Femtosecond Laser Pulse Interactions with Metals

  • Bernd Hüttner
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 119)


A new era of fundamental research and its application to surface processing has been created by the invention of femtosecond laser pulses. Theoretical aspects of these processes are considered in this chapter. The differences between these very short pulses and the more conventional longer pulses are discussed, including the electron-electron scattering time and the non-equilibrium electron distribution. The material properties of objects exposed to femtosecond laser pulses are discussed with particular reference to their optical and thermal properties. The problem of determining the electron and phonon temperature distributions is addressed by means of the two-temperature model and the extended two-temperature model.


Electron Temperature Femtosecond Laser Femtosecond Laser Pulse Ultrashort Laser Pulse Physical Review Letter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Semerok A, Chaleard C, Detalle V, Lacour J-L, Mauchien P, Meynadier P, Nouvellon C, Salle B, Palianov P, Perdrix M and Petite G (1999) Experimental investigations of laser ablation efficiency of pure metals with femto, pico and nanosecond pulses. Applied Surface Science 138–139: 311–314CrossRefGoogle Scholar
  2. 2.
    Ashcroft NW and Mermin ND (1976) Solid State Physics, Saunders, Philadelphia, 2: 346–348Google Scholar
  3. 3.
    Parkins GR, Lawrence EW, Christy RW (1981). Intraband optical conductivity σ (ω,T) of Cu, Ag, and Au: Contribution from electron-electron scattering. Physical Review B23: 6408–6415ADSGoogle Scholar
  4. 4.
    Palik ED (ed) (1985) Handbook of Optical Constants of Solids. Academic PressGoogle Scholar
  5. 5.
    Hüttner B (1994) Optical properties of polyvalent metals in the solid and liquid state: aluminium. J Phys Condens Matter 6: 2459–2474CrossRefADSGoogle Scholar
  6. 6.
    Fisher D, Fraenkel M, Henis Z, Moshe E, Eliezer S (2001) Interband and intraband (Drude) contributions to femtosecond laser absorption in aluminum. Physical Review E 65: 016409–8Google Scholar
  7. 7.
    Hüttner B (2002) Optical properties under exposure to ultrashort laser pulses. J Phys Condens Matter 14: 6689–6700CrossRefADSGoogle Scholar
  8. 8.
    Hohlfeld J, Conrad U and Matthias E (1996) Does femtosecond time-resolved second-harmonic generation probe electron temperatures at surfaces? Appl Phys B63: 541–544CrossRefADSGoogle Scholar
  9. 9.
    Funk DJ, Moore DS, McGrane SD, Reho, JH and Rabie RL (2004). Proc SPIE 5448: 182–192 and private communicationCrossRefADSGoogle Scholar
  10. 10.
    Hüttner B, Rohr G (1996) On the theory of ps and sub-ps laser pulse interaction with metals I. Surface temperature distribution. Applied Surface Science 126: 269–274Google Scholar
  11. 11.
    Anisimov SI, Bonch-Bruevich AM, El'yashevich MA, Imas YaA, Pavlenko NA and Romanov GS (1967) Effect of powerful light fluxes on metals. Soviet Physics Technical Physics 11: 945–952Google Scholar
  12. 12.
    Sun C K, Vallee F, Acioli LH, Ippen EP and Fujimoto JG (1994) Femtosecond-tunable measurement of electron thermalisation in gold. Physical Review B50: 15337–15348ADSGoogle Scholar
  13. 13.
    Fann WS; Storz R, Tom HWK, Bokor J (1992) Direct measurement of non-equilibrium electron-energy distributions in subpicosecond laser-heated gold films. Physical Review Letters 68: 2834–2837CrossRefADSGoogle Scholar
  14. 14.
    Fann WS; Storz R, Tom HWK, Bokor J (1992) Electron thermalisation in gold. Physical Review B 46: 13592–13595CrossRefADSGoogle Scholar
  15. 15.
    Hüttner B (1999) Thermodynamics and transport properties in the transient regime. J Phys Condens Matter 11: 6757–6777CrossRefADSGoogle Scholar
  16. 16.
    Zinoviev AV, Kulagin IA. Lugovskoy AV, Usmanov T (1980) Nonequilibrium excitation of electrons by high-intensity monochromatic radiation. Sov Phys Tech Phys 25: 953–956Google Scholar
  17. 17.
    Bonn M, Denzler DN, Funk S, Wolf M, Wellershoff S-S, Hohlfeld J (2000) Ultra-fast electron dynamics at metal surfaces: Competition between electron-phonon coupling and hot-electron transport. Physical Review B 61: 1101–1105CrossRefADSGoogle Scholar
  18. 18.
    Fedosejevs R, Ottmann R, Sigel R, Kü hnle G, Szatmari S, Schafer FP (1990) Absorption of Subpicosecond Ultraviolet Laser Pulses in High-Density Plasma. Appl Phys B 50: 79–99CrossRefADSGoogle Scholar
  19. 19.
    Price DF, More RM, Walling RS, Guethlein G, Shepherd RL, Stewart RE, White WE (1995) Absorption of Ultrashort Laser Pulses by Solid Targets Heated Rapidly to Temperatures 1–1000 eV. Phys Rev Letters 75: 252– 255CrossRefADSGoogle Scholar
  20. 20.
    Wang XY, Riffe DM, Lee Y-S and Downer MC (1994) Time-resolved electron-temperature measurement in a highly excited gold target using femtosecond thermionic emission. Physical Review B50: 8016– 8019ADSGoogle Scholar
  21. 21.
    Rethfeld B (1999) Dissertation TU BraunschweigGoogle Scholar
  22. 22.
    Hüttner B (1998) On the temperature dependence of the electronic thermal conductivity in metals when the electron and phonon subsystems are not in local equilibrium. J Phys Condens Matter 10: 6121– 6141CrossRefADSGoogle Scholar
  23. 23.
    Weast RC (ed) (1982) CRC Handbook of Chemistry and Physics. CRC Press, West Palm Beach Vol 62, p E-9Google Scholar
  24. 24.
    Kaganov MI, Lifshitz IM, Tanatarov LV (1957) Relations between electrons and the crystalline lattice. Soviet Physics JETP 4: 173–178zbMATHGoogle Scholar
  25. 25.
    McMillan WL (1968) Transition temperature of Strong-Coupled Superconductors. Physical Review 167: 331–344CrossRefADSGoogle Scholar
  26. 26.
    Allen PB (1987) Theory of thermal relaxation of electrons in metals. Physical Review Letters 59: 1460–1463CrossRefADSGoogle Scholar
  27. 27.
    Schoenlein RW, Lin WZ, Fujimoto JG, Eesley G L (1987) Femtosecond Studies of Nonequilibrium Electronic Processes in Metals. Physical Review Letters 58: 1680–1683CrossRefADSGoogle Scholar
  28. 28.
    Groeneveld RHM, Sprik R, Lagendijk Ad (1995) Femtosecond spectroscopy of electron-electron and electron-phonon energy relaxation in Ag and Au. Phys Rev B51: 11433–11445ADSGoogle Scholar
  29. 29.
    Hohlfeld J, Wellershoff S-S, Gü dde J, Conrad U, Jahnke V, Matthias E (2000) Electron and lattice dynamics following optical excitation of metals. Chem Phys 251: 237–258CrossRefGoogle Scholar
  30. 30.
    Wellershoff S-S, Hohlfeld J, Gü dde J, Matthias E (1999) The role of electron– phonon coupling in femtosecond laser damage of metals. Appl Phys A 69: 99–107ADSGoogle Scholar
  31. 31.
    Schmidt V, Husinsky W, Betz G (2002) Ultrashort laser ablation of metals: pump–probe experiments, the role of ballistic electrons and the two-temperature model. Applied Surface Science 197–198: 145–155CrossRefGoogle Scholar
  32. 32.
    Suarez C, Bron WE and Juhasz T (1995) Dynamics and Transport of Electronic Carriers in Thin Gold Films. Phys Rev Letters 75: 4536–4539CrossRefADSGoogle Scholar
  33. 33.
    Metzler R, Compte A (1999) Stochastic foundation of normal and anomalous Cattaneo-type transport. Physica A268: 454–468Google Scholar
  34. 34.
    Joseph DD and Preziosi L (1989) Heat waves. Reviews of Modern Physics 61: 41–73zbMATHCrossRefADSMathSciNetGoogle Scholar
  35. 35.
    Joseph DD and Preziosi L (1990) Heat waves. Reviews of Modern Physics 62: 375–391CrossRefADSMathSciNetGoogle Scholar
  36. 36.
    Maxwell JC (1867) On the Dynamical Theory of Gases. Phil Trans Roy Soc 157: 49–88CrossRefGoogle Scholar
  37. 37.
    Vernotte P (1958) Paradoxes in the Continuous Theory of the Heat Equation. C R Acad Sci 246: 3154–3155MathSciNetGoogle Scholar
  38. 38.
    Cattaneo C (1958) A Form of Heat Equation which Eliminates the Paradox of Instantaneous Propagations. C R Acad Sci 247: 431–433MathSciNetGoogle Scholar
  39. 39.
    Jou D, Casas-Vazquez J, Lebon G (1999) Extended irreversible thermodynamics revisited (1988–98). Rep Prog Phys 62: 1035–1142CrossRefADSMathSciNetGoogle Scholar
  40. 40.
    Zhang DM, Li L, Li ZH, Guan L, Tan X, Liu D (2006) Non-Fourier heat conduction studying on high-power short-pulse laser ablation considering heat source effect. Eur Phys J Appl Phys 33: 91–96CrossRefADSGoogle Scholar
  41. 41.
    Wang X and Xu X (2001) Thermoelastic wave induced by pulsed laser heating. Appl Phys A 73: 107–114CrossRefADSGoogle Scholar
  42. 42.
    Qiu TQ, Tien CL (1994) Femtosecond laser heating of multi-layer metals-I Analysis. Int J Heat Mass Transfer 37: 2789–2797CrossRefGoogle Scholar
  43. 43.
    American Institute of Physics Handbook (1972). Third editionGoogle Scholar
  44. 44.
    Brorson SD, Kazeroonian A, Moodera JS, Face DW, Cheng TK, Ippen EP, Dresselhaus MS, Dresselhaus G (1990) Femtosecond Room-Temperature Measurement of the Electron-Phonon Coupling Constant λ in Metallic Superconductors. Physical Review Letters 64: 2172–2175CrossRefADSGoogle Scholar
  45. 45.
    Yoo KM, Zhao XM, Siddique M, Alfano RR, Osterman DP, Radparvar M, Cunniff J (1990) Femtosecond thermal modulation measurements of electron-phonon relaxation in niobium. Appl Phys Lett 56: 1908–1910CrossRefADSGoogle Scholar
  46. 46.
    Hüttner B (2004) The change of thermal properties under exposure to fs-laser pulses. In: High-Power Laser Ablation V, ed Phipps CR, Proc SPIE 5448: 103–109Google Scholar
  47. 47.
    Luk'yanchuk BS, Anisimov SI, Lu YF (2001) Dynamics of Subpicosecond Laser Ablation, Examined by Moments Technique. Nonresonant Laser-Matter Interaction (NLMI-10), ed Libenson MN, Proc. SPIE vol 4423: 141–152ADSGoogle Scholar

Copyright information

© Canopus Academic Publishing Limited 2009

Authors and Affiliations

  • Bernd Hüttner
    • 1
  1. 1.DLR – Institute of Technical PhysicsStuttgartGermany

Personalised recommendations