Advertisement

The Problem

  • Leopoldo S. García-Colín
  • Leonardo Dagdug
Chapter
  • 661 Downloads
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 53)
The system we wish to study is a binary mixture of non reactive dilute, electrically charged system of particles. Their masses will be labelled m a and m b with charges e a and e b where e a =−e b =e. The ions could have a positive charge Ze but we shall keep Z=1 for simplicity. The number densities of the species are n a and n b where n a +n b =n so that the total mass density ρ is given by
$$\rho=\rho_{a}+\rho_{b}=m_{a}n_{a}+m_{b}n_{b}$$

Keywords

Boltzmann Equation Kinetic Theory Binary Collision Homogenous Boltzmann Equation Maxwell Distribution Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    S. Chapman and T. G. Cowling; The Mathematical Theory of Non-Uniform Gases; Cambridge University Press, Cambridge (1970), 3rd ed. Google Scholar
  2. [2]
    G. W. Ford and G. E. Uhlenbeck; Lectures in Statistical Mechanics; American Mathematical Society, Providence, R. I. (1963). zbMATHGoogle Scholar
  3. [3]
    J. R. Dorfman and H. van Beijren; The Kinetic Theory of Gases, in Statistical Mechanics, Pt. B.; Bruce J. Berne, ed. Plenum Press, New York (1977). Google Scholar
  4. [4]
    J. H. Ferziger and H. G. Kaper; Mathematical Theory of Transport Processes in Gases; North-Holland Publ. Co., Amsterdam (1972). Google Scholar
  5. [5]
    C. Cercignani; The Boltzmann Equation and its Applications; Springer-Verlag, New York (1988). zbMATHGoogle Scholar
  6. [6]
    L. García-Colín and P. Goldstein; La Física de los Procesos Irreversibles; Vols. 1 and 2, El Colegio Nacional, Mexico D. F. (2003) (in Spanish). Google Scholar
  7. [7]
    R. Balescu; Transport Processes in Plasma Vol. I, Classical Transport; North-Holland Publ. Co., Amsterdam (1988). Google Scholar
  8. [8]
    W. Marshall; The Kinetic Theory of an Ionized Gas; U.K.A.E.A. Research Group, Atomic Energy Research Establishment. Harwell U.K. parts I, II, and III (1960). Google Scholar

Copyright information

© Springer Science + Business Media B.V. 2009

Authors and Affiliations

  • Leopoldo S. García-Colín
    • 1
  • Leonardo Dagdug
    • 1
  1. 1.Depto. FísicaUniversidad Autónoma Metropolitana-IztapalapaMéxico, D.F.México

Personalised recommendations