Skip to main content

Part of the book series: Springer Series in Measurement Science and Technology ((SSMST,volume 2))

Abstract

Scanning probe microscopy (SPM) is a very versatile technique allowing for a large range of sample properties to be measured and manipulated with nanometre spatial resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Binnig, G., Rohrer, H.: Scanning tunnelling microscopy. Helv. Phys. Acta 55, 726–735 (1982)

    Google Scholar 

  2. Binnig, G., Rohrer, H., Gerber, C., Weibel, E.: \(7\times 7\) reconstruction on si/111/resolved in real space. Phys. Rev. Lett. 50, 120–123 (1983)

    Article  Google Scholar 

  3. Binnig, G., Rohrer, H.: Scanning tunneling microscopy. Surf. Sci. 126(1), 236–244 (1983)

    Article  Google Scholar 

  4. Colton, R.J.: Procedures in Scanning Probe Microscopies. Wiley, New York (1998)

    Google Scholar 

  5. Holterman, J., Groen, P.: An Introduction to Piezoelectric Materials and Components. Stichting Applied Piezo, Apeldoorn (2012)

    Google Scholar 

  6. Rabe, U., Janser, K., Arnold, W.: Vibrations of free and surface-coupled atomic force microscope cantilevers: theory and experiment. Rev. Sci. Instrum. 67(9), 3281 (1996)

    Article  Google Scholar 

  7. Lefki, K., Dormans, G.: Measurement of piezoelectric coefficients of ferroelectric thin films. J. Appl. Phys. 76(3), 1764–1767 (1994)

    Article  Google Scholar 

  8. Jungk, T., Hoffmann, Á., Soergel, E.: Quantitative analysis of ferroelectric domain imaging with piezoresponse force microscopy. Appl. Phys. Lett. 89(16), 163507 (2006)

    Article  Google Scholar 

  9. Jesse, S., Baddorf, A.P., Kalinin, S.V.: Switching spectroscopy piezoresponse force microscopy of ferroelectric materials. Appl. Phys. Lett. 88(6), 062908 (2006)

    Article  Google Scholar 

  10. Kalinin, S.V., Gruverman, A., Bonnell, D.A.: Quantitative analysis of nanoscale switching in srbi[sub 2]ta[sub 2]o[sub 9] thin films by piezoresponse force microscopy. Appl. Phys. Lett. 85(5), 795 (2004)

    Article  Google Scholar 

  11. Tybell, T., Paruch, P., Giamarchi, T., Triscone, J.M.: Domain wall creep in epitaxial ferroelectric Pb(Zr0.2Ti0.8)O3 thin films. Phys. Rev. Lett. 89(9), 097601 (2002)

    Google Scholar 

  12. Gruverman, A., Rodriguez, B.J., Dehoff, C., Waldrep, J.D., Kingon, A.I., Nemanich, R.J., Cross, J.S.: Direct studies of domain switching dynamics in thin film ferroelectric capacitors. Appl. Phys. Lett. 87(8), 082902 (2005)

    Article  Google Scholar 

  13. Kalinin, S., Gruverman, A.: Scanning Probe Microscopy: Electrical and Electromechanical Phenomena at the Nanoscale. Springer, New York (2007)

    Google Scholar 

  14. Sader, J.E.: Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope. J. Appl. Phys. 84(1), 64 (1998)

    Article  Google Scholar 

  15. Rodriguez, B.J., Callahan, C., Kalinin, S.V., Proksch, R.: Dual-frequency resonance-tracking atomic force microscopy. Nanotechnology 18(47), 475504 (2007)

    Google Scholar 

  16. Jesse, S., Kalinin, S.V., Proksch, R., Baddorf, A.P., Rodriguez, B.J.: The band excitation method in scanning probe microscopy for rapid mapping of energy dissipation on the nanoscale. Nanotechnology 18(43), 435503 (2007)

    Google Scholar 

  17. Kalinin, S.V., Rodriguez, B.J., Jesse, S., Shin, J., Baddorf, A.P., Gupta, P., Jain, H., Williams, D.B., Gruverman, A.: Vector piezoresponse force microscopy. Microsc. Microanal. 12(03), 206 (2006)

    Google Scholar 

  18. Engler, O., Randle, V.: Introduction to Texture Analysis: Macrotexture, Microtexture, and Orientation Mapping, 2nd edn. Taylor & Francis, New York (2010)

    Google Scholar 

  19. Burnett, T.L., Weaver, P.M., Blackburn, J.F., Stewart, M., Cain, M.G.: Correlation of electron backscatter diffraction and piezoresponse force microscopy for the nanoscale characterization of ferroelectric domains in polycrystalline lead zirconate titanate. J. Appl. Phys. 108(4), 042001 (2010)

    Article  Google Scholar 

  20. Green, C.P., Lioe, H., Cleveland, J.P., Proksch, R., Mulvaney, P., Sader, J.E.: Normal and torsional spring constants of atomic force microscope cantilevers. Rev. Sci. Instrum. 75(6), 1988 (2004)

    Article  Google Scholar 

  21. Lehnen, P., Dec, J., Kleemann, W.: Ferroelectric domain structures of PbTiO3 studied by scanning force microscopy. J. Phys. D: Appl. Phys. 33, 1932 (2000)

    Article  Google Scholar 

  22. Fu, D., Suzuki, K., Kato, K.: Local piezoelectric response in bismuth-based ferroelectric thin films investigated by scanning force microscopy. Jpn. J. Appl. Phys. 41(Part 2-10A), L1103–L1105 (2002)

    Google Scholar 

  23. Cain, M.G., Dunn, S., Jones, P.: The measurement of ferroelectric thin films using piezo force microscopy. In: Laudon, M., Romanowicz, B. (eds.) Technical Proceedings of the 2004 NSTI Nanotechnology (2004)

    Google Scholar 

  24. Roy, S.S., Gleeson, H., Shaw, C., Whatmore, R.W., Huang, Z., Zhang, Q., Dunn, S.: Growth and characterisation of lead zirconate titanate (30/70) on indium tin oxide coated glass for oxide ferroelectric-liquid crystal display application. Integr. Ferroelectr. 29(3–4), 189–213 (2000)

    Google Scholar 

  25. Zhang, Q., Whatmore, R.: Sol-gel pzt and mn-doped pzt thin films for pyroelectric applications. J. Phys. D: Appl. Phys. 34, 2296 (2001)

    Article  Google Scholar 

  26. Rodriguez, B.J., Gruverman, A., Kingon, A.I., Nemanich, R.J.: Piezoresponse force microscopy for piezoelectric measurements of III-nitride materials. J. Cryst. Growth 246(3), 252–258 (2002)

    Article  Google Scholar 

  27. Abplanalp, T., Günter, P.: Imaging of ferroelectric domains with sub micrometer resolution by scanning force microscopy. In: Proceedings of the Eleventh IEEE International Symposium on Applications of Ferroelectrics, ISAF 98, pp. 423–426 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serban Lepadatu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 © Queen's Printer and Controller of HMSO

About this chapter

Cite this chapter

Lepadatu, S., Cain, M.G. (2014). Piezoresponse Force Micropscopy. In: Cain, M. (eds) Characterisation of Ferroelectric Bulk Materials and Thin Films. Springer Series in Measurement Science and Technology, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9311-1_8

Download citation

Publish with us

Policies and ethics