Skip to main content

Nutrient Supply in Organic Agriculture – Plant Availability, Sources and Recycling

  • Chapter
Organic Crop Production – Ambitions and Limitations

Abstract

This chapter examines the practice of applying nutrients in organic or slowly soluble inorganic form in the belief that plants will obtain balanced nutrition through the actions of soil microbes. The organic principle of only fertilising the soil and not directly feeding the crop with water-soluble nutrients has no support in science. The release of organically bound nutrients in soil through biological activity is not necessarily synchronised with crop demands and occurs even at times when there is no crop growth. Changes in the soil biological community do not overcome this limitation. Despite the ideal of organic agriculture being self-sustaining through cycling of nutrients, in principle only on-farm wastes are recycled and most municipal wastes are excluded due to concerns about pollutants and philosophical views on life (biodynamic agriculture). Nutrient supply in European organic agriculture is mainly covered through purchase of straw, manure and fodder from conventional agriculture and by-products from the food industry. Untreated minerals seem to play a minor role. The fertility of agricultural soils can only be maintained over the long-term if plant nutrients removed are replaced with equivalent amounts and if added sources have a higher solubility than those present in the soil. These conditions are in most cases not fulfilled in organic agriculture. It can thus be concluded that the naturalness of nutrient sources is no guarantee of superior quality and that promotion of organic principles does not improve the supply and recycling of nutrients but excludes other more effective solutions for nutrient use in agricultural systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersson, A., and Siman, G., 1991, Levels of Cd and some other trace elements in soils and crops as influenced by lime and fertilizer level, Acta Agric. Scand. 41: 3–11.

    CAS  Google Scholar 

  • Andrén, O., Kihara, J., Bationo, A., Vanlauwe, B., and Kätterer, T., 2007, Soil climate and decomposer activity in sub-Saharan Africa estimated from standard weather station data – a simple climate index for soil carbon balance calculations, Ambio 36: 379–386.

    Article  PubMed  Google Scholar 

  • Angel, R., 1999, Removal of phosphate from sewage as amorphous calcium phosphate, Environ. Technol. 20: 709–720.

    Article  CAS  Google Scholar 

  • Aronsson, H., Torstensson, G., and Bergström, L., 2007, Leaching and crop uptake of N, P and K from organic and conventional cropping systems, Soil Use Manage. 23: 71–81.

    Article  Google Scholar 

  • Askegaard, M., and Eriksen, J., 2000, Potassium retention in an organic crop rotation on loamy sand as affected by contrasting potassium budgets, Soil Use Manage. 16: 200–205.

    Google Scholar 

  • Battistoni, P., Fava, G., Paven, P., Musacco, A., and Cecchi, F., 1997, Phosphate removal in anaerobic liquors by struvite crystallization without addition of chemicals: preliminary results, Water Res. 31: 2925–2929.

    Article  CAS  Google Scholar 

  • Beck-Fries, B., Smårs, S., Jönsson, H., Eklind, Y., and Kirchmann, H., 2003, Composting organic household wastes at different oxygen levels: gaining an understanding of the emission dynamics, Compost Sci. Util. 11: 41–50.

    Google Scholar 

  • Bergström, L., Kirchmann, H., Aronsson, H., Torstensson, G., and Mattsson, L., 2008, Use efficiency and leaching of nutrients in organic and conventional systems in Sweden, in: Organic Crop Production – Ambitions and Limitations, H. Kirchmann and L. Bergström, eds., Springer, Dordrecht, The Netherlands.

    Google Scholar 

  • Bernal, M.P., Roig, A., and Garcia, D., 1993, Nutrient balances in calcareous soils after application of different rates of pig slurry, Soil Use Manage. 9: 9–14.

    Article  Google Scholar 

  • Berry, P., Stockdale, E., Sylvester-Bradley, R., Philipps, L., Smith, K., Lord, E., Watson, C., and Fortune, S., 2003, N, P and K budgets for crop rotations on nine organic farms in the UK, Soil Use Manage. 19: 112–118.

    Article  Google Scholar 

  • Brady, N.C., and Weil, R.R., 2008, The Nature and Properties of Soils, Pearson Education International, Upper Saddle River, NJ, USA, 965p.

    Google Scholar 

  • Buchet, J.P., Lauwerys, R., Roels, H., Bernard, A., Bruaux, P., Claeys, F., Ducoffre, G., DePlaen, P., Staessen, J., Amery, A., Lijnen, P., Thijs, L., Rondia, D., Sartor, F., Saint Remy, A., and Nick, L., 1990, Renal effects of cadmium body burden of the general population, Lancet 336: 699–702.

    Article  PubMed  CAS  Google Scholar 

  • Buresh, R.J., Smithson, P.C., and Hellums, D.T., 1997, Building soil phosphorus capital in Africa, in: Replenishing Soil Fertility in Africa, R.J. Buresh, P.A. Sanchez, and F. Calhoun, eds., SSSA Special Publications No. 51, Madison, WI, USA, pp. 111–149.

    Google Scholar 

  • Burkitt, L.L., Smal, D.R., McDonald, J.W., Wales, W.J., and Jenkin, M.L., 2007, Comparing irrigated biodynamic and conventionally managed dairy farms. 1. Soil and pasture properties, Aust. J. Exp. Agric. 47: 479–488.

    Article  CAS  Google Scholar 

  • Bussink, D.W., and Oenema, O., 1998, Ammonia volatilization from dairy farming systems in temperate areas: a review, Nutr. Cycl. Agroecosyst. 51: 19–33.

    Article  Google Scholar 

  • Christensen, B.T., 1985, Decomposability of barley straw: effect of cold-water extraction on dry weight and nutrient content, Soil Biol. Biochem. 17: 93–97.

    Article  CAS  Google Scholar 

  • Cohen, Y., 2007a, Phosphorus recovery from urban wastes and ashes, Acta universitatis Agriculturae Suecia Doctoral thesis no. 2007:34. Uppsala, Sweden.

    Google Scholar 

  • Cohen, Y., 2007b, Ion recovery by ion-exchange, Swedish patent no. 0700698-4.

    Google Scholar 

  • Dahlin, S., Kirchmann, H., Kätterer, T., Gunnarsson, S., and Bergström, L., 2005, Possibilities for improving nitrogen use from organic materials in agricultural cropping systems, Ambio 34: 288–295.

    Article  PubMed  Google Scholar 

  • Dann, P.R., Derrick, J.W., Dumaresq, D.C., and Ryan, M.H., 1996, The response of organic and conventionally grown wheat to superphosphate and reactive rock phosphate, Aust. J. Exp. Agric. 36: 71–78.

    Article  Google Scholar 

  • Derrick, J.W., and Ryan, M.H., 1998, Influence of seed phosphorus content on seedling growth in wheat: implications for organic and conventional farm management in south east Australia, Biol. Agric. Hortic. 16: 223–237.

    Google Scholar 

  • Derrick, J.W., and Dumaresq, D.C., 1999, Soil chemical properties under organic and conventional management in southern New South Wales, Aust. J. Soil Res. 37: 1047–1055.

    Article  CAS  Google Scholar 

  • Driver, J., Limbach, D., and Steen, I., 1999, Why recover phosphorus for recycling and how? Environ. Tech. 20: 652–662.

    Google Scholar 

  • ECETOC, 1994, Ammonia Emissions to Air in Western Europe, European Centre for Ecotoxicology and Toxicology of Chemicals, Technical report no. 62, Brussels, Belgium.

    Google Scholar 

  • Eggers, E., Dirkzwager, A., and van der Honing, H., 1991, Full-scale experiments with phosphate crystallization in a Crystalactor®, Water Sci. Technol. 23: 819–824.

    CAS  Google Scholar 

  • Eltun, R., Korsaeth, A., and Nordheim, O., 2002, A comparison of environmental, soil fertility, yield, and economical effects in six cropping systems based on an 8-year experiment in Norway, Agric. Ecosyst. Environ. 90: 155–168.

    Article  Google Scholar 

  • Eriksson, J., Andersson, A., and Andersson, R., 1997, Current Status of Swedish Arable Soils, Swedish Environmental Protection Agency, Report 4778, Stockholm, Sweden.

    Google Scholar 

  • Epstein, E., 1997, The Science of Composting, CRC Press, Boca Raton, FL., USA, 487p.

    Google Scholar 

  • European Communities, 1999, Council Regulation (EC) No. 1804/1999 of July 1999 supplementing Regulation (EEC) No. 2092/91 on organic production of agricultural products and indications referring thereto on agricultural products and feedstuffs to include livestock production, Official J. Eur. Communities 24.98.1999. Brussels L 222 1–28.

    Google Scholar 

  • Evans, J., McDonald, L., and Price, A., 2006, Application of reactive phosphate rock and sulfur fertilisers to enhance the availability of soil phosphate in organic farming, Nutr. Cycl. Agroecosyst. 75: 233–246.

    Article  CAS  Google Scholar 

  • Fagerberg, B., Salomon, E., and Jonsson, S., 1996, Comparisons between conventional and ecological farming systems at öjebyn, Swedish J. Agric. Res. 26: 169–180.

    Google Scholar 

  • Feller, C.L., Thuries, L.J-M., Manley, R.J., Robin, P., and Frossard, E., 2003, “The principal of rational agriculture” by Albrecht Thaer (1752–1828). An approach to the sustainability of cropping systems at the beginning of the 19th century, J. Plant Nutr. Soil Sci. 166: 687–698.

    Article  CAS  Google Scholar 

  • Ferm, M., 1998, Atmospheric ammonia and ammonium transport in Europe and critical loads: a review, Nutr. Cycl. Agroecosyst. 51: 5–17.

    Article  CAS  Google Scholar 

  • Fliessbach, A., and Mäder, P., 2000, Microbial biomass and size-density fractions differ between soils of organic and conventional agricultural systems, Soil Biol. Biochem. 32: 757–768.

    Article  CAS  Google Scholar 

  • Fowler, S.M., Watson, C.A., and Wilman, D., 1993, N, P and K on organic farms: herbage and cereal production, purchases and sales, J. Agric. Sci. 120: 353–360.

    CAS  Google Scholar 

  • Gilkes, R.J., and Mangano, P., 1983, Poorly soluble, iron-aluminium phosphates in ammonium phosphate fertilizers: their nature and availability to plants, Aust. J. Soil Res. 21: 183–194.

    Article  CAS  Google Scholar 

  • Gosling, P., and Shepherd, M., 2005, Long-term changes in soil fertility in organic arable farming systems in England, with particular reference to phosphorus and potassium, Agric. Ecosyst. Environ. 105: 425–432.

    Article  CAS  Google Scholar 

  • Granstedt, A., 2000, Increasing the efficiency of plant nutrient recycling within the agricultural system as a way of reducing the load to the environment – experience from Sweden and Finland, Agric. Ecosyst. Environ. 80: 169–185.

    Article  Google Scholar 

  • Gunapala, N., Venette, R.C., Ferris, H., and Scow, K.M., 1998, Effects of soil management history on the rate of organic matter decomposition, Soil Biol. Biochem. 30: 1917–1927.

    Article  CAS  Google Scholar 

  • Gustafson, G.M., Salomon, E., Jonsson, S., and Steineck, S., 2003, Fluxes of K, P and Zn in a conventional and an organic dairy farming system through feed, animals, manure and urine – a case study at öjebyn, Sweden, Eur. J. Agron. 20: 89–99.

    Article  CAS  Google Scholar 

  • Gustavsson, J., 1998, Swedish measures to reduce ammonia emissions, Nutr. Cycl. Agroecosyst. 51: 81–83.

    Article  Google Scholar 

  • Härdter, R., Rex, M., and Orlovius, K., 2004, Effects of different Mg fertilizer sources on the magnesium availability in soil, Nutr. Cycl. Agroecosyst. 70: 249–259.

    Article  Google Scholar 

  • Hedley, M., and McLaughlin, M., 2005, Reactions of phosphate fertilizers and by-products in soils, in: Phosphorus: Agriculture and the Environment, J.T. Sims and A.N. Sharpley, eds., Agronomy Monograph No. 46, Madison, WI, USA, pp. 181–252.

    Google Scholar 

  • Henriksen, T.M., and Breland, T.A., 1999, Evaluation of criteria for describing crop residue degradation in a model of carbon and nitrogen turnover in soil, Soil Biol. Biochem. 31: 1135–1149.

    Article  CAS  Google Scholar 

  • Hultberg, H., and Grennfeldt, P., 1992, Sulphur and sea salt deposition as reflected by throughfall and runoff chemistry in forested catchments, Environ. Pollut. 75: 215–222.

    Article  PubMed  CAS  Google Scholar 

  • IFOAM, 2006, The Four Principles of Organic Farming. The International Federation of Organic Agriculture Movements, www.IFOAM.org, Bonn, Germany, assessed 5/6-2006.

    Google Scholar 

  • Isherwood, K.F., 2003, Fertilizer Consumption and Production: Long-term World Prospects. The Int. Fertilizer Soc., Proc. No. 507, York, UK.

    Google Scholar 

  • Ivarson, J., and Gunnarsson, A., 2001, Försök med konventionella och ekologiska odlingsformer, 1987–1998, Sveriges Lantbruksuniversitet, Medd. Södra Jordbruksdistr. nr. 53, Sverige (In Swedish).

    Google Scholar 

  • Johnston, A.E., 2005, Phosphorus nutrition of arable crops, in: Phosphorus: Agriculture and the Environment, J.T. Sims and A.N. Sharpley, eds., Agronomy Monograph No. 46, Madison, WI, USA, pp. 495–520.

    Google Scholar 

  • Kaffka, S., and Koepf, H., 1989, A case study on the nutrient regime in sustainable farming, Biol. Agric. Hortic. 6: 89–106.

    Google Scholar 

  • Kätterer, T., and Andrén, O., 2001, The ICBM family of analytically solved models of soil carbon, nitrogen and microbial biomass dynamics – descriptions and application examples, Ecol. Modell. 136: 191–207.

    Article  Google Scholar 

  • Kätterer, T., Andrén, O., and Jansson, P-E., 2006, Pedotransfer functions for estimating plant available water and bulk density in Swedish agricultural soils, Acta Agric Scand. Sec. B 56: 263–276.

    Google Scholar 

  • Kätterer, T., and Andrén, O., 2008, Predicting daily soil temperature profiles in arable soils in cold temperate regions from air temperature and leaf area index, Acta Agric. Scand. Section B, in press, DOI: 10.1080/09064710801920321.

    Google Scholar 

  • King, F.H., 1911, Farmers of Forty Centuries or Permanent Agriculture in China, Korea and Japan. Democrat Printing Co, Madison WI., USA.

    Google Scholar 

  • Kirchmann, H., 1985, Losses, plant uptake and utilisation of manure nitrogen during a production cycle, Acta Agric. Scand. Suppl. 24: 7–77.

    Google Scholar 

  • Kirchmann, H., and Bergqvist, R., 1989, Carbon and nitrogen mineralization of white clover plants (Trifolium repens) of different age during aerobic incubation with soil, Z. Pflanzenernähr. Bodenk. 152: 283–288.

    Article  Google Scholar 

  • Kirchmann, H., and Witter, E., 1992, Composition of fresh, areobic and anaerobic farm animal dung, Bioresour. Technol. 40: 137–142.

    Article  CAS  Google Scholar 

  • Kirchmann, H., and Pettersson, S., 1995, Human urine – chemical composition and fertilizer use efficiency, Fertil. Res. 40: 149–154.

    Article  Google Scholar 

  • Kirchmann, H., Haberhauer, G., Kandeler, E., Sessitsch, A., and Gerzabek, M.H., 2004, Effects of level and quality of organic matter input on soil carbon storage and microbial activity in soil – Synthesis of a long-term experiment, Global Biogeochem. Cycles 18: 38–46.

    Article  CAS  Google Scholar 

  • Kirchmann, H., Nyamangara, J., and Cohen, Y., 2005, Recycling municipal wastes in the future: from organic to inorganic forms? Soil Use Manage. 21: 152–159.

    Google Scholar 

  • Kirchmann, H., Bergström, L., Kätterer, T., Mattsson, L., and Gesslein, S., 2007, Comparison of long-term organic and conventional crop-livestock systems on a previously nutrient-depleted soil in Sweden, Agron. J. 99: 960–972.

    Article  CAS  Google Scholar 

  • Kirchmann, H., Thorvaldsson, G., Bergström, L., Gerzabek, M., Andrén, O., Eriksson, L.-O., and Winninge, M., 2008a, Fundamentals of organic agriculture – Past and present, in: Organic Crop Production – Ambitions and Limitations, H. Kirchmann and L. Bergström, eds., Springer, Dordrecht, The Netherlands.

    Google Scholar 

  • Kirchmann, H., Bergström, L., Kätterer, T., Andrén, O., and Andersson, R., 2008b, Can organic crop production feed the world? in: Organic Crop Production – Ambitions and Limitations, H. Kirchmann and L. Bergström, eds., Springer, Dordrecht, The Netherlands.

    Google Scholar 

  • Kitchen, J.L., McDonald, G.K., Shepherd, K.W., Lorimer, M.F., and Graham, R.D., 2003, Comparing wheat grown in South Australian organic and conventional farming systems, I. Growth and grain yield, Aust. J. Agric. Res. 54: 889–901.

    Article  Google Scholar 

  • KRAV, 2008, Regulations of the Swedish Control Organization for Alternative Crop production, www.krav.se, Uppsala, Sweden, assessed 31/3-2008.

    Google Scholar 

  • Liberti, L., Petruzzelli, D., and De Flurio, L., 2001, Rem nut ion exchange plus struvite precipitation process, Environ. Technol. 22: 1313–1325.

    Article  PubMed  CAS  Google Scholar 

  • Lide, D.R., 1999, Handbook of Chemistry and Physics, 80th ed., CRC Press, Boca Raton, FL, USA.

    Google Scholar 

  • Liebig, M.A., and Doran, J.W., 1999, Impact of organic production practices on soil quality indicators, J. Environ. Qual. 28: 1601–1609.

    Article  CAS  Google Scholar 

  • Løes, A.K., and Øgaard, A.F., 1997, Changes in the nutrient content of agricultural soil on conversion to organic farming in relation to farm-level nutrient balances and soil contents of clay and organic matter, Acta Agric. Scand. B, Soil Plant Sci. 47: 201–214.

    Google Scholar 

  • Løes, A.K., and Øgaard, A.F., 2001, Long-term changes in extractable soil phosphorus (P) in organic dairy farming systems, Plant Soil 237: 321–332.

    Article  Google Scholar 

  • Lundström, C., and Lindén, B., 2001, Nitrogen effects of human urine and fertilisers containing meat bone meal (Biofer), or chicken manure (Binidan) as fertilisers applied to winter wheat, spring wheat and spring barley in organic farming. Swedish University of Agricultural Sciences, Department of Agricultural Research, Skara, Series B Crops and Soils, Report no. 8. Skara, Sweden.

    Google Scholar 

  • Lützow, M., and Ottow, J.C.G., 1994, Effect of conventional and biological farming on microbial biomass and its nitrogen turnover in agriculturally used Luvisols of the Friedberg plains, Zeitschrift Pflanzenernähr. Bodenk. 157: 359–367.

    Article  Google Scholar 

  • Mahimairaja, S., Bolan, N.S., and Hedley, M.J., 1993, Absorption of ammonia released from poultry manure to soil and bark and the use of absorbed ammonia in solubilizing phosphate rock, Compost Sci. Util. 1: 101–112.

    Google Scholar 

  • Mahimairaja, S., Bolan, N.S., and Hedley, M.J., 1995, Dissolution of phosphate rock during composting of poultry manure: an incubation experiment, Fertil. Res. 40: 93–104.

    Article  Google Scholar 

  • Marstorp, H., and Kirchmann, H., 1991, Carbon and nitrogen mineralization and crop uptake of nitrogen from six green manure legumes decomposing in soil, Acta Agric. Scand. 41: 243–252.

    Article  Google Scholar 

  • Mattsson, L., and Kjellquist, T., 1992, Nitrogen fertilization to winter wheat on farms with and without animal husbandry. Swedish University of Agricultural Sciences, Department of Soil Sciences, Div. Plant Nutr. and Soil Fertil., Report no. 189. Uppsala, Sweden.

    Google Scholar 

  • McLaughlin, M.J., Tiller, K.G., Naidu, R., and Stevens, D.P., 1996, Review: the behavior and impact of contaminants in fertilizers, Aust. J. Soil Res. 34: 1–54.

    Article  CAS  Google Scholar 

  • McLaughlin, M.J., and Singh, B.R., 1999, Cadmium in Soils and Plants, Developments in Plant and Soil Sciences, vol 85, Kluwer Academic Publishers, Dordrecht, The Netherlands, 271p.

    Google Scholar 

  • Mengel, K., 1997, Agronomic measures for better utilization of soil and fertilizer phosphates, Eur. J. Agron. 7: 221–233.

    Article  Google Scholar 

  • Newman, E.I., 1997, Phosphorus balance on contrasting farming systems, past and present. Can food production be sustainable? J. Appl. Ecol. 34: 1334–1347.

    Article  Google Scholar 

  • Nguyen, M.L., Haynes, R.J., and Goh, K.M., 1995, Nutrient budgets and status in three pairs of conventional and alternative mixed cropping farms in Canterbury, New Zealand, Agric. Ecosyst. Environ. 52: 149–162.

    Article  Google Scholar 

  • Nielsson, F.T., 1987, Manual for Fertilizer Processing, Fertilizer Science and Technology Series, Vol. 5, Marcel Dekker Inc., New York, USA, 525p.

    Google Scholar 

  • Nolte, C., and Werner, W., 1994, Investigations on the nutrient cycle and its components of a biodynamically-managed farm, Biol. Agric. Hortic. 10: 235–254.

    Google Scholar 

  • Nyberg, A., and Lindén, B., 2000, Documentation of ecological farms in Western Sweden 1996–1998. Swedish University of Agricultural Sciences, Department Agricultural Research Skara, Series B Crops and Soils, Report no. 6. Skara, Sweden.

    Google Scholar 

  • Nyirongo, J.C.V.B., Mughogho, S.K., and Kumwenda, J.D.T., 1999, Soil fertility studies with compost and igneous phosphate rock amendments in Malawi, Afr. Crop Sci. J. 7: 415–422.

    Google Scholar 

  • Pape, J.C., 1970, Plaggen soils in the Netherlands, Geoderma 4: 229–255.

    Article  CAS  Google Scholar 

  • PDA, 2008, Potash for Organic Growers, The Potash Development Association, www.pda.org.uk, York, UK, assessed 29 May 2008.

    Google Scholar 

  • Petersen, S.O., Debosz, K., Schjønning, P., Christensen, B.T., and Elmholt, S., 1997, Phospholipid fatty acid profiles and C availability in wet-stable macro-aggregates from conventionally and organically farmed soils, Geoderma 78: 181–196.

    Article  CAS  Google Scholar 

  • Pott, R., 1990, Lueneburger Heide. Ulmer, Stuttgart, Germany, 256p (In German).

    Google Scholar 

  • Rajan, S.S.S., Fox, R.L., Saunders, W.M.H., and Upsdell, M., 1991, Influence of pH, time and rate of application on phosphate rock dissolution and availability to pastures, Fertil. Res. 28: 85–93.

    Article  CAS  Google Scholar 

  • Rajan, S.S.S., Watkinson, J.H., and Sinclair, A.G., 1996, Phosphate rocks for direct application to soil, Adv. Agron. 57: 77–159.

    Article  CAS  Google Scholar 

  • Reganold, J.P., 1988, Comparison of soil properties as influenced by organic and conventional farming systems, Am. J. Altern. Agric. 3: 144–154.

    Article  Google Scholar 

  • Reinertsen, S.A., Elliott, L.F., Cochran, V.L., and Campbell, G.S., 1984, Role of available carbon and nitrogen in determining the rate of wheat straw decomposition, Soil Biol. Biochem. 16: 459–464.

    Article  CAS  Google Scholar 

  • Robertson, G.S., 1922, Basic Slag and Rock Phosphates, Cambridge Agricultural Monographs, Cambridge University Press, UK, 120p.

    Google Scholar 

  • Robertson, F.A., and Morgan, W.C., 1996, Effects of management history and legume green manure on soil microorganisms under ‘organic’ vegetable production, Aust. J. Soil Res. 34: 427–440.

    Article  Google Scholar 

  • Robinson, J.S., and Syers, J.K., 1990, A critical evaluation of the factors influencing the dissolution of Gafsa phosphate rock, J. Soil Sci. 41: 597–605.

    Article  CAS  Google Scholar 

  • Rusch, H.P., 1978, Bodenfruchtbarkeit. Eine Studie biologischen Denkens, 3rd Printing. Haug Verlag, Heidelberg, Germany, 243p (In German).

    Google Scholar 

  • Ryan, M., 1999, Is an enhanced soil biological community, relative to conventional neighbours, a consistent feature of alternative (organic and biodynamic) agricultural systems? Biol. Agric. Hortic. 17: 131–144.

    Google Scholar 

  • Ryan, M.H., and Ash, J.E., 1999, Effects of phosphorus and nitrogen on growth of pasture plants and VAM fungi in SE Australian soils with contrasting fertiliser histories (conventional and biodynamic), Agric. Ecosyst. Environ. 73: 51–62.

    Article  Google Scholar 

  • Ryan, M.H., Small, D.R., and Ash, J.E., 2000, Phosphorus controls the level of colonisation by arbuscular mycorrhizal fungi in conventional and biodynamic irrigated dairy pastures, Aust. J. Exp. Agric. 40: 663–670.

    Article  Google Scholar 

  • Ryan, M.H., Derrick, J.W., and Dann, P.R., 2004, Grain mineral concentrations and yield of wheat grown under organic and conventional management, J. Sci. Food Agric. 84: 207–216.

    Article  CAS  Google Scholar 

  • Ryan, M.H., and Tibbett, M., 2008, The role of arbuscular mycorrhizas in organic farming, in: Organic Crop Production – Ambitions and Limitations, H. Kirchmann and L. Bergström, eds., Springer, Dordrecht, The Netherlands.

    Google Scholar 

  • Seckler, M., Bruinsma, O., and van Rosmalen, G., 1996a, Phosphate removal in a fluidized bed. I Identification of physical processes, Water Res. 30: 1585–1588.

    Article  CAS  Google Scholar 

  • Seckler, M., van Leeuwen, M., Bruinsma, O., and van Rosmalen, G., 1996b, Phosphate removal in a fluidized bed. II Process optimization, Water Res. 30: 1589–1596.

    Article  CAS  Google Scholar 

  • Seckler, M., Bruinsma, O., and van Rosmalen, G., 1996c, Calcium phosphate precipitation in a fluidized bed in relation to process conditions: black box approach, Water Res. 30: 1677–1685.

    Article  CAS  Google Scholar 

  • Sims, J.T., Bergström, L., Bowman, B.T., and Oenema, O., 2005, Nutrient management for intensive animal agriculture: policies and practices for sustainability, Soil Use Manage. 21: 141–151.

    Google Scholar 

  • Singh, C.P., and Amberger, A., 1998, Organic acids and phosphorus solubilization in straw composted with rock phosphates, Bioresour. Technol. 63: 13–16.

    Article  CAS  Google Scholar 

  • Sivapalan, A., Morgan, W.C., and Franz, P.R., 1993, Monitoring populations of soil microorganisms during a conversion from a conventional to an organic system of vegetable growing, Biol. Agric. Hortic. 10: 9–27.

    Google Scholar 

  • Springob, G., and Kirchmann, H., 2002, C-rich sandy Ap horizons of specific historical land-use contain large fractions of refractory organic matter, Soil Biol. Biochem. 34: 1571–1581.

    Article  CAS  Google Scholar 

  • Steiner, R., 1924, Geisteswissenschaftliche Grundlagen zum Gedeihen der Landwirtschaft. Steiner Verlag, 5. Auflage 1975. Dornach, Schweiz (In German).

    Google Scholar 

  • Steward, W.M., Hammond, L.L., and Van Kauwenbergh, S.J., 2005, Phosphorus as a natural resource, in: Phosphorus: Agriculture and the Environment, J.T. Sims and A.N. Sharpley, eds., Agronomy Monograph No. 46, Madison, WI, USA, pp. 3–22.

    Google Scholar 

  • Thaer, A.D., 1837–1839, Grundsätze der rationellen Landwirtschaft. Neue unveränderte Ausgabe. 4 Bände in 2. Gedruckt von E.F. Arnold, Stuttgart, Germany (In German).

    Google Scholar 

  • Torstensson, G., Aronson, H., and Bergström, L., 2006, Nutrient use efficiency and leaching of organic and conventional cropping systems in Sweden, Agron. J. 98: 603–615.

    Article  CAS  Google Scholar 

  • Ueno, Y., and Fujii, M., 2001, Three years experience of operating and selling recovered struvite from a full-scale plant, Environ. Technol. 22: 1373–1381.

    Article  PubMed  CAS  Google Scholar 

  • Ulén, B., 1984, Nitrogen and phosphorus to surface water from crop residues, Department of Soil Sciences, Division of Water Management, Report 18, Swedish University of Agricultural Sciences, Uppsala, Sweden, pp. 39–44.

    Google Scholar 

  • Ullmann’s Agrochemicals, 2007, Wiley-VCH Verlag GmbH and Co, Weinheim, Germany, 932p.

    Google Scholar 

  • van Dijk, J., and Braakensiek, H., 1984, Phosphate removal by crystallization in a fluidized bed, Water Sci. Technol. 17: 133–142.

    Google Scholar 

  • von Liebig, J., 1840, Die organische Chemie in ihrer Anwendung auf Agrikultur und Physiologie. Fr. Vieweg and Sohn, Braunschweig, Germany (In German).

    Google Scholar 

  • Wander, M.W., Traina, S.J., Stinner, B.R., and Peters, S.E., 1994, Organic and conventional management effects on biologically active soil organic matter pools, Soil Sci. Soc. Am. J. 58: 1130–1139.

    Google Scholar 

  • Watson, C.A., Atkinson, D., Gosling, P., Jackson, L.R., and Rays, F.W., 2002a, Managing soil fertility in organic farming systems, Soil Use Manage. 18: 239–247.

    Article  Google Scholar 

  • Watson, C.A., Bengtsson, H., Ebbesvik, M., Løes, A-K., Myrbeck, A., Salomon, E., Schroder, J., and Stockdale, E.A., 2002b, A review of farm-scale nutrient budgets for organic farms as a tool for management of soil fertility, Soil Use Manage. 18: 264–273.

    Article  Google Scholar 

  • Wieser, I., Heβ, J., and Lindenthal, T., 1996, Nutrient balances on organically managed grassland farms in Upper Austria, Die Bodenkultur 47: 81–88.

    Google Scholar 

  • Wivstad, M., Salomonsson, L., and Salomonsson, A.C., 1996, Effects of green manure, organic fertilisers and urea on yield and grain quality of spring wheat, Acta Agric. Scand. B, Soil Plant Sci. 46: 169–177.

    Google Scholar 

  • Workneh, F., and van Bruggen, A.H.C., 1994, Microbial density, composition, and diversity in organically and conventionally managed rhizosphere soil in relation to suppression of corky root of tomatoes, Appl. Soil Ecol. 1: 219–230.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kirchmann, H., Kätterer, T., Bergström, L. (2009). Nutrient Supply in Organic Agriculture – Plant Availability, Sources and Recycling. In: Kirchmann, H., Bergström, L. (eds) Organic Crop Production – Ambitions and Limitations. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9316-6_5

Download citation

Publish with us

Policies and ethics