Measurement and Modelling of Self-Heating in Piezoelectric Materials and Devices

  • Mark Stewart
  • Markys G. Cain
Part of the Springer Series in Measurement Science and Technology book series (SSMST, volume 2)


There are many uses of piezoelectric ceramics where the desire for increased power output means increased drive levels, which subsequently can lead to thermal problems within the device.


Heat Transfer Coefficient Temperature Rise Dielectric Loss Heat Generation Piezoelectric Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the UK’s National Measurement System programme—Measurement for Materials Processing and Performance, MPP. Thanks are also due to T Amato, (PURAC), F Rawson (FFR Ultrasonics Ltd.) and D Hazelwood (R&V Hazelwood Associates) for the loan of equipment, support and advice.


  1. 1.
    Berlincourt, D., Krueger H., Near C.: Technical publication TP-226 properties of Morgan Electro ceramic ceramics. Morgan Electro Ceramics, vol. 12. (2003)Google Scholar
  2. 2.
    Tokin, N.: Multileyer Piezoelectric Actuators. NEC/TOKIN vol. 07Google Scholar
  3. 3.
    Merker, U., Droste, E., Michaelis, A.: Thermal Runaway of Tantalum Capacitors, pp. 102–106. CARTS, Europe (2002)Google Scholar
  4. 4.
    Richard, C., Lee, H.S., Guyomar, D.: Thermo-mechanical stress effect on 1–3 piezocomposite power transducer performance. Ultrasonics 42(1–9), 417–424 (2004)Google Scholar
  5. 5.
    Mitrovic, M., Carman, G., Straub, F.K.: Durability properties of piezoelectric stack actuators under combined electromechanical loading. Proc. SPIE 3992, 217 (2000)CrossRefGoogle Scholar
  6. 6.
    Takahashi, S., Sasaki Y., Hirose, S.: Driving electric field effects on piezoelectric transducers. Jpn. J. Appl. Phys. 36(1), 3010–3015 (1997)Google Scholar
  7. 7.
    Technical Publication TP-221 Piezoelectric CeramicsVisit the Morgan Electro Ceramics. Web Site: Power Capacities of Piezoelectric Ceramics in Sonar-type Acoustic Transducers. pp. 1–8, (1999)
  8. 8.
    Hu, J., Ho, S.-F., Ong, E.-L., Du, J.: An experimental investigation of the temperature field in small piezoelectric vibrators. Ultrasonics 41(9), 731–735 (2004)Google Scholar
  9. 9.
    Uchino, K., Hirose, S.: Loss mechanisms in piezoelectrics: how to measure different losses separately. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48(1), 307–321 (2001)CrossRefGoogle Scholar
  10. 10.
    Richard, C., Goujon, L., Guyomar, D., Lee, H.S., Grange, G.: Selecting passive and active materials for 1.3 composite power transducers. Ultrasonics 40(1), 895–901 (2002)CrossRefGoogle Scholar
  11. 11.
    Lente, M., Eiras, J.: Interrelationship between self-heating and ferroelectric properties in PZT ceramics during polarization reorientation. J. Phys. Condens. Matter 12, 5939 (2000)CrossRefGoogle Scholar
  12. 12.
    Ronkanen, P., Kallio, P., Vilkko, M., Koivo, H.: Self heating of piezoelectric actuators: measurement and compensation. In: Proceedings of the 2004 International Symposium on Micro-Nanomechatronics and Human Science, 2004 and the Fourth Symposium Micro-Nanomechatronics for Information-Based Society, 2004, pp. 313–318 (2004)Google Scholar
  13. 13.
    Mignogna, R.B., Green, R.E., Duke, J.C., Henneke, E.G., Reifsnider, K.L.: Thermographic investigation of high-power ultrasonic heating in materials. Ultrasonics 19(4), 159–163 (1981)CrossRefGoogle Scholar
  14. 14.
    Incropera, F.P., DeWitt, D.P.: Fundamentals of Heat and Mass Transfer. Wiley, New York (1996)Google Scholar
  15. 15.
    Tashiro, S., Ikehiro, M., Igarashi, H.: Influence of temperature rise and vibration level on electromechanical properties of high-power piezoelectric ceramics. Jpn. J. Appl. Phys. 36(1), 3004–3009 (1997)Google Scholar
  16. 16.
    Jordan, T., Qunaies, Z.: Piezoelectric ceramics characterization. Technical Report 2001–28 (2001)Google Scholar
  17. 17.
    Jordan, T.: Langley Research Center, U. S. N. A. Administration, and Space. Electrical properties and power consideration of a piezoelectric actuator (2000)Google Scholar
  18. 18.
    Zhang, Q.M., Wang, H., Zhao, J.: Effect of driving field and temperature on the response behaviour of ferroelectric actuator and sensor materials. J. Intell. Mater. Syst. Struct. 6, 84–93 (1995)Google Scholar
  19. 19.
    Hooker, M., Langley Research Center: Properties of PZT-based piezoelectric ceramics between -150 and 250C. Technical Report (1998)Google Scholar
  20. 20.
    Gdula, R.A.: High field losses of adulterated lead zirconateG titanate piezoelectric ceramics. J. Am. Ceram. Soc. 51(12), 683–687 (1968)Google Scholar
  21. 21.
    Berlincourt, D.A.: Clevite: Power Limitations of piezoelectric ceramics in radiating transducers (Technical paper TP-225). Piezoelectric Division/Clevite Corp. (1962)Google Scholar
  22. 22.
    Ando, E., Kagawa, Y.: Finite-element simulation of transient heat response in ultrasonic transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39(3), 432–440 (1992)CrossRefGoogle Scholar
  23. 23.
    Lu, X., Hanagud, S.V.: Extended irreversible thermodynamics modeling for self-heating and dissipation in piezoelectric ceramics. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51(12), 1582–1592 (2004)CrossRefGoogle Scholar
  24. 24.
    Sherrit, S., Bao, X., Sigel, D.A., Gradziel, M.J., Askins, S.A., Dolgin, B.P., Bar-Cohen, Y.: Characterization of transducers and resonators under high drive levels. Ultrasonics Symposium, 2001 IEEE, vol. 2, pp. 1097–1100 (2001)Google Scholar
  25. 25.
    Hu, J.: Analyses of the temperature field in a bar-shaped piezoelectric transformer operating in longitudinal vibration mode. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(6), 594–600 (2003)CrossRefGoogle Scholar
  26. 26.
    Kanayama, K.: Thermal analysis of a piezoelectric transformer. Ultrasonics Symposium, 1998, Proceedings., 1998 IEEE, vol. 1. pp. 901–904 (1998)Google Scholar
  27. 27.
    Piezoelectric properties of ceramic materials and components: Part 3: Methods of measurement: High power. BS En 50234–3 (2002)Google Scholar
  28. 28.
    Carslaw, H.S., Jaeger, J.C.: Conduction of Heat in Solids, Ser. Oxford science publications, Clarendon Press, New York (1959)Google Scholar
  29. 29.
    Stulen, F., Senapati, N., Gould, R.: Temperature distribution in an ultrasonic power transducer. Ultrason. Int. 83, 301–306 (1983)CrossRefGoogle Scholar
  30. 30.
    Shankar, N., Hom, C.: An acoustic/thermal model for self-heating in PMN sonar projectors. J. Acoust. Soc. Am. 108, 2151 (2000)CrossRefGoogle Scholar
  31. 31.
    Robinson, H.: Large signal dielectric losses in electrostrictive materials. Proc. SPIE 3992, 91 (2000)CrossRefGoogle Scholar
  32. 32.
    Abboud, N., Mould, J., Wojcik, G., Vaughan, D., Powell, D., Murray, V. MacLean, C.: Thermal generation, diffusion and dissipation in 1–3 piezocomposite sonar transducers: finite element analysis and experimental measurements. Ultrasonics Symposium, 1997. Proceedings., 1997 IEEE, vol. 2. pp. 895–900 (1997)Google Scholar
  33. 33.
    Zheng, J., Takahashi, S., Yoshikawa, S., Uchino, K., Vries, J.d.: Heat generation in multilayer piezoelectric actuators. J. Am. Ceram. Soc. 79(12), 3193–3198 (1996)Google Scholar
  34. 34.
    Yao, K., Uchino, K., Xu, Y., Dong, S., Lim, L.C.: Compact piezoelectric stacked actuators for high power applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(4), 819–825 (2000)CrossRefGoogle Scholar
  35. 35.
    Pritchard, J., Ramesh, R., Bowen, C.R.: Time-temperature profiles of multi-layer actuators. Sens. Actuat. A: Phys. 115(1), 140–145 (2004)Google Scholar
  36. 36.
    Mason, W.P., Thurston, R.N.: Physical Acoustics: Principles and Methods, ser. Physical Acoustics. Academic Press, New York (1976)Google Scholar
  37. 37.
    Yarlagadda, S.: Low temperature thermal conductivity, heat capacity and heat generation of PZT. J. Intell. Mater. Syst. Struct. 6, 757 (1995)CrossRefGoogle Scholar
  38. 38.
    Weiland, L.M., Lynch, C.S.: Thermo-electro-mechanical behavior of ferroelectric materials part II: Introduction of rate and self-heating effects. J. Intell. Mater. Syst. Struct. 14(10), 605–621 (2003)Google Scholar
  39. 39.
    P. I. Ceramic. Piezoelectric Ceramics Products, PI Ceramic GmbH.
  40. 40.
    Bauer, S., Ploss, B.: A method for the measurement of the thermal, dielectric, and pyroelectric properties of thin pyroelectric films and their applications for integrated heat sensors. J. Appl. Phys. 68(12), 6361 (1990)CrossRefGoogle Scholar
  41. 41.
    Zhou, S.W., Rogers, C.A.: Heat generation, temperature, and thermal stress of structurally integrated piezo-actuators. J. Intell. Mater. Syst. Struct. 6(3), 372–379 (1995)CrossRefGoogle Scholar
  42. 42.
    Lesieutre, G.A., Fang, L., Koopmann, G.H., Pai, S.P., Yoshikawa, S.: Heat generation of a piezoceramic induced-strain actuator embedded in a glass/epoxy composite panel. 1996 Symposium on Smart, Structures and Materials, pp. 267–275 (1996)Google Scholar
  43. 43.
    Dubus, B., Boucher, D.: An analytical evaluation of the heating of lowGfrequency sonar projectors. J. Acoust. Soc. Am. 95, 1983 (1994)Google Scholar
  44. 44.
    Zhu, D., Han, P.: Thermal conductivity and electromechanical property of single-crystal lead magnesium niobate titanate. Appl. Phys. Lett. 75, 3868 (1999)CrossRefGoogle Scholar
  45. 45.
    Lang, S.: Technique for the measurement of thermal diffusivity based on the laser intensity modulation method (LIMM). Ferroelectrics 93(1), 87–93 (1989)CrossRefGoogle Scholar

Copyright information

© © Queen's Printer and Controller of HMSO 2014

Authors and Affiliations

  1. 1.National Physical LaboratoryTeddingtonUK

Personalised recommendations