, Zhan X, Gao J et al. (2003) RraA. a protein inhibitor of RNase E activity that globally modulates RNA abundance in E. coli. Cell 114(5):623–34

    CAS  Google Scholar 

  • Lin-Chao S, Bremer H (1986) Effect of the bacterial growth rate on replication control of plasmid pBR322 in Escherichia coli. Mol Gen Genet 203(1):143–9

    Article  PubMed  CAS  Google Scholar 

  • Lin-Chao S, Chen WT, Wong TT (1992) High copy number of the pUC plasmid results from a Rom/Rop-suppressible point mutation in RNA II. Mol Microbiol 6(22):3385–93

    Article  PubMed  CAS  Google Scholar 

  • Lin-Chao S, Cohen SN (1991) The rate of processing and degradation of antisense RNAI regulates the replication of ColE1-type plasmids in vivo. Cell 65(7):1233–42

    Article  PubMed  CAS  Google Scholar 

  • Liu F, Huang L (2002) Development of non-viral vectors for systemic gene delivery. J Control Release 78(1–3):259–66

    Google Scholar 

  • Lovett MA, Helinski DR (1976) Method for the isolation of the replication region of a bacterial replicon: construction of a mini-F’kn plasmid. J Bacteriol 127(2):982–7

    PubMed  CAS  Google Scholar 

  • Ma HW, Kumar B, Ditges U et al. (2004) An extended transcriptional regulatory network of Escherichia coli and analysis of its hierarchical structure and network motifs. Nucleic Acids Res 32(22):6643–9

    Article  PubMed  CAS  Google Scholar 

  • Mackie GA (1998) Ribonuclease E is a 5′-end-dependent endonuclease. Nature 395(6703):720–3

    Article  PubMed  CAS  Google Scholar 

  • Magnusson LU, Farewell A, Nystrom T (2005) ppGpp: a global regulator in Escherichia coli. Trends Microbiol 13(5):236–42

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Antonio A, Collado-Vides J (2003) Identifying global regulators in transcriptional regulatory networks in bacteria. Curr Opin Microbiol 6(5):482–9

    Article  PubMed  CAS  Google Scholar 

  • Masters M, March JB, Oliver IR et al. (1990) A possible role for the pcnB gene product of Escherichia coli in modulating RNA: RNA interactions. Mol Gen Genet 220(2):341–4

    Article  PubMed  CAS  Google Scholar 

  • Masukata H, Tomizawa J (1986) Control of primer formation for ColE1 plasmid replication: conformational change of the primer transcript. Cell 44(1):125–36

    Article  PubMed  CAS  Google Scholar 

  • Naito S, Uchida H (1986) RNase H and replication of ColE1 DNA in Escherichia coli. J Bacteriol 166(1):143–7

    PubMed  CAS  Google Scholar 

  • Nielsen J (2003) It is all about metabolic fluxes. J Bacteriol 185(24):7031–5

    Article  PubMed  CAS  Google Scholar 

  • Nystrom T (2004) Growth versus maintenance: a trade-off dictated by RNA polymerase availability and sigma factor competition? Mol Microbiol 54(4):855–62

    Article  PubMed  Google Scholar 

  • Oh MK, Liao JC (2000) Gene expression profiling by DNA microarrays and metabolic fluxes in Escherichia coli. Biotechnol Prog 16(2):278–86

    Article  PubMed  CAS  Google Scholar 

  • Ow DS, Lee RM, Nissom PM et al. (2007) Inactivating FruR global regulator in plasmid-bearing Escherichia coli alters metabolic gene expression and improves growth rate. J Biotechnol 131(3):261–9

    Article  PubMed  CAS  Google Scholar 

  • Ow DSW, Lee DY, Yap MGS et al. (2009) Identification of Cellular Objective for Elucidating the Physiological State of Plasmid-Bearing Escherichia coli Using Genome-Scale in silico Analysis. Biotechnol Prog 25(1)

    Google Scholar 

  • Ow DSW, Nissom PM, Philp R et al. (2006) Global transcriptional analysis of metabolic burden due to plasmid maintenance in Escherichia coli DH5α during batch fermentation. Enzyme Microb Technol 39(3):391–398

    Article  CAS  Google Scholar 

  • Ozkan P, Sariyar B, Utkur FO et al. (2005) Metabolic flux analysis of recombinant protein overproduction in Escherichia coli. Biochem Eng J 22(2):167–195

    Article  Google Scholar 

  • Panayotatos N (1984) DNA replication regulated by the priming promoter. Nucleic Acids Res 12(6):2641–8

    Article  PubMed  CAS  Google Scholar 

  • Paulsson J, Ehrenberg M (1998) Trade-off between segregational stability and metabolic burden: a mathematical model of plasmid ColE1 replication control. J Mol Biol 279(1):73–88

    Article  PubMed  CAS  Google Scholar 

  • Peretti SW, Bailey JE (1987) Simulations of host-plasmid interactions in Escherichia coli: Copy number, promoter strength, and ribosome binding site strength effects on metabolic activity and plasmid gene expression. Biotechnol Bioeng 29(3):316–28

    Article  PubMed  CAS  Google Scholar 

  • Pogliano J (2002) Dynamic cellular location of bacterial plasmids. Curr Opin Microbiol 5(6): 586–90

    Article  PubMed  CAS  Google Scholar 

  • Polisky B, Zhang XY, Fitzwater T (1990) Mutations affecting primer RNA interaction with the replication repressor RNA I in plasmid CoIE1: potential RNA folding pathway mutants. Embo J 9(1):295–304

    PubMed  CAS  Google Scholar 

  • Ramseier TM (1996) Cra and the control of carbon flux via metabolic pathways. Res Microbiol 147(6–7):489–93

    Article  PubMed  CAS  Google Scholar 

  • Ramseier TM, Bledig S, Michotey V et al. (1995) The global regulatory protein FruR modulates the direction of carbon flow in Escherichia coli. Mol Microbiol 16(6):1157–69

    Article  PubMed  CAS  Google Scholar 

  • Sabnis NA, Yang H, Romeo T (1995) Pleiotropic regulation of central carbohydrate metabolism in Escherichia coli via the gene csrA. J Biol Chem 270(49):29096–104

    Article  PubMed  CAS  Google Scholar 

  • Saier MH, Jr. (1996) Cyclic AMP-independent catabolite repression in bacteria. FEMS Microbiol Lett 138(2–3):97–103

    Article  PubMed  CAS  Google Scholar 

  • Sarkar N, Cao GJ, Jain C (2002) Identification of multicopy suppressors of the pcnB plasmid copy number defect in Escherichia coli. Mol Genet Genomics 268(1):62–9

    Article  PubMed  CAS  Google Scholar 

  • Schmidt L, Inselburg J (1982) ColE1 copy number mutants. J Bacteriol 151(2):845–54

    PubMed  CAS  Google Scholar 

  • Selzer G, Som T, Itoh T et al. (1983) The origin of replication of plasmid p15A and comparative studies on the nucleotide sequences around the origin of related plasmids. Cell 32(1):119–29

    Article  PubMed  CAS  Google Scholar 

  • Seo JH, Bailey JE (1985) Effects of recombinant plasmid content on growth properties and cloned gene product formation in Escherichia coli. Biotechnol Bioeng 27(12):1668–74

    Article  PubMed  CAS  Google Scholar 

  • Regulation of Ribonuclease E activity by the L4 ribosomal protein of Escherichia coli. Proc Natl Acad Sci USA (In press)

    Google Scholar 

  • Stent GS, Brenner S (1961) A genetic locus for the regulation of ribonucleic acid synthesis. Proc Natl Acad Sci USA 47:2005–14

    Article  PubMed  CAS  Google Scholar 

  • Timmis K, Cabello F,Cohen SN (1975) Cloning, isolation, and characterization of replication regions of complex plasmid genomes. Proc Natl Acad Sci USA 72(6):2242–6

    Article  PubMed  CAS  Google Scholar 

  • Togna AP, Shuler ML, Wilson DB (1993) Effects of plasmid copy number and runaway plasmid replication on overproduction and excretion of beta-lactamase from Escherichia coli. Biotechnol Prog 9(1):31–9

    Article  PubMed  CAS  Google Scholar 

  • Tomizawa J, Itoh T, Selzer G et al. (1981) Inhibition of ColE1 RNA primer formation by a plasmid-specified small RNA. Proc Natl Acad Sci USA 78(3):1421–5

    Article  PubMed  CAS  Google Scholar 

  • Tomizawa J, Som T (1984) Control of ColE1 plasmid replication: enhancement of binding of RNA I to the primer transcript by the Rom protein. Cell 38(3):871–8

    Article  PubMed  CAS  Google Scholar 

  • Vemuri GN, Aristidou AA (2005) Metabolic engineering in the -omics era: elucidating and modulating regulatory networks. Microbiol Mol Biol Rev 69(2):197–216

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Le G, Shi Y et al. (2002) A model for regulation of ColE1-like plasmid replication by uncharged tRNAs in amino acid-starved Escherichia coli cells. Plasmid 47(2):69–78

    Google Scholar 

  • Wang Z, Xiang L, Shao J et al. (2006) Effects of the presence of ColE1 plasmid DNA in Escherichia coli on the host cell metabolism. Microb Cell Fact 5:34

    Article  PubMed  Google Scholar 

  • Wang Z, Yuan Z, Hengge UR (2004) Processing of plasmid DNA with ColE1-like replication origin. Plasmid 51(3):149–61

    Article  PubMed  CAS  Google Scholar 

  • Watanabe T, Takano T, Arai T et al. (1966) Episome-mediated Transfer of Drug Resistance in Enterobacteriaceae X. Restriction and Modification of Phages by fi R Factors. J Bacteriol 92(2):477–486

    Article  PubMed  CAS  Google Scholar 

  • Wegrzyn G (1999) Replication of plasmids during bacterial response to amino acid starvation. Plasmid 41(1):1–16

    Article  PubMed  CAS  Google Scholar 

  • Weide B, Garbe C, Rammensee HG et al. (2008) Plasmid DNA- and messenger RNA-based anti-cancer vaccination. Immunol Lett 115(1):33–42

    Article  PubMed  CAS  Google Scholar 

  • Wrobel B, Wegrzyn G (1998) Replication regulation of ColE1-like plasmids in amino acid-starved Escherichia coli. Plasmid 39(1):48–62

    Article  PubMed  CAS  Google Scholar 

  • Xu F, Cohen SN (1995) RNA degradation in Escherichia coli regulated by 3^′ adenylation and 5^′ phosphorylation. Nature 374(6518):180–3

    Article  PubMed  CAS  Google Scholar 

  • Xu F, Lin-Chao S, Cohen SN (1993) The Escherichia coli pcnB gene promotes adenylylation of antisense RNAI of ColE1-type plasmids in vivo and degradation of RNAI decay intermediates. Proc Natl Acad Sci USA 90(14):6756–60

    Article  PubMed  CAS  Google Scholar 

  • Xu FF, Gaggero C, Cohen SN (2002) Polyadenylation can regulate ColE1 type plasmid copy number independently of any effect on RNAI decay by decreasing the interaction of antisense RNAI with its RNAII target. Plasmid 48(1):49–58

    Article  PubMed  CAS  Google Scholar 

  • Yao S, Helinski DR, Toukdarian A (2007) Localization of the naturally occurring plasmid ColE1 at the cell pole. J Bacteriol 189(5):1946–53

    Article  PubMed  CAS  Google Scholar 

  • Yavachev L, Ivanov I (1988) What does the homology between E. coli tRNAs and RNAs controlling ColE1 plasmid replication mean? J Theor Biol 131(2):235–41

    Article  PubMed  CAS  Google Scholar 

  • Yoon SH, Han MJ, Lee SY et al. (2003) Combined transcriptome and proteome analysis of Escherichia coli during high cell density culture. Biotechnol Bioeng 81(7):753–67

    Article  PubMed  CAS  Google Scholar 

  • Zverev VV, Kuzmin NP, Zuyeva LA et al. (1984) Regions of homology in small colicinogenic plasmids. Plasmid 12(3):203–5

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dave Siak-Wei Ow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ow, D.SW., Lee, DY., Tung, HH., Lin-Chao, S. (2009). Plasmid Regulation and Systems-Level Effects on Escherichia coli Metabolism. In: Lee, S.Y. (eds) Systems Biology and Biotechnology of Escherichia coli . Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9394-4_14

Download citation

Publish with us

Policies and ethics